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Abstract. In this paper, we give a self contained presentation of a recent
breakthrough in the theory of infinite duration games: the existence of a
quasipolynomial time algorithm for solving parity games. We introduce
for this purpose two new notions: good for small games automata and
universal graphs.
The first object, good for small games automata, induces a generic algo-
rithm for solving games by reduction to safety games. We show that it is
in a strong sense equivalent to the second object, universal graphs, which
is a combinatorial notion easier to reason with. Our equivalence result
is very generic in that it holds for all existential memoryless winning
conditions, not only for parity conditions.

1 Introduction

In this abstract, we are interested in the complexity of deciding the winner of
finite turn-based perfect-information antagonistic two-player games. So typically,
we are interested in parity games, or mean-payoff games, or Rabin games, etc. . .

In particular we revisit the recent advances showing that deciding the winner
of parity games can be done in quasipolynomial time. Whether parity games can
be solved in polynomial time is the main open question in this research area,
and an efficient algorithm would have far-reaching consequences in verification,
synthesis, logic, and optimisation. From a complexity-theoretic point of view,
this is an intriguing puzzle: the decision problem is in NP and in coNP, imply-
ing that it is very unlikely to be NP-complete (otherwise NP = coNP). Yet
no polynomial time algorithm has yet been constructed. For decades the best
algorithms were exponential or mildly subexponential, most of them of the form
nO(d), where n is the number of vertices and d the number of priorities (we refer
to Section 2 for the role of these parameters).
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Recently, Calude, Jain, Khoussainov, Li, and Stephan [CJK+17] constructed
a quasipolynomial time algorithm for solving parity games, of complexity nO(log d).
Two subsequent algorithms with similar complexity were constructed by Jurdz-
iński and Lazić [JL17], and by Lehtinen [Leh18].

Our aim in this paper is to understand these results through the prism of
good for small games automata, which are used to construct generic reductions
to solving safety games. A good for small games automaton can be understood
as an approximation of the original winning condition which is correct for small
games. The size of good for small games automata being critical in the complexity
of these algorithms, we aim at understanding this parameter better.

A concrete instanciation of good for small games automata is the notion of
separating automata, which was introduced by Bojańczyk and Czerwiński [BC18]
to reformulate the first quasipolynomial time algorithm of [CJK+17]. Later Cz-
erwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys [CDF+19] showed that
the other two quasipolynomial time algorithms also can be understood as the
construction of separating automata, and proved a quasipolynomial lower bound
on the size of separating automata.

In this paper, we establish in particular Theorem 9 which states an equiv-
alence between the size of good for small games automata, non-deterministic
of separating automata, of deterministic separating automata and of universal
graphs. This statement is generic in the sense that it holds for any winning
condition which is memoryless for the existential player, hence in particular for
parity conditions. At a technical level, the key notion that we introduce to show
this equivalence is the combinatorial concept of universal graphs.

Our second contribution, Theorem 10, holds for the parity condition only,
and is a new equivalence between universal trees and universal graphs. In par-
ticular we use a technique of saturation of graphs which simplifies greatly the
arguments. The two theorems together give an alternative simpler proof of the
result in [CDF+19].

Let us mention that the equivalence results have been very recently used to
construct algorithms for mean-payoff games, leading to improvements over the
best known algorithm [FGO18].

Structure of the paper In Section 2 we introduce the classical notions of games,
automata, and good for games automata. In Section 3, we introduce the notion
of good for small games automata, and show that in the context of memoryless
for the existential player winning conditions these automata can be characterised
in different ways, using in particular universal graphs (Theorem 9). In Section 4,
we study more precisely the case of parity conditions.

2 Games and automata

We describe in this subsection classical material: arenas, games, strategies, au-
tomata and good for games automata. Section 2.1 introduces games, Section 2.2
the concept of memoryless strategy, and Section 2.3 the class of automata we



use. Finally, Section 2.4 explains how automata can be used for solving games,
and in particular defines the notion of automata that are good for games.

2.1 Games

We will consider several forms of graphs, which are all directed labelled graph
with a root vertex. Let us fix the terminology now. Given a set X, an X-graph
H = (V ,E, rootH) has a set of vertices V , a set of X-labelled edges E ⊆ V ×
X × V , and a root vertex rootH . We write x u−→H y if there exists a path from
vertex x to vertex y labelled by the word u ∈ X∗. We write x u−→H ∞ if there
exists an infinite path starting in vertex x labelled by the word u ∈ Xω. The
graph is trimmed if all vertices are reachable from the root and have out-degree at
least one. Note that as soon as a graph contains some infinite path starting from
the root, it can be made trimmed by removing the bad vertices. A morphism of
X-graphs from G to H is a map α from vertices of G to vertices of H, that sends
the root of G to the root of H, and sends each edge of G to an edge of H, i.e.,
for all a ∈ X, p a−→G q implies α(p) a−→H α(q). A weak morphism of X-graphs
is like a morphism but we lift the property that the root of G is sent to the root
of H and instead require that if root a−→G x then root

a−→H α(x).

Definition 1. Let C be a set (of colors). A C-arena A is a C-graph in which
vertices are split into V = VE ] VA. The vertices are called positions. The posi-
tions in VE are the positions owned by the existential player, and the ones in VA
are owned by the universal player. The root is the initial position. The edges
are called moves. Infinite paths starting in the initial position are called plays.
Finite paths starting in the initial position are called partial plays. The dual of
an arena is obtained by swapping VA and VE, i.e., exchanging the ownernship of
the positions.

A W-game G = (A,W) consists of a C-arena A together with a set W ⊆ Cω
called the winning condition.

For simplicity, we assume in this paper the following epsilon property1: there
is a special color ε ∈ C such that for all words u, v ∈ Cω, if u and v are equal
after removing all the ε-letters, then u ∈W if and only if v ∈W.

The dual of a game is obtained by dualising the arena, and complementing
the winning condition.

If one compares with usual games – for instance checkers – then the arena
represents the set of possible board configurations of the game (typically, the
configuration of the board plus a bit telling whose turn to play it is). The config-
uration is an existential position if it is the first player’s turn to play, otherwise
1 This assumption is satisfied in an obvious way for all winning conditions seen in this
paper. It could be avoided, but at the technical price of considering slightly different
forms of games: games in which the moves are positive boolean combinations of
pairs of colors and positions. Such ‘move relations’ form a joint generalisation of
existential positions (which can be understood as logical disjunction) and universal
position (which can be understood as logical conjunction).



it is a universal position. There is an edge from u to v if it is a valid move for
the player to go from configuration u to configuration v. The interest of having
colors and winning conditions may not appear clearly in this context, but the
intent would be, for example, to tell who is the winner if the play is infinite.

Informally, the game is played as follows by two players: the existential player
and the universal player2. At the beginning, a token is placed at the initial
position of the game. Then the game proceeds in rounds. At each round, if the
token is on an existential position then it is the existential player’s turn to play,
otherwise it is the universal player’s turn. This player chooses an outgoing move
from the position, and the token is pushed along this move. This interaction
continues forever, inducing a play (defined as an infinite path in the arena)
labelled by an infinite sequence of colors. If this infinite sequence belongs to
the winning condition W, then the existential player wins the play, otherwise,
the universal player wins the play. It may happen that a player has to play
but there is no move available from the current position: in this case the player
immediately loses.

