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Abstract

We show how recent results concerning quantitative forms of automata
help providing refined understanding of the properties of a system (for in-
stance, a program). In particular, combining the size-change abstraction
together with results concerning the asymptotic behavior of tropical au-
tomata yields extremely fine complexity analysis of some pieces of code.

This abstract gives an informal, yet precise, explanation of why termination
and complexity analysis are related to automata theory.

Program analysis and termination
Program analysis is concerned with the automatic inference of properties of a
chunk of code (or full program). Such analysis may serve many purposes, such
as guaranteeing that some division by zero cannot occur in the execution of a
program, or that types are properly used (when the language is not statically
typed), or that there is no memory leakage, etc... Here, to start with, we are
concerned with termination analysis, i.e. proving that all the executions of the
program (or pieces of a program) eventually halt.

Consider the following code C:

void main() {
uint x,y;
x = read_input();
y = read_input();
while (x >= 0) {

if (y > 0) { // branch a
y--;

}
else { // branch b

x--;
y = read_input();

}
}

}

1



It is clear for a human being that this piece of code eventually terminates what-
ever are the input values read during its execution. The question is how this can
be automatically inferred? Of course, such a problem is in general undecidable
unless restrictions are assumed (using variations around the theorem of Rice).
The path we follow here consists in approximating the behavior of this code
using size-change abstraction. We shall see that this abstraction transforms
the code into a formalism, the size-change abstraction, for which termination is
decidable.

Size-change abstraction
The size-change abstraction amounts to abstract a piece of code in the following
manner:
• We identify some size-change variables that are considered of interest, that

range over non-negative integers (in our example x and y). In general, size-
change variables can represent any norm on the program state (a function
which maps the state to the non-negative integers), such as the length of
a list, the height of a tree, the sum of two non-negative variables, etc.

• We construct the control-flow graph (possibly simplified) of the code: ver-
tices are positions in the code, and edges are steps of computations. We
also identify some entry and exit vertices of the graph as one can expect.

• We abstract tests, i.e., we replace all tests by non-determinism. This
means that we consider possible executions independently of whether the
if-conditions or tests in while loops are true or not.

• Finally, each edge of the control-flow graph is labeled by guards expressing
how the values of the size-change variables may evolve while taking the
edge. The language for these relations is very restricted: it consists of a
conjunction of properties of the form x > y′ or x > y′ where x, y, . . .
represent the value of the variables before the edge is taken, while x′, y′, . . .
represent the value of the variables after the edge is taken. We add guards
conservatively in order to ensure the correctness of the abstraction, i.e.,
we only add a x > y′ to some edge guard if we can guarantee that the
value of y is not greater than the value of x before edge is taken, and
similarly for x < y′.
For the code C, we obtain the following size-change abstraction S:
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pa :

{
x > x′

y > y′

}
b :

{
x > x′ }

We comment on the size-change abstraction S of code C. Here, we only
consider one position in the code, which is the beginning of the while loop. This
needs not be the case in general. The two edges a and b correspond respectively
to executing the if branch and the else branch of code C. In the first case
(edge a), the value of y strictly decreases while the value of x does not change.
In the second case (edge b), the value of x strictly decreases while we have no
information about the value that y might take after the transition (because of
the ‘y = read_input()’ in the code). We see that the two transitions a and b of
S are an abstraction of the branches a and b of C: If the code C executes branch
a resp. b and the variable values (x, y) change to some (x′, y′), then transition
a resp. b of S also allow the variable values (x, y) to change to (x′, y′). This has
the following important consequence for termination analysis: Every execution
of C is also an execution of S. Thus, if we can show that S terminates, then we
can deduce the termination of C.

In the following we explain how to reason about the termination of the size-
change abstraction S.

In order to be precise, we have to define the semantics of the model. Call
an execution path of the size-change abstraction a sequence of edges that 1)
starts in an entry vertex, and 2) is formed of compatible edges, meaning that
for any two consecutive edges in the sequence, the target of the first one should
coincide with the source of the second one. Such an execution path is halting
if it is finite and ends in an exit vertex. Such a definition of an execution path
does not yet capture the semantics of variables. For this, we shall consider the
traces that realize an execution. Formally, a trace of the size-change abstraction
is a sequence of configurations consisting of a vertex and a valuation of the
variables by non-negative integers, that respect the transitions of the size-change
abstraction. This is best seen in an example. Consider the execution path
aabaabaa. One possible trace that realizes this execution is the following one
(where the second component represents the value of the variable x and the
third one the value of the variable y):

3



(p, 2, 2) (p, 2, 1) (p, 2, 0) (p, 1, 2) (p, 1, 1) (p, 1, 0) (p, 0, 2) (p, 0, 1) (p, 0, 0)

a a b a a b a a

We say that the size-change abstraction terminates if every execution path
that is realized by a trace is finite. As argued above, this implies that the
program also terminates since all the executions of the program are captured
by the abstraction. Of course, the converse does not hold, in particular because
we threw away a good part of the original semantics, and thus many reasons for
the program to terminate are not recovered.

