On Families of Graphs Having a Decidable
First Order Theory with Reachability

Thomas Colcombet
Thomas.Colcombet@irisa.fr

Irisa, Campus de Beaulieu, 35042, Rennes, France

Abstract. We consider a new class of infinite graphs defined as the
smallest solution of equational systems with vertex replacement opera-
tors and unsynchronised product. We show that those graphs have an
equivalent internal representation as graphs of recognizable ground term
rewriting systems. Furthermore, we show that, when restricted to bound-
ed tree-width, those graphs are isomorphic to hyperedge replacement e-
quational graphs. Finally, we prove that on a wider family of graphs —
interpretations of trees having a decidable monadic theory — the first
order theory with reachability is decidable.

1 Introduction

Automatic verification of properties on programs is one of the challenging prob-
lems tackled by modern theoretical computer-science. An approach to this kind
of problems is to translate the program in a graph, the property in a logic for-
mula and to use a generic algorithm which automatically solves the satisfaction
of the formula over the graph. The use of potentially unbounded data structures
such as integers, or stacks in programs leads to infinite graphs. Thus, algorithms
dealing with infinite graphs are needed. Many families of infinite graphs have
been recently described. For the simplest one, it is possible to verify automat-
ically powerful formulas. For the most complex families, nearly nothing can be
said. We are interested here into three logics. The less expressive is the first
order logic. The first order logic with reachability extends it with a reachability
predicate. The most expressive is the monadic (second order) logic.

The reader may find a survey on infinite graphs in [16]. The study of infinite
graphs started with pushdown graphs [11]. Vertices are words and edges corre-
spond to the application of a finite set of prefix rewriting rules. The first exten-
sion is the family of HR-equational graphs [5] defined as the smallest solutions of
equational systems with hyperedge replacement (HR) operators. The more gen-
eral family of prefix recognizable graphs [3] is defined internally as systems of
prefix rewriting by recognizable sets of rules (instead of finite sets for pushdown
graphs). VR-equational graphs are defined as the smallest solutions of equation-
al systems with vertex replacement (VR) operators. VR-equational graphs are
isomorphic to prefix recognizable graphs [1]. All those families of graphs share
a decidable monadic theory (those results are, in some sense, extensions of the



famous decidability result of Rabin [12]). Some more general families have also
been introduced. Automatic graphs are defined by synchronized transducers on
words [14, 2]. Only the first order theory remains decidable and the reachability
problem cannot be handled anymore. The class of rational graphs is defined by
general transductions [10]. The first order theory is not decidable anymore. The
common point of all those families is that they are (explicitly or not) defined
as rewriting systems of words. This is not true anymore with the ground term
rewriting systems [9]. Vertices are now terms and transitions are described by a
finite set of ground rewriting rules. A practical interest of this family is that it
has a decidable first order theory with reachability (but not a decidable monadic
theory) [7,4]. Studies have also been pursued on external properties of graphs.
VR-equational graphs of bounded tree-width (this notion is known for long in
the theory of finite graphs, see [13] for a survey) are HR-equational graphs [1].
Pushdown graphs are VR-equational graphs of finite degree [3]. Ground term
rewriting systems of bounded tree-width are also pushdown graphs [9].

In this paper, we define a new family of infinite graphs, namely, the VRP-
equational graphs. It is a natural extension of the VR-equational graphs (solu-
tion of equational systems with vertex replacement operators) with an unsyn-
chronised product operator (VRP stands for vertex replacement with product).
VRP-equational graphs are formally defined as interpretations of regular infinite
trees. The first result of this paper gives an equivalent internal representation
to VRP-equational graphs — the recognizable ground term rewriting systems.
Secondly, we study the VRP-equational graphs of bounded tree-width and prove
that those graphs are isomorphic to the HR-equational graphs. Finally, we show
the decidability of the first order theory with reachability on a more general
family of graphs, the graphs obtained by VRP-interpretation of infinite trees
having a decidable monadic theory. Recent results tend to prove that important
families of trees have a decidable monadic theory (algebraic trees [6] and higher
order trees with a safety constraint [8]).

The remaining of this article is organized as follows. Section 2 gives the basic
definitions. Section 3 describes VRP-equational graphs. The following three sec-
tions are independent. Section 4 introduces recognizable ground term rewriting
systems and states the isomorphism with VRP-equational graphs. In Section 5
we study the VRP-equational graphs of bounded tree-width. In Section 6 we
study the first order logic with reachability of VRP-interpretation of trees.

2 Definitions

We design by IN the set of integers. The notation [n] stands for {0,...,n — 1}.
Let S be a set of symbols, S* is the set of words with letters in S. The empty
word is written . The length of a word w is written |w|.