Classical winning conditions Before describing more precisely the semantics of
games, let us recall what are the classical winning conditions considered in this
context.

Definition 2. We define the following classical winning conditions:

safety condition The safety condition is Safety = {0}ω over the unique color 0.
Expressed differently, all plays are winning. Note that the color 0 fulfills the
requirement of the epsilon property.

Muller condition Given a finite set of colors C, a Muller condition is a
Boolean combination of winning conditions of the form “the color c appears
infinitely often”. In general, no color fulfills the requirement of the epsilon
property, but it is always possible to add an extra fresh color ε. The resulting
condition satisfies the epsilon property.

Rabin condition Given a number p, we define the Rabin condition Rabinp ⊆
{{1, 2, 3}p}ω by u ∈ Rabinp if there exists some i ∈ 1, . . . , p such that when
projected on this component, 2 appears infinitely often in u, and 3 finitely
often. Note that the constant vector 1 fulfills the epsilon property. The Rabin
condition is a special case of Muller conditions.

parity condition Given a interval of integers C = [i, j] (called priorities), a
word u = c1c2c3 · · · ∈ Cω belongs to ParityC if the largest color appearing
infinitely often in u is even.

Büchi condition The Büchi condition Buchi is a parity condition over the
restricted interval [1, 2] of priorities. A word belongs to Buchi if it contains
infinitely many occurrences of 2.

2 In the literature, the players have many other names: ‘Eve’ and ‘Adam’, ’Eloise’ and
‘Abelard’, ‘Exist’ and ‘Forall’, ‘0’ and ‘1’, or in specific contexts: ‘Even’ and ‘Odd’,
‘Automaton’ and ‘Pathfinder’, ‘Duplicator’ and ‘Spoiler’, . . .



coBüchi condition The coBüchi condition coBuchi is a parity condition over
the restricted interval [0, 1] of priorities. A word belongs to coBuchi if it it
has only finitely many occurrences of 1’s.

mean-payoff condition Given a finite set C ⊆ R, a word u = c1c2c3 · · · ∈ Cω
belongs to meanpayoffC if

lim inf
n→∞

c1 + c2 + · · ·+ cn
n

> 0 .

There are many variants of this definition (such as replacing lim inf with
lim sup), that all turn out to be equivalent on finite arenas.

Strategies We describe now formally what it means to win a game. Let us take
the point of view of the existential player. A strategy for the existential player is
an object that describes how to play in every situation of the game that could be
reached. It is a winning strategy if whenever these choices are respected during a
play, the existential player wins this play. There are several ways one can define
the notion of a strategy. Here we choose to describe a strategy as the set of
partial plays that may be produced when it is used.

Definition 3. A strategy s for the existential player sE is a set of partial plays
of the game that has the following properties:

– sE is prefix-closed and non-empty,
– for all partial plays π ∈ sE ending in some v ∈ VE, there exists exactly one

partial play of length |π|+ 1 in sE that prolongs π,
– for all partial plays π ∈ sE ending in some v ∈ VA, then all partial plays that

prolong π of length |π|+ 1 belong to sE.

A play is compatible with the strategy sE if all its finite prefixes belong to s.
A play is winning if it belongs to the winning condition W. A game is won by
the existential player if there exists a strategy for the existential player such that
all plays compatible with it are won by the existential player. Such a strategy is
called a winning strategy.

Symmetrically, a (winning) strategy for the universal player is a (winning)
strategy for the existential player in the dual game. A game is won by the univer-
sal player if there exists a strategy for the universal player such that all infinite
plays compatible with it are won by the universal player.

The idea behind this definition is that at any moment in the game, when
following a strategy, a sequence of moves has already been played, yielding a
partial play in the arena. The above definition guarantees that: 1. if a partial
play belongs to the strategy, it is indeed reachable by a succession of moves that
stay in the strategy, 2. if, while following the strategy, a partial play ends in a
vertex owned by the existential player, there exists exactly one move that can be
followed by the strategy at that moment, and 3. if, while following the strategy,
a partial play ends in a vertex owned by the universal player, the strategy is able
to face all possible choices of the opponent.



Remark 1. It is not possible that in a strategy defined in this way one reaches
an existential position that would have no successor: indeed, 2. would not hold.

Remark 2. There are different ways to define a strategy in the literature. One is
as a strategy tree: indeed one can see sE as a set of nodes equipped with prefix
ordering as the ancestor relation. Another way is to define a strategy as a partial
map from paths to moves. All these definitions are equivalent. The literature also
considers randomized strategies (in which the next move is chosen following a
probability distribution): this is essential when the games are concurrent or with
partial information, but not in the situation we consider in this paper.

Lemma 1 (at most one player wins). It is not possible that both the exis-
tential player and the universal player win the same game.

Of course, keeping the intuition of games in mind, one would expect also
that one of the player wins. However, this is not necessarily the case. A game is
called determined if either the existential or the universal player wins the game.
The fact that a game is determined is referred to as its determinacy. A winning
condition W is determined if all W-games are determined. It happens that not
all games are determined.

Theorem 1. There exist winning conditions that are not determined (and it
requires the axiom of choice to prove it).

However, there are some situations in which games are determined. This is
the case of finite duration games, of safety games, and more generally:

Theorem 2 (Martin’s theorem of Borel determinacy [Mar75]). Games
with Borel winning conditions are determined.

Defining the notion of Borel sets is beyond the scope of this paper. It suffices
to know that this notion is sufficiently powerful for capturing a lot of natural
winning conditions, and in particular all winning conditions in this paper are
Borel; and thus determined.

2.2 Memory of strategies

A key insight in understanding a winning condition is to study the amount
of memory required by winning strategies. To define the notion of memoryless
strategies, we use an equivalent point of view on strategies, using strategy graphs.

Definition 4. Given a C-arena A, an existential player strategy graph SE, γ
in A is a trimmed C-graph SE together with a graph morphism γ from SE to A
such that for all vertices x in SE,

– if γ(x) is an existential position, then there exists exactly one edge of the
form (x, c, y) in SE,



– if γ(x) is a universal position, then β induces a surjection between the edges
originating from x in SE and the moves originating from β(x), i.e., for all
moves of the form (β(x), c, v), there exists an edge of the form (x, c, y) in SE

such that β(y) = v.

The existential player strategy graph SE, γ is memoryless if γ is injective. In
general the memory of the strategy is the maximal cardinality of γ−1(v) for v
ranging over all positions in the arena. For G a W-game with W ⊆ Cω, an
existential player strategy graph SE is winning if the labels of all its paths issued
from the root belong to W.

The (winning) universal player strategy graphs are defined as the (winning)
existential player strategy graphs in the dual game.

The winning condition W is memoryless for the existential player if, when-
ever the existential player wins in a W-game, there is a memoryless winning
existential player strategy graph. It is memoryless for the existential player over
finite arenas if this holds for finite W-games only. The dual notion is the one of
memoryless for the universal player winning condition.

Of course, as far as existence is concerned the two notions of strategy coincide:

Lemma 2. There exists a winning existential player strategy graph if and only
if there exists a winning strategy for the existential player.