Max-plus Automata
The above definition of size-change abstraction does not make the termination
property obviously decidable, yet. What we show now is how this question can
be reduced to a problem of universality in automata theory. The key concept
behind this last reduction is that the pattern that prevents an execution path
to be realizable would be an infinite sequence of variables that are related by
the guards via (non-necessarily stricts) inequalities, and infinitely many times
by strict inequalities (finite sequences of arbitrarily large number of strict in-
equalities would also be a witness in some cases). Indeed, such a sequence would
mean the existence in a trace of an infinite decreasing sequence of non-negative
integers; a contradiction. For instance, the following infinite execution path of
the size-change abstraction:

n0 times︷ ︸︸ ︷
a . . . a b

n1 times︷ ︸︸ ︷
a . . . a b

n2 times︷ ︸︸ ︷
a . . . a b . . .

is impossible since the a edge contains the guard x 6 x′, and the b relation
x < x′. Hence the impossibility infinite sequence relation:

x0

n0 inequalities︷ ︸︸ ︷
6 x1 6 · · · 6xn0−1 < xn0

n1 inequalities︷ ︸︸ ︷
6 xn0+1 6 · · · 6xn0+n1 < xn0+n1+1 6 · · · ,

in which xi accounts for the value assumed by variable x at time i. No valuations
of the xi’s by non-negative integers could fulfill these constraints. For similar
reasons, an infinite execution path that would eventually consists only of the
edge b would be impossible, this time because of the variable y.

We shall define now an automaton model that can measure these ‘bad se-
quences’ of dependences: max-plus automata1.

We will define a max-plus automaton that is able to ‘count’ the maximal
length of such sequences of strict inequalities. The recipe is the following:

1Though we take the principle, we do not use the standard notation of max-plus automata,
which are traditionally defined as automata weighted over the max-plus semiring.
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• The input alphabet is the set of edges of the size-change abstraction.
• The states of the automaton are the size-change variables, plus two extra

states, called > and ⊥.
• The transitions of the automaton are labeled by the edges of the size-

change abstraction, and there is a transition from state x to state y labeled
by δ if the guard of edge δ contains either ‘x > y′ ’ or ‘x > y′ ’; Further-
more the state > is the origin of all possible transitions to every state
(including itself), and ⊥ is the target all possible transitions originating
from any states (including itself).

• Some transitions are marked special (or costly): the ones that arose from
the case ‘x > y′ ’.2

• All states are marked both initial and final (the feature of initial and final
states, which is important in the theory of tropical automata, happens to
be irrelevant for this application).

In our case, this yields the automaton below, in which the ∗ symbol means ‘all
possible labels’, double arrows identify costly transitions, and we omitted to
represent initial and final states:

> ⊥

x

y

∗ ∗

a

b

a

∗

∗

∗

∗

∗

In this automaton, sequence of inequalities over size-change variables can be
witnessed by a path (formally, a run). Costly transitions correspond to strict
inequalities in the guards.

The semantics of this max-plus automaton is to count the number of costly
transitions and to maximize this cost among all runs. Formally, an input of
the automaton is a sequence of edges of the size-change abstraction, such as
the word aaabaabaa (it is not necessarily a execution path so far). A priori, we
consider both finite and infinite sequences of edges. A run of the automaton
over the input u is a sequence of transitions which forms a path in the graph
of the automaton, and it is accepting if either it is infinite and starts in an
initial state or it is finite, starts in an initial state and ends in a final one. The
max-plus automaton A can be used to compute a quantity given some input

2In the standard terminology, non-costly transitions would be given weight 0, while costly
ones would be attributed weight 1.
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word u:

[[A]](u) = sup{cost(ρ) | ρ accepting run over the input u} ∈ N ∪ {∞} ,
where cost(ρ) = number of costly transitions in ρ.

For instance, over the input u = aaabaabaa, [[A]](u) = 3. It corresponds to
a run (there are in fact several of them) that assumes state y during the first
three letters of the word. This is the maximal one, since in our example the
automaton computes the maximum of the number of b-edges with the maximum
of the longest block of consecutive a-edges.

The following lemma formalizes the correction of this reduction to automata:

Lemma 1 The following properties are equivalent:
1. The size-change abstraction terminates.
2. All infinite execution paths u satisfy [[A]](u) =∞.