Let © be a finite set of base types. A typed alphabet F (over ©) is a fami-
ly (F;)rco+xo where for all 7, F, is the set of symbols of type 7. We assume
that alphabets are finite. We will use notations such as F = {f : 7 | f € F;}
instead of describing the F, sets separately. The types of the form (e, 6) are sim-



ply written 6. For any symbol f in F,. ¢,_,,0), the base type 6 is the codomain
of f, the integer 7 is the arity and the base type 8 is the type of the k + 1-th
argument of f.

A tree t (over the typed alphabet F) is a function from IN* into F with a
non-empty prefix closed domain D;. The elements of D; are called nodes, and
the node € is the root of the tree. A tree t is well typed if for all node v and all
integer k, vk is a node if and only if k is smaller than the arity of ¢(v), and, in
this case, the codomain of t(vk) is the type of the k + 1-th argument of #(v).
The type of a well typed tree is the codomain of its root symbol. Let ¢ be a well
typed tree and v one of its nodes, the subtree of t rooted at v is the well typed
tree t¥ defined for all node vu by t”(u) = t(vu). The set of subtrees of ¢ is sub(t).
A tree t is regular if sub(t) is finite.

We call terms the trees of finite domain. We denote 7,°(F) the set of well
typed trees over F of type 6, and Tp(F) the set of well typed terms over F
of type 0. T°°(F) is the set of all well typed trees of any type (resp. T(F) for
terms).

Here, we only consider infinite trees over ranked alphabets. A ranked alphabet
is an alphabet typed over only one base type. Types are uniquely identified by
their arity. We write n instead of (8",6) (where 6 is the only base type). We
want to describe such infinite trees as limits of sequences of ‘growing’ terms. We
slightly extend the alphabet and equip the corresponding trees with a structure
of complete partial order (cpo) in which sequences of growing terms are chains,
and limits are least upper bounds. Formaly, let us define the new typed alpha-
bet Fi = FU{L :0} where L is a new symbol. We define a binary relation C
over T(F.). Let t; and t2 be trees, then ¢, T t5 states if Dy, C Dy, and for
all nodes v of t1, t1(v) = ta(v) or t1(v) = L. This relation is a cpo — it has
a smallest element, the tree with symbol L at root, and the least upper bound
of a chain of trees (¢;)iew is Ut with (Ut)(v) = f where f is the symbol such
that v € Dy, and t;(v) = f for all j > k for some k. Let t be a tree of 7> (F_),
the cut at depth n of t, written ¢ |,, is the term defined by ¢ |, (v) = t(v) for
all v € Dy such that |v| < n, and ¢ |, (v) = L for all v € D; such that |v| = n.
The sequence (t |, )nen is a chain of terms of least upper bound ¢.

3 VRP-graphs

In this section, we describe the cpo of colored graphs (or simply graphs) and
the VRP operators working on them. The interpretation of those operators over
infinite regular trees defines the VRP-equational graphs.

From now on, we fix a finite set A of labels. Colored graphs (or simply graphs)
are triple (V, E,n), where V is a countable set of vertices, E CV x A XV is
the set of edges and 71 is a mapping from V into a finite set (of colors). If G
is a graph, we write Vi its set of vertices, E¢ its set of edges and ng its color
mapping. For simplicity, we will assume that there exists an integer IV such that
the range of 7 is [N]. The set of graphs with coloring functions ranging in [N]
iS gN.



We define the relation C over graphs of Gy by G C G’ if Vg C Vv, Eg C Eg
and g = N v, (NG is the restriction of g over V). This relation is a cpo:
the smallest element is the empty graph and the least upper bound is written U
(it corresponds to the union of vertices, the union of edges and the ‘union’ of
coloring functions).

Given a graph G and given a one-to-one function ¢ with domain contain-
ing Vi, (G) = (V',E',n) is defined by:

V' = d(Vg)
E' = {($(v),e, (V")) | (v,e,v) € Eg}
n'(8(v)) =ng(v) .

If G and G’ are two graphs such that there is an injective mapping @ verify-
ing #(@) = G’ then G and G’ are said isomorphic, written G ~ G'.

We define now the five basic operations on graphs used in VRP-equational
graphs. The four first are the classical VR operations. The fifth is new.

Single vertez constant: for n € [N], n = ({0},0,{0~ n}) .
Recoloring: for ¢ mapping from [N] into [N], [¢|(V,E,n) = (V,E,¢on) .