Proof. A strategy for the existential player sE can be seen as a C-graph (in fact
a tree) SE of vertices sE, of root ε, and with edges of the form (π, a, πa) for
all πa ∈ sE. If the strategy sE is winning, then the strategy graph SE is also
winning. Conversely, given an existential player strategy graph SE, the set sE
of its paths starting from the root is itself a strategy for the existential player.
Again, the winning property is preserved.

We list a number of important results stating that some winning conditions
do not require memory.

Theorem 3 ([EJ91]). The parity condition is memoryless for the existential
player and for the universal player.

Theorem 4 ([EM79,GKK88]). The mean-payoff condition is memoryless for
the existential player over finite arenas as well as for the universal player.

Theorem 5 ([GH82]). The Rabin condition is memoryless for the existential
player, but not in general for the universal player.

Theorem 6 ([McN93]). Muller conditions are finite-memory for both players.

Theorem 7 ([CFH14]). Topologically closed conditions for which the residuals
are totally ordered by inclusion are memoryless for the existential player.



2.3 Automata

Definition 5 (automata over infinite words). Let W ⊆ Cω. A (non-
deterministic) W-automaton A over the alphabet A is a (C × A)-graph. The
convention is to call states its vertices, and transitions its edges. The root vertex
is called the initial state. The set W is called the accepting condition (whereas it
is the winning condition for games). The automaton Ap is obtained from A by
setting the state p to be initial.

A run of the automaton A over u ∈ Aω is an infinite path in A that starts
in the initial state and projects on its A-component to u. A run is accepting if
it projects on its C-component to a word v ∈ W. The language accepted by A
is the set L(A) of infinite words u ∈ Aω such that there exists an accepting run
of A on u.

An automaton is deterministic (resp. complete) if for all states p and all
letters a ∈ A, there exists at most one (resp. at least one) transition of the form
(p, (a, c), q). If the winning condition is parity, this is a parity automaton. If the
winning condition is safety, this is a safety automaton, and we do not mention
the C-component since there is only one color. I.e., the transitions form a subset
of Q × A × Q, and the notion coincides with the one of a A-graph. For this
reason, we may refer to the language L(H) accepted by an A-graph H: this is
the set of labelling words of infinite paths starting in the root vertex of H.

Note that here we use non-deterministic automata for simplicity. However,
the notions developed in this paper can be adapted to alternating automata.

The notion of ω-regularity. It is not the purpose of this paper to describe the rich
theory of automata over infinite words. It suffices to say that a robust concept
of ω-regular language emerges. These are the languages that are equivalently
defined by means of Büchi automata, parity automata, Rabin automata, Muller
automata, deterministic parity automata, deterministic Rabin automata, deter-
ministic Muller automata, as well as many other formalisms (regular expressions,
monadic second-order logic, ω-semigroup, alternating automata, . . . ). However,
safety automata and deterministic Büchi automata define a subclass of ω-regular
languages.

Note that the mean-payoff condition does not fall in this category, and au-
tomata defined with this condition do not recognize ω-regular languages in gen-
eral.

2.4 Automata for solving games

There is a long tradition of using automata for solving games. The general prin-
ciple is to use automata as reductions, i.e. starting from a V-game G and a
W-automaton A that accepts the language V, we construct a W-game G × A
called the product game that combines the two, and which is expected to have
the same winner: this means that to solve the V-game G, it is enough to solve the
W-game G × A. We shall see below that, unfortunately, this expected property



does not always hold (Remark 4). The automata that guarantee the correction
of the construction are called good for games, originally introduced by Henzinger
and Piterman [HP06].

We begin our description by making precise the notion of product game.
Informally, the new game requires the players to play like in the original game,
and after each step, the existential player is required to provide a transition in
the automaton that carries the same label.

Definition 6. Let D be an arena over colors C, with positions P and moves M .
Let also A be a W-automaton over the alphabet C with states Q and transi-
tions ∆. We construct the product arena D × A as follows:

– The set of positions in the product game is (P ]M)×Q.
– The initial position is (initD, initA), in which initD is the initial position of G,

and initA is the initial state of A.
– The positions of the form (x, p) ∈ P × Q are called game positions and are

owned by the owner of x in G. There is a move, called a game move, of the
form ((x, p), ε, ((x, c, y), p)) for all moves (x, c, y) ∈M .

– The positions of the form ((x, c, y), p) ∈ M × Q are called automaton po-
sitions and are owned by the existential player. There is a move, called an
automaton move, of the form (((x, c, y), p), d, (y, q)) for all transitions of the
form (p, (c, d), q) in A.

Note that every game move ((x, p), ε, ((x, c, y), p)) of G × A can be transformed
into a move (x, c, y) of G, called its game projection. Similarly every automaton
move (((x, c, y), p), d, (y, q)) can be turned into a transition (p, (c, d), q) of the
automaton A called its automaton projection. Hence, every play π of the product
game can be projected into the pair of a play π′ in G of label u (called the game
projection), and an infinite run ρ of the automaton over u (called the automaton
projection). The product game is the game over the product arena, using the
winning condition of the automaton.

Lemma 3 (folklore3). Let G be a V-game, and A be a W-automaton that
accepts a language L ⊆ V, then if the existential player wins G × QA, she
wins G.

Proof. Assume that the existential player wins the game G × A using a strat-
egy sE. This strategy can be turned into a strategy for the existential player s′E
in G by performing a game projection. It is routine to check that this is a valid
strategy.

Let us show that this strategy s′E is V-winning, and hence conclude that the
existential player wins the game G. Indeed, let π′ be a play compatible with s′E,
say labelled by u. This play π′ has been obtained by game projection of a play π
compatible with sE in G × A. The automaton projection ρ of π is a run of A
3 This technique of reduction is in fact more general, since the automaton may not be
a safety automaton. Its use can be traced back, for instance, to the work of Büchi
and Landweber [BL69].



over u, and is accepting since sE is a winning strategy. Hence, u is accepted by A
and as a consequence belongs to V. We have proved that sE is winning.

Corollary 1. Let G be a V-game, and A be a deterministic W-automaton that
accepts the language V, then the games G and G × A have the same winner.

Proof. We assume without loss of generality that A is deterministic and com-
plete (note that this may require to slightly change the accepting condition, for
instance in the case of safety). The results then follows from the application of
Lemma 3 to the game G and its dual.

The consequence of the above lemma is that when we know how to solve
W-games, and we have a deterministic W-automaton A for a language V, then
we can decide the winner of V-games by performing the product of the game
with the automaton, and deciding the winner of the resulting game. Good for
games automata are automata that need not be deterministic, but for which this
kind of arguments still works.

Definition 7 (good for games automata [HP06]). Let V be a language,
and A be a W-automaton. Then A is good for V-games if for all V-games G, G
and G × A have the same winner.

Note that Lemma 1 says that deterministic automata are good for games
automata.

Remark 3. It may seem strange, a priori, not to require in the definition that
L(A) = V. In fact, it holds anyway: if an automaton is good for V-games, then
it accepts the language V. Indeed, let us assume that there exists a word u ∈
L(A) \ V, then one can construct a game that has exactly one play, labelled u.
This game is won by the universal player since u 6∈ V, but the existential player
wins G × A. A contradiction. The same argument works if there is a word in
V \ L(A).