It happens that Item 2 of Lemma 1 is decidable, from which we get:

Corollary 2 ([10, 9]) The termination of size-change abstractions is decid-
able.

Let us establish the decidability of Item 2. This requires some knowledge about
Büchi automata theory. The reader may as well proceed to the next section.

In this proof, rephrase the second item of Lemma 1 as an inclusion of Büchi
automata. The first Büchi automaton E accepts a sequence of edges if it forms
a valid infinite execution path of the size-change abstraction. The second Büchi
automaton, B, is syntactically the max-plus automaton seen as a Büchi automa-
ton, in which special transitions have to be visited infinitely often (the Büchi
condition): it accepts an infinite execution path u if there exists a run contain-
ing infinitely many costly transitions. In particular, if u is accepted by B, then
[[A]](u) =∞ (property ?). In general the converse is not true, but one can check
that if u is ultimately periodic (i.e. of the form uvvv . . . ), then [[A]](u) = ∞
implies u ∈ L(B) (property ??).

Let us now show that Item 2 of Lemma 1 is equivalent to:

L(E) ⊆ L(B) .

Indeed, if L(E) ⊆ L(B), it means that all infinite execution paths u are accepted
by B, and thus [[A]](u) = ∞ by ?. For the converse direction, assume that
L(E) ⊆ L(B) does not hold, i.e., there is an input that is accepted by E but not
by B. It is known from Büchi that in this case there exists such an input u which
is ultimately periodic. By ??, this means that [[A]](u) is finite, contradicting
Item 2 of Lemma 1.

Complexity analysis
Counting the number of costly transitions also gives an idea of the worst-case
complexity of the program. Indeed, a possible execution of the program corre-
sponds to an execution path of the size-change abstraction that is realized by a
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trace, and the time complexity of the execution is nothing but the length of the
execution path.

To put this idea in action, let us consider the following slightly modified
code:

void main(uint n) {
uint x,y;
x = read_input(n);
y = read_input(n);
while (x >= 0) {

if (y > 0) { // branch a
y--;

}
else { // branch b

x--;
y = read_input(n);

}
}

}

This new code takes a non-negative integer as input, and the read_input(n)
calls now guarantee that the value produced is in the interval {0, . . . , n}. A
more careful look at this code reveals that it terminates in O(n2). We would
like the analysis to reach this level of precision.

In fact, everything is similar to the termination case we have explained up to
now. The only change is that the values of the variables are implicitly ranging
over the interval {0, . . . , n}. Under this assumption, the size-change abstraction
also terminates within a quadratic bound.

The reduction to a max-plus automaton also remains valid, as shown by this
variation around the ideas of Lemma 1:

Lemma 3 The following properties are equivalent for all n and k:
• The size-change abstraction terminates within time bound k, assuming the
variable values range in {0, . . . , n}.

• All execution paths u such that [[A]](u) 6 n have length at most k.

However, we need now a much more delicate result of automata theory than
the inclusion of Büchi automata. Here follows what we can do:

Theorem 4 ([7]) One can effectively compute, given as input a max-plus au-
tomaton A, the value

lim inf
|u|→∞

log([[A]](u) + 1)

log |u|

which happens to be a rational in [0, 1] or ∞.

Now, as a corollary, we get:
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Theorem 5 ([7]) The length of the longest execution path realized by a trace
in a size-change abstraction is of order Θ(nα) if the variables are restricted to
take values in [0, n], where α > 1 is a rational number. Moreover, there is an
algorithm that given a terminating size-change abstraction computes such an α.

It can also be proved that all the rationals α ≥ 1 can be achieved by a given
size-change abstraction.

Related Work
The goal of this paper was to illustrate the size-change abstraction (SCA), which
is a popular technique for automated termination analysis. The last decade has
seen considerable interest in automated techniques for proving the termination
of programs. In this short paper we limit ourselves to describing the related
work on SCA. SCA has been introduced by Ben-Amram, Lee and Jones in [10].
SCA is employed for the termination analysis of functional [10, 11], logical [12]
and imperative [1, 6] programs, term rewriting systems [5], and is implemented
in the industrial-strength systems ACL2 [11] and Isabelle [8]. Recently, SCA
has also been used for resource bound and complexity analysis of imperative
programs [14], which motivated the results on complexity analysis presented in
this paper. SCA is an attractive domain for an automated analysis because
of several strong theoretical results on termination analysis [10], complexity
analysis [7, 13] and the extraction of ranking functions [3, 13]. Further research
has investigated the generalization of size-change constraints to richter classes
of constraints, including difference constraints [2], gap-order constraints [4] and
monotonicity constraints [3].
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