Examples of good for games automata can be found in [BKS17], together
with a structural analysis of the extent to which they are non-deterministic.

Remark 4. We construct an automaton which is not good for games. The alpha-
bet is {a, b}. The automaton A is a Büchi automaton: it has an initial state from
which goes two ε-transitions: the first transition guesses that the word contains
infinitely many a’s, and the second transition guesses that the word contains
infinitely many b’s. Note that any infinite word contains either infinitely many
a’s or infinitely many b’s, so the language V recognised by this automaton is
the set of all words. However, this automaton requires a choice to be made at
the very first step about which of the two alternatives hold. This makes it not
good for games: indeed, consider a game G where the universal player picks any
infinite word, letter by letter, and the winning condition is V. It has only one
position owned by the universal player. The existential player wins G because all
plays are winning. However, the existential player loses G × A, because in this
game she has to declare at the first step whether there will be infinitely many
a’s or infinitely many b’s, which the universal player can later contradict.



Let us conclude this part with Lemma 4, stating the possibility to compose
good for games automata. We need before hand to defined the composition of
automata.

Given A × B-graph A, and B × C-graph B, the composed graph B ◦ A
has as states the product of the sets of states, as initial state the ordered pair
of the initial states, and there is a transition ((p, q), (a, c), (p′, q′)) if there is
a transition (p, (a, b), p′) in A and a transition (q, (b, c), q′). If A is in fact an
automaton that uses the accepting condition V, and B an automaton that uses
the accepting condition W, then the composed automaton B ◦ A uses has as
underlying graph the composed graphs, and as accepting condition W.

Lemma 4 (composition of good for games automata). Let A be a good
for games W-automaton for the language V, and B be good for games V-automaton
for the language L, then the composed automaton A ◦ B is a good for games W-
automaton for the language L.

3 Efficiently solving games

From now on, graphs, games and automata are assumed to be finite.
We now present more recent material. We put forward the notion of good

for n-games automata (good for small games) as a common explanation for the
several recent algorithms for solving parity games ‘efficiently’. After describing
this notion in Section 3.1, we shall give more insight about it in the context of
winning conditions that are memoryless for the existential player in Section 3.2

Much more can be said for parity games and good for small games safety
automata: this will be the subject of Section 4.

3.1 Good for small games automata

We introduce the concept of (strongly) good for n-games automata (good for
small games). The use of these automata is the same as for good for games
automata, except that they are cannot be composed with any game, but only
with small ones. In other words, a good for (W, n)-game automaton yields a
reduction for solving W-games with at most n positions (Lemma 6). We shall see
in Section 3.2 that as soon as the underlying winning condition is memoryless for
the existential player, there are several characterisations for the smallest strongly
good for n-games automata. It is good to keep in mind the definition of good
for games automata (Definition 7) when reading the following one.

Definition 8. Let V be a language, and A be a W-automaton. Then A is good
for (V, n)-games if for all V-games G with at most n positions, G and G × A
have the same winner (we also write good for small games when there is no need
for V and n to be explicit).

It is strongly good for (V, n)-games if it is good for (V, n)-games and the
language accepted by A is contained in V.



Example 1 (automata that are good for small games). We have naturally the
following chain of implications:

good for games =⇒ strongly good for n-games =⇒ good for n-games

The first implication is from Remark 3, and the second is by definition. Thus
the first examples of automata that are strongly good for small games are the
automata that are good for games.

Example 2. We consider the case of the coBüchi condition: recall that the set
of colors is {0, 1} and the winning plays are the ones such that there ultimately
contain only 0’s. It can be shown that if the existential player wins in a coBüchi
game with has at most n positions, then she also wins for the winning condition
L = (0∗(ε + 1))n0ω, i.e., the words in which there is at most n occurrences
of 1 (indeed, a winning memoryless strategy for the condition coBuchi cannot
contain a 1 in a cycle, and hence cannot contain more than n occurrences of 1 in
the same play; thus the same strategy is also winning in the same game with the
new winning condition L). As a consequence, a deterministic safety automaton
that accepts the language L ⊆ coBuchi (the minimal one has n + 1 states) is
good for (coBuchi, n)-games.

Mimicking Lemma 4 which states the closure under composition of good
for games automata, we obtain the following variant for good for small games
automata:

Lemma 5 (composition of good for small games automata). Let B be a
good for n-games V-automaton for the language L with k states, and A be a good
for kn-games W-automaton for the language V, then the composed automaton A◦
B is a good for n-games W-automaton for the language L.

We also directly get an algorithm from such reductions.

Lemma 6. Assume that there exists an algorithm for solving W-games of size m
in time f(m). Let G be a V-game with at most n positions and A be a good for
(V, n)-games W-automaton of size k, there exists an algorithm for solving G of
complexity f(kn).

Proof. Construct the game G × A, and solve it.

The third quasipolynomial time algorithm for solving parity games due to
Lehtinen [Leh18] can be phrased using good for small games automata (note
that it is not originally described in this form).

Theorem 8 ([Leh18,BL19]). Given positive integers n, d, there exists a parity
automaton with n(log d+O(1)) states and 1 + blog nc priorities which is strongly
good for n-games.



Theorem 8 combined with Lemma 6 yields a quasipolynomial time algorithm
for solving parity games. Indeed, consider a parity game G with n positions
and d priorities. Let A be the good for n-games automaton constructed by
Theorem 8. The game G × A is a parity game equivalent to G, which has m =

n(log d+O(1)) states and d′ = 1+blog nc priorities. Solving this parity game with a
simple algorithm (of complexity O(md′)) yields an algorithm of quasipolynomial
complexity:

O(md′) = O(n(log d+O(1))d′) = nO(log(d) log(n)).

3.2 The case of memoryless winning conditions

In this section we fix a winning condition W which is memoryless for the existen-
tial player, and we establish several results characterising the smallest strongly
good for small games automata in this case.

Our prime application is the case of parity conditions, that will be studied
specifically in Section 4, but this part also applies to conditions such as mean-
payoff or Rabin.

The goal is to establish the following theorem (the necessary definitions are
introduced during the proof).

Theorem 9. Let W be a winning condition which is memoryless for the exis-
tential player, then the following quantities coincide for all positive integers n:

1. the least number of states of a strongly (W, n)-separating deterministic safety
automaton,

2. the least number of states of a strongly good for (W, n)-games safety automa-
ton,

3. the least number of states of a strongly (W, n)-separating safety automaton,
4. the least number of vertices of a (W, n)-universal graph.

The idea of separating automata4 was introduced by Bojańczyk and Czer-
wiński [BC18] to reformulate the first quasipolynomial time algorithm [CJK+17].
Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys [CDF+19] showed
that the other two quasipolynomial time algorithms [JL17,Leh18] also can be
understood as the construction of separating automata.

The proof of Theorem 9 spans over Sections 3.2 and 3.3. It it a consequence
of Lemmas 7, 8, 11, and 12. We begin our proof of Theorem 9 by describing the
notion of strongly separating automata.

Definition 9. An automaton A is strongly (W, n)-separating if

W|n ⊆ L(A) ⊆W ,

4 The definition used in [BC18] is not strictly equivalent to the one we use here: a
separating automaton in [BC18] is a strongly separating automaton in our sense,
but not conversely.



in which W|n is the union of all the languages accepted by safety automata with n
states that accept sublanguages of W.5

Lemma 7. In the statement of Theorem 9, (1) =⇒ (2) =⇒ (3).

Proof. Assume (1), i.e., there exists a strongly (W, n)-separating deterministic
safety automaton A, then L(A) ⊆ W. Let G be a W-game with at most n
positions. By Lemma 3, if the existential player wins G × A, she wins the game G.
Conversely, assume that the existential player wins G, then, by assumption she
has a winning memoryless strategy graph SE, γ : SE → G, i.e., L(SE) ⊆ W
and γ is injective. By injectivity of γ, SE has at most n vertices and hence
L(SE) ⊆ W|n ⊆ L(A). As a consequence, for every (partial) play π compatible
with SE, there exists a (partial) run of A over the labels of π (call this property
?). We construct a new strategy for the existential player in G × A as follows:
When the token is in a game position, the existential player plays as in SE;
When the token is in an automaton position, the existential player plays the
only available move (indeed, the move exists by property ?, and is unique by
the determinism assumption). Since this is a safety game, the new strategy is
winning. Hence the existential player wins G × A, proving that A is good for
(W, n)-games. Item 2 is established.

Assume now (2), i.e., that A is some strongly good for (W, n)-games au-
tomaton. Then by definition L(A) ⊆ W. Now consider some word u in W|n.
By definition, there exists some safety automaton B with at most n states such
that u ∈ L(B) ⊆ W. This automaton can be seen as a W-game G in which
all positions are owned by the universal player. Since L(B) ⊆ W, the existen-
tial player wins the game G. Since furthermore A is good for (W, n)-games, the
existential player has a winning strategy SE in G × A. Assume now that the
universal player is playing the letters of u in the game G × A, then the winning
strategy SE constructs an accepting run of A on u. Thus u ∈ L(A), and Item 3
is established.

We continue our proof of Theorem 9 by introducing the notion of (W, n)-
universal graph.

Definition 10. Given a winning condition W ⊆ Cω and a positive integer n, a
C-graph U is (W, n)-universal6 if

– L(U) ⊆W, and
– for all C-graphs H such that L(U) ⊆ W and with at most n vertices, there

is a weak graph morphism from H to U .

We are now ready to prove one more implication of Theorem 9.
5 Note that there is a natural, more symetric, notion of (W, n)-separating automata

in which the requested inclusions are W|n ⊆ L(A) ⊆
(
W{

∣∣∣
n

){
. However, nothing is

known about this notion.
6 Note that this is not the notion of (even weak) universality in categorical terms since
U is not in general itself of size n.



Lemma 8. In the statement of Theorem 9, (4) =⇒ (1)

Proof. Assume that there is a (W, n)-universal graph U . We show that U seen as
an safety automaton is strongly good for (W, n)-games. One part is straightfor-
ward: L(U) ⊆W is by assumption. For the other part, consider aW-game G with
at most n positions. Assume that the existential player wins G, this means that
there exists a winning memoryless strategy for the existential player SE, γ : SE →
G in G. We then construct a strategy for the existential player S′E that maintains
the property that the only game positions in G × U that are met in S′E are of the
form (x, γ(x)). This is done as follows: when a game position is encountered, the
existential player plays like the strategy SE, and when an automaton position
is encountered, the existential player plays in order to follow γ. This is possible
since γ is a weak graph morphism.

3.3 Maximal graphs

In order to continue our proof of Theorem 9, more insight is needed: we have to
understand what are the W-maximal graphs. This is what we do now.

Definition 11. A C-graph H is W-maximal if L(H) ⊆ W and if it is not
possible to add a single edge to it without breaking this property, i.e., without
producing an infinite path from the root vertex that does not belong to W.

Lemma 9. For a winning condition W ⊆ C which is memoryless for the exis-
tential player, and H a W-maximal graph, then the ε-edges in H form a transitive
and total relation.

Proof. Transitivity arises from the epsilon property of winning conditions (Def-
inition 1): Consider three vertices x, y and z such that α = (x, ε, y) and β =
(y, ε, z) are edges of H. Let us add a new edge δ = (x, ε, y) yielding a new
graph H ′. Let us consider now any infinite path π in H ′ starting in the root
(this path may contain finitely of infinitely many occurrences of δ, but not almost
only δ’s since x 6= y). Let π′ be obtained from π by replacing each occurrence
of δ by the sequence αβ. The resulting path π′ belongs H, and thus its labelling
belongs to W. But since the labelings of π and π′ agree after removing all the
occurrences of ε, the epsilon property guarantees that the labelling of π belongs
to W. Since this holds for all choices of π, we obtain L(H ′) ⊆ W. Hence, by
maximality, δ ∈ H, which means that the ε-edges form a transitive relation.

Let us prove the totality. Let x and y be distinct vertices of H. We have to
show that either x ε−→ y or y ε−→ x. We can turn H into a game G as follows:

– all the vertices of H become positions that are owned by the universal player
and we add a new position z owned by the existential player;

– all the edges of H that end in x or y become moves of G that now end in z,
– all the other edges of H become moves of G without change,
– and there are two new moves in G, (z, ε, x) and (z, ε, y).



We claim first that the game G is won by the existential player. Let us construct
a strategy sE in G as follows. The only moment the existential player has a choice
to make is when the play reaches the position z. This has to happen after a move
of the form (t, a, z). This move originates either from an edge of the form (t, a, x),
or from an edge of the form (t, a, y). In the first case the strategy sE chooses
the move (z, ε, x), and in the second case the move (z, ε, y). Let us consider a
play π compatible with sE, and let π′ be obtained from π by replacing each
occurrence of (t, a, z)(z, ε, x) with (t, a, x) and each occurrence of (t, a, z)(z, ε, y)
with (t, a, y). The resulting π′ is a path in H and hence its labeling belongs
to W. Since the labelings of π and π′ are equivalent up to ε-letters, by the
epsilon property, the labeling of π also belongs to W. Hence the strategy sE
witnesses the victory of the existential player in G. The claim is proved.

By assumption on W, this means that there exists a winning memoryless
strategy for the existential player SE in G. In this strategy, either the existential
player always chooses (z, ε, x), or she always chooses (z, ε, y). Up to symmetry,
we can assume the first case. Let now H ′ be the graph H to which a new
edge δ = (y, ε, x) has been added. We aim that L(H ′) ⊆W. Let π be an infinite
path in H ′ starting from the root vertex. In this path, each occurrences of δ
are preceded by an edge of the form (t, a, y). Thus, let π′ be obtained from π
by replacing each occurrence of a sequence of the form (t, a, y)δ by (t, a, y). The
resulting path is a play compatible with SE. Hence the labeling of π′ belongs
to W, and as a consequence, by the epsilon property, this is also the case for π.
Since this holds for all choices of π, we obtain that L(H ′) ⊆ W. Hence, by
W-maximality assumption, (y, ε, x) is an edge of H.

Overall, the ε-edges form a total transitive relation.

Let 6ε be the least relation closed under reflexivity and that extends the
ε-edge relation.

Lemma 10. For a winning condition W which is memoryless for the existential
player, and H a W-maximal graph, then the following properties hold:

– The relation 6ε is a total preorder.
– x′ 6ε x

a−→H y 6ε y′ implies x′ a−→H y′, for all vertices x′, x, y, y′ and
colors a.

– For all vertices p, q, L(Hp) ⊆ L(Hq) if and only q 6ε p.
– for all vertices p, q and colors a, aL(Hq) ⊆ L(Hp) if and only if p a−→H q.

Proof. The first part is obvious from Lemma 9. For the second part, it is sufficient
to prove that x a−→ y

ε−→ z implies x a−→ y and that x ε−→ y
a−→ z implies

x
a−→ y. Both cases are are similar to the proof of transitivity in Lemma 97.
The two next items are almost the same. The difficult direction is to assume

the language inclusion, and deduce the existence of an edge (left to right). Let us
7 This arises in fact from a more general simple phenomenon: if the sequence ab is
‘indistinguishable in any context’ from c (meaning that if one substitutes simulta-
neously infinitely many occurrences of ab with occurrences of c one does not change
the membership to W), then x a−→ y

b−→ z implies x c−→ z.



assume for an instant thatH would be a finite word automaton, with all its states
accepting. Then it is an obvious induction to show that if aL(Hq) ⊆ L(Hp) (as
languages of finite words), it is safe to add an ε-transitions from q to p without
changing the language. The two above items are then obtained by limit passing
(this is possible because the safety condition is topologically closed).

We are now ready to provide the missing proofs for Theorem 9: from (3) to
(4), and from (3) to (1). Both implications arise from Lemma 9.

Lemma 11. In the statement of Theorem 9, (3) =⇒ (4).

Proof. Let us start from a strongly (W, n)-separating safety automaton A. With-
out loss of generality, we can assume it is W-maximal. We claim that it is (W, n)-
universal.

Let us define first for all languages K ⊆ Cω, its closure

K =
⋂

L(As)⊇K

L(As)

(in case of an empty intersection, we assume Cω). This is a closure operator:
K ⊆ K ′ implies K ⊆ K ′, K ⊆ K, and K = K. Futhermore, aK ⊆ aK, for
all letters a ∈ C. Let now H be a trimmed graph with at most n vertices such
that L(H) ⊆W. We have L(H) ⊆W|n by definition of W|n.

We claim that for each vertex x of H, there is a state α(x) of A such that

L(Aα(x)) = L(Hx) .

Indeed, note first that, since H is trimmed, there exists some word u such that
rootH

u−→ x. Hence, using the fact that A is strongly (W, n)-separating, we
get that for all v ∈ L(Hx), uv ∈ L(H) ⊆ W|n ⊆ L(A). Let β(v) be the state
assumed after reading u by a run of A accepting uv. It is such that v ∈ L(Aβ(v)).
Since A is finite and its states are totally ordered under inclusion of residuals
(Lemma 10), this means that there exists a state α(x) (namely the maximum
over all the β(w) for w ∈ L(Hx)) such that L(Aα(x)) = L(Hx).

Let us show that α is a weak graph morphism8 from H to A. Consider some
edge (x, a, y) of H. We have aL(Hy) ⊆ L(Hx). Hence

aL(Aα(y)) = aL(Hy) ⊆ aL(Hy) ⊆ L(Hx) = L(Aα(x)) ,

which implies by Lemma 10 that α(x) a−→A α(y). Let now rootH
a−→H x be

some edge. By hypothesis, we have

aL(Hx) ⊆ L(H) ⊆W|n ⊆ L(A) .

8 Note that in general that α is not a (non-weak) graph morphism, even for conditions
like parity. Even more, such a graph morphism does not exist in general.



Thus L(Aα(x)) = aL(Hx) ⊆ L(A) = L(ArootA). We obtain rootA
a−→A α(x) by

Lemma 10. Hence, α is a weak graph morphism.
Since this holds for all choices of H, we have proved that A is a (W, n)-

universal graph.

Lemma 12. In the statement of Theorem 9, (3) =⇒ (1).

Proof. Let us start from a strongly (W, n)-separating safety automaton A. With-
out loss of generality, we can assume it is maximal. Thus Lemma 10 holds.

We now construct a deterministic safety automaton D.

– the states of D are the same as the states of A,
– the initial state of D is the initial state of A,
– given a state p ∈ ∆D and a letter a, a transition of the form (p, a, q) exists if

and only if there is some transition of the form (p, a, r) in A, and q is chosen
to be the least state r with this property.

We have to show that this deterministic safety automaton is strongly (W, n)-
separating. Note first that by definition D is obtained from A by removing tran-
sitions. Hence L(D) ⊆ L(A) ⊆W. Consider now some u ∈W|n. By assumption,
u ∈ L(A). Let ρ = (p0, u1, p1)(p1, u2, p2) · · · be the corresponding accepting run
of A. We construct by induction a (the) run of D (q0, u1, q1)(q1, u2, q2) · · · in
such a way that qi 6ε pi. For the initial state, p0 = q0. Assume the run up
to qi 6ε pi has been constructed. By Lemma 10, (qi, ui+1, pi+1) is a transition
of A. Hence the least r such that (qi, ui+1, r) is a transition of A does exist, and
is 6ε pi+1. Let us call it qi+1; we indeed have that (qi, ui+1, qi+1) is a transition
of D. Hence, u is accepted by D. Thus W|n ⊆ L(D).

Overall D is a strongly (W, n)-separating deterministic safety automaton that
has at most as many states as A.

4 The case of parity conditions

We have seen above some general results on the notion of universal graphs,
separating automata, and automata that are good for small games. In particular,
we have seen Theorem 9 showing the equivalence of these objects for memoryless
for the existential player winning conditions.

We are paying now a closer attention to the particular case of the parity
condition. The technical developments that follow give an alternative proof of the
equivalence results proved in [CDF+19] between strongly separating automata
and universal trees.

4.1 Parity and cycles

We begin with a first classical lemma, which reduces the questions of satisfying
a parity condition to checking the parity of cycles.

In a directed graph labelled by priorities, an even cycle is a cycle (all cycles
are directed) such that the maximal priority occurring in it is even. Otherwise,



it is an odd cycle. As usual, an elementary cycle is a cycle that does not meet
twice the same vertex.

Lemma 13. For a [i, j]-graph H that has all its vertices reachable from the
root, the following properties are equivalent:

– L(H) ⊆ Parity[i,j],
– having all its cycles even,
– having all its elementary cycles even.

Proof. Clearly, since all vertices are reachable, L(H) ⊆ W implies that all the
cycles are even. Also, if all cycles are even, then all elementary cycles also
are. Finally assume that all the elementary cycles are even. Then we can con-
sider H as a game, in which every positions is owned by the universal player.
Assume that some infinite path from the root would not satisfy Parity[i,j], then
this path would be a winning strategy for the universal player in this game.
Since Parity[i,j] is a winning condition memoryless for the universal player,
this means that the universal player has a winning memoryless strategy. But
this winning memoryless strategy is nothing but a lasso, and thus contains an
elementary cycle of maximal odd priority.

4.2 The shape and size of universal graphs for parity games

We continue with a fixed d, and we consider parity conditions using priorities
in [0, 2d]. More precisely, we relate the size of universal graphs for the parity
condition with priorities [0, 2d] to universal d-trees as defined now:

Definition 12. A d-tree t is a balanced, unranked, ordered tree of height d (the
root does not count: all branches contain exactly d+1 nodes). The order between
nodes of same level is denoted 6t. Given a leaf x, and i = 0 . . . i, we denote
ancti(t) the ancestor at depth i of x (0 is the root, d is x).

The d-tree t is n-universal if for all d-trees s with at most n nodes, there is a
d-tree embedding of s into t, in which a d-tree embedding is an injective mapping
from nodes of s to nodes of t that preserves the height of nodes, the ancestor
relation, and the order of nodes. Said differently, s is obtained from t by pruning
some subtrees (while keeping the structure of a d-tree).

Definition 13. Given a d-tree t, Graph(t) is a [0, 2d]-graph with the following
characteristics:

– the vertices are the leaves of t,
– for 0 6 i 6 d, x

2(d−i)−→ Graph(t) y if ancti(x) 6t ancti(y),

– for 0 < i 6 d, x
2(d−i)+1−→ Graph(t) y if ancti(x) <t ancti(y).

Lemma 14. For all d-trees t, L(Graph(t)) ⊆ Parity[0,2d].

Proof. Using Lemma 13, it is sufficient to prove that all cycle in Graph(t) are
even. Thus, let us consider a cycle ρ. Assume that the highest priority occurring
in α is 2(d− i) + 1. Note then that for all edges α = (x, k, y) occurring in ρ:



– ancti(x) 6t anc
t
i(y) since k 6 i+ 1,

– if k = 2(d− i) + 1, ancti(x) <t ancti(y).

As a consequence, the first and last vertex of α cannot have the same ancestor
at level i, and thus are different.

Below, we develop sufficient results for establishing:

Theorem 10 ([CF18]). For all positive integers d, n, the two following quan-
tities are equal:

– the smallest number of leaves of an n-universal d-tree, and
– the smallest number of vertices of a (Parity[0,2d], n)-universal graph.

Proof. We shall see below (Definition 14) a construction Tree that maps all
Parity[0,2d]-maximal graphsG to a d-tree Tree(G) of smaller or same size. Corol-
lary 4 establishes that this construction is in some sense the converse of Tree (in
fact they form an adjunction). and that this correspondence preserves the no-
tions of universality. This proves the above result: Given a n-universal d-tree t,
then, by Corollary 4, Graph(t) is a (Parity[0,2d], n)-universal graph that has
as many vertices as leaves of graphs. Conversely, consider a (Parity[0,2d], n)-
universal graph G. One can add to it edges until it becomes a Parity[0,2d]-
maximal graph G′ with as many vertices. Then, by Corollary 4, Tree(G′) is an
n-universal d-tree that has as much or less leaves than vertices of G′.

Example 3. The complete d-tree t of degree n (that has nd leaves) is n-universal.
The [0, 2d]-graph Graph(t) obtained in this way is used in the small progress
measure algorithm [Jur00].

However, there exists n-universal d-trees that are much smaller than in the
above example. The next theorem provides an upper and a lower bound.

Theorem 11 ([Fij18,CDF+19]). Given positive integers n, d,

– there exists an n-universal d-tree with

n ·
(
dlog(n)e+ d− 1

dlog(n)e

)
leaves.

– all n-universal d-trees have at least(
blog(n)c+ d− 1

blog(n)c

)
leaves.

Corollary 2. The complexity of solving Parity[0,d]-games with at most n-vertices
is

O

(
mn log(n) log(d) ·

(
dlog(n)e+ d/2− 1

dlog(n)e

))
.

and no algorithm based on good for small games safety automata can be faster
than quasipolynomial time.



Maximal universal graphs for the parity condition We shall now analyse
in detail the shape of Parity[0,2d]-maximal graphs. This analysis culminates with
the precise description of such graphs in Lemma 19, that essentially establishes
a bijection with graphs of the form Graph(t) (Corollary 4).

Let us note that, since the parity condition is memoryless for the existential
player, using Lemma 10, and the fact that the parity condition is unchanged
by modifying finite prefixes, we can always assume that the root vertex is the
minimal one for the6ε ordering. Thus, from now, we do not have to pay attention
to the root, in particular in weak graph morphisms. Thus, from now, we just
mention the term morphism for weak graph morphisms.

Let us recall preference ordering v between the non-negative integers is de-
fined as follows:

· · · @ 2d+ 1 @ 2d− 1 @ · · · @ 3 @ 1 @ 0 @ 2 @ · · · @ 2d− 2 @ 2d @ · · ·

Fact 12. Let k v ` and u, v sequences of priorities. If the maximal priority
occurring in ukv is even, then the maximal priority occurring in u`v is also
even.

Lemma 15. Let G be a Parity[0,2d]-maximal graph and k v ` be priorities in

[0, 2d]. For all vertices x, y of G, x k−→G y implies x `−→G y.

Proof. Let us add (x, `, y) to G. Let u(x, `, y)v be some elementary cycle of
the new graph involving the new edge (x, `, y). By Lemma 13, u(x, k, y)v is
an even cycle in the original graph. Hence, by Fact 12, u(x, `, y)v is also an
even cycle. Thus, by Lemma 13, G with the newly added edge also satisfies
L(G) ⊆ Parity[0,2d]. Using the maximality assumption for G, we obtain that
(x, `, y) was already present in G.

Lemma 16. Let G be a Parity[0,2d]-maximal graph. For all vertices x, y, z

of G, if x k−→G y and y `−→G z, then y
max(k,`)−→ G z.

Proof. Let us add (x,max(k, `), z) to G. Let u(x,max(k, `), z)v be an elemen-
tary cycle in the new graph. By Lemma 13, u(x, k, y)(y, `, z)v, being a cycle
of G, has to be even. Since, furthermore, the maximal priority that occurs in
u(x, k, y)(y, `, z)v is the same as the maximal one in u(x,max(k, `), z)v, the cy-
cle u(x,max(k, `), z)v is also even. Using the maximality assumption of G, we
obtain that (x,max(k, `), z) was already present in G.

Lemma 17. Let G be a Parity[0,2d]-maximal graph, and x, y be vertices, then

x
0−→G x, and x 2d−→G y.

Proof. For x 0−→G x, it is sufficient to notice that adding the edge (x, 0, x), if it
was not present, simply creates one new elementary cycle to G, namely (x, 0, x).
Since it is an even cycle, by Lemma 13, the new graph also satisfies L(G) ⊆
Parity[0,2d]. Hence, by maximality assumption, the edge was already present
in G before.



Consider the graph G with an extra edge (x, 2d, y) added. Consider now an
elementary cycle that contains (x, 2d, y), i.e., of the form u(x, 2d, y)v. Its maximal
priority is 2d, and thus even. Hence by Lemma 13 and maximality assumption,
the edge was already present in G.

Lemma 18. Let G be a Parity[0,2d]-maximal graph and k = 0, 2, . . . , 2d − 2.

For all vertices x, y, x k+1−→G y holds if and only if y k−→G x does not hold.

Proof. Assume first that y k+1−→G x and x
k−→G y both holds. Then y

k+1−→G

x
k−→G y is an odd cycle contradicting Lemma 13.
Conversely, assume that adding the edge x k+1−→G y would break the property

L(G) ⊆ Parity[0,2d]. This means that there is an elementary cycle of the form
u(x, k + 1, y)v which is odd. Let ` be the maximal priority in vu. If ` > k + 1,

then ` is odd, and thus ` v k, and we obtain y k−→G x by Lemma 15. Otherwise,
` 6 k, and again ` v k. Once more y k−→G x holds by Lemma 15.

Lemma 19. A [0, 2d]-graph G is a Parity[0,2d]-maximal graph if and only if all
the following properties hold:

1. k−→G is a total preorder for all k = 0, 2, . . . , 2d,

2. k−→G⊆
k+2−→G for all k = 0, 2, . . . , 2d− 2,

3. 2d−→G is the total equivalence relation,

4. k+1−→G= (
k←−G){ for all k = 0, 2, . . . , 2d− 2.9

Proof. First direction. Assume first that G is a Parity[0,2d]-maximal graph.

(1) Let k = 0, 2, . . . , 2d; k−→G is transitive by Lemma 16. Furthermore, by

Lemma 17, x 0−→G x for all vertices x, and thus by Lemma 15, since 0 v k,
x

k−→G x. Hence k−→G is also reflexive and hence a preorder. Consider now an-
other vertex y. By Lemma 18, either x k−→G y or y k+1−→G x. But by Lemma 15,
y
k+1−→G x implies y k−→G x. Hence either x k−→G y or y k−→G k. Thus k−→G is a

total preorder.
(2) For k = 0, 2, . . . , 2d− 2, since k v k + 2, by Lemma 15, k−→G⊆

k+2−→G.

(3) 2d−→G is the maximal relation by Lemma 15.

(4) For k = 0, 2, . . . , 2d− 2 and x, y, we know that y k−→G x holds if and only if

x
k+1−→G y does not. This shows k+1−→G= (

k←−G){.

Second direction. Assume now that G satisfies the conditions (1)-(4). Let us
first show that L(G) ⊆ Parity[0,2d]. For the sake of contradiction, consider an
elementary cycle that would be odd. It can be written as u(x, k, y)v with a

maximal odd priority k. Note first that `−→⊆k−1−→ for all ` 6 k: indeed, by (2),

9 Note that this also means, since k−→G is a total preorder, that k+1−→G=
k−→G \

k←−G.



this is true if ` is even, and by (1) and (4), j−→⊆ j−1−→ for all j odd. Also k−→G is
the strict version of the preorder k−1−→G. Hence, the path u(x, k, y)v has to strictly
advance with respect to the preorder k−1−→G: it cannot be a cycle.

Assume now that an edge (x, k, y) is not present inG. If k is even, since (x, k, y)
is not present, by (4) this means that (y, k + 1, x) is present. Hence, adding
the edge (x, k, y) would create the odd cycle (x, k, y)(y, k + 1, x). If k is odd,
since (x, k, y) is not present, by (4) this means that (y, k − 1, x) is present.
Hence, adding the edge (x, k, y) would create the odd cycle (x, k, y)(y, k − 1, x).
Hence G is Parity[0,2d]-maximal.

Corollary 3. Given a morphism α from a Parity[0,2d]-maximal graph H to a

Parity[0,2d]-maximal graph G, then x k−→H y if and only if α(x) k−→G α(y), for
all vertices x, y of H and integers k in [0, 2d]. Furthermore, if α is surjective,
then every map β from G to H, such that α◦β is the identity on G is an injective
morphism.

Proof. First part. From left to right, this is the definition of a morphism. The
other direction is by (4) of Lemma 19: if α(x) k−→G α(y) and k is odd, then
α(x)

k−1−→G α(y) does not hold by (4), thus x k−1−→H y does not hold by morphism,
thus x k−→H y holds by (4) again. The case of k even is similar (using k+1 this
time).
For the second part, since α ◦ β is the identity, β has to be injective. It is a
morphism by the first part.

The next definition, allowing to go from graphs to trees is shown meaningful
by Lemma 19:

Definition 14. Let G be a Parity[0,2d]-maximal graph. The d-tree Tree(G) is
constructed as follows:

– the nodes of level i = 0, . . . , d are the pairs (i, C) for C ranging over the

equivalence classes of
2(d−i)−→ G ∩

2(d−i)←− G,
– a node (i, C) is an ancestor of (j,D) if i 6 j and D ⊆ C,

– (i, C) 6Tree(G) (i,D) if x
2(d−i)−→ G x′ for all x ∈ C and x′ ∈ C ′.

We shall see that Graph and Tree are almost the inverse one of the other.
This is already transparent in the following lemma, which is just a reformulation
of the definitions.

Lemma 20. Let q be the quotient map from vertices of G to leaves of Tree(G)

that maps each vertex to its ( 0−→G ∩
0←−G)-equivalence class. It has the following

property for all vertices x, y of G:

x
2(d−i)−→ G y if and only if anc

Tree(G)
i (q(x)) 6Tree(G) anc

Tree(G)
i (q(y)) ,

and x
2(d−i)+1−→ G y if and only if anc

Tree(G)
i (q(x)) <Tree(G) anc

Tree(G)
i (q(y)) .



The identity maps the vertices of Graph(t) to the leaves of t, and has the
property that for all vertices x, y:

x
2(d−i)−→ Graph(t) y if and only if ancti(x) 6t anc

t
i(y) ,

and x
2(d−i)+1−→ Graph(t) y if and only if ancti(x) <t anc

t
i(y) .

Corollary 4. 10For all Parity[0,2d]-maximal graphs G,H, all d-trees t, and all
positive integers n,

– Graph(Tree(G)) is a quotient and an induced subgraph of G,
– Tree(Graph(t)) is isomorphic to t,
– there is a morphism from H to Graph(t) if and only if there is a tree embed-

ding from Tree(H) to t,
– Tree(G) is n-universal if and only if G is (Parity[0,2d], n)-universal,
– Graph(t) is (Parity[0,2d], n)-universal if and only if t is n-universal.

Proof. Let q be the quotient from Lemma 20. It can be seen as a surjective
map from vertices of Graph(Tree(G)) to G. By Lemma 20 it is a morphism. By
Corollary 3, Graph(Tree(G)) is also an induced subgraph of G.

The leaves of Tree(Graph(t)) are the singletons consisting of leaves of t.
Hence, there is a bijective map from leaves of Tree(Graph(t)) to leaves of t
that sends{`} to `. By Lemma 20, this is a morphism, and by Corollary 3 an
isomorphism.

For the third item, assume first that there is a morphism from H to Graph(t).
By the first point, there is an injective morphism from Graph(Tree(H)) to H.
By composition, we obtain a morphism from Graph(Tree(H)) to Graph(t). By
Lemma 20, it is also a tree embedding from Tree(H) to t. Conversely, assume
that there exists an embedding from Tree(H) to t. It can be raised by Lemma 20
to a morphism from Graph(Tree(H)) to Graph(t). By the first point, there is
a morphism from H to Graph(Tree(H)). By composition, we get a morphism
from H to Graph(t).

The two last items are obvious from the one just before.
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