Edges adding: for n,n’' € [N], e € A4, [n=n']G = Vg, E',nc)
with B/ = Eg U {(v,e,v") | na(v) = n, na(v') =n'} .
Disjoint union: (Vo, Eo,n0) ® (V1, E1,m) = (V, E,n)
V:{O}XVO U {1})(‘/1
with E={((e,v),e,(a,v")) | @ € [2], (v, €,0") € Ea}
n(a,v) = 14 (v) fora € 2] .
Unsynchronised product: (Vo, Eg,m0) @ Vi, E1,m) = (V',E',n")
V= V() X Vi
with E" = {((vo,v1),e, (vg,v1)) | (vo,e,vp) € Eg, v1 € V1}
U {((U07v1)7e’ (’1)0,1)1)) | Vo € W)a (1)1,6,'[)1) S El}
N (vo,v1) = no(vo) + m1(v1) mod N .
Let us remark that — up to isomorphism — @ and ® are commutative
and associative and ® is distributive over ®. The empty graph is an absorbing

element for ® and the neutral element for @ and the graph 0 is neutral for ®.
Let us now define the ranked alphabets Fy* and FyRP :

FN® ={an:0|n€[N]}
U {[¢]n : 1 | ¢ mapping from [N] to [N]}
U{lnsan]y:1|n,n €[N], e A}
U {éen:2}

FYRP = FXR U {on 2}

The trees of T°°(FNR) are called VR-trees, and the trees of 7 (FNRY) are
VRP-trees. We define the VRP-interpretation [ as the natural interpretation
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Fig. 1. A VRP-tree producing the infinite grid — assume N =5

of terms of T{FNRY) over Gy.
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VRP-interpretation is extended by continuity to any tree — let [L]ny be the
empty graph, the interpretation of a tree t € T°°(FNRY) is [t]ny = Ukt dx]n-
This definition makes sense since all operators are continuous with respect to
the C order.

Definition 1. The VR-equational graphs (resp. VRP-equational graphs) are the
VRP-interpretations of the reqular VR-trees (resp. VRP-trees).

Figure 1 gives the example of the infinite grid described by a VRP-tree.

Remark 1. Given two VRP-equational graphs, we cannot yet combine them eas-
ily because the number of colors used may be different in the two underlying
VRP-trees, and VRP-interpretation depends of this value. The problem comes
from the color mapping used in the definition of ® — it depends of N. In order
to get rid of this drawback, we use VRP-trees without overflows: a VRP-tree ¢
has no overflow if for all node w such that t* = ®n(s, s’), the sum of maximum
colors appearing in [s]~ and [s']w~ is strictly smaller than N. Under this con-
straint, the color mapping n'(ve,v1) = 10(vo) + 71 (v1) mod N is a simple sum
and does not depend of N anymore. Increasing the value of N everywhere in a



VRP-tree without overflow (and accordingly extending the recoloring operators)
do not change the VRP-interpretation of the tree.

Furthermore if a VRP-tree has overflows, it is easy to obtain an equivalent
VRP-tree without overflow by doubling the value of N and replacing every-
where Q@ (s, s’) by [mody]an (Ran(s,s")).

For now and on, we make the assumption that all VRP-trees have no overflow
and we omit everywhere the N indices. We also allow ourself to increase the value
of N whenever it is needed.

4 Internal representation

In this part, we give to VRP-equational graphs an equivalent internal repre-
sentation (Theorem 1). Instead of describing those graphs as the interpretation
of regular trees, we describe them by explicitly giving the set of vertices and
explicitly defining the edge relation.

We use here deterministic bottom-up tree automata without final states.
Let F be a typed alphabet over ©. A deterministic tree automaton is a tu-
ple (F,Q,0), where (Qg)gco is a finite alphabet of states (of arity 0), and § is a
function which maps for all type 7 = (6g...60,-1,6) tuples of F, X Qg, X -+ X
Qo,,_, into Qy. The function § is naturally extended by induction into a function
from Ty(F U Q) into Qg (for any type 6).

A set T C T(F) is recognizable if there exists a deterministic automaton A =
(F,Q,0) and a set FF C @ (of final states) verifying that ¢ € T iff §(t) €
F. Similarly, a relation R C T(F) x A x T(F) is recognizable if there exists a
deterministic tree automaton A4 = (F,@,d) and a set F C @ x A x @Q verifying
that (¢,e,t') € R iff (6(¢t),e,d(t")) € F. Such a relation R preserves types if for
all (t,e,t') € R, t and t' have the same type.

P2, 2 o P(S(2), 2') ——— > P(S(S(2)), Z") e

T

P(2,8'(2") ——> P(S(2), S'(2")) ——> P(S(S(2)), $'(2"))

’ I )

P(z,5(5'(2'))) —> P(5(2), 8'(5"(2'))) —> P(5(5(2)), §'(5"(2")))

Fig. 2. The infinite grid as a recognizable ground term rewriting system

Let F be a typed alphabet over the set of types @, 6, € © be a (root)
type, and R a recognizable subset of T{F) x A x T(F) preserving types. The
(recognizable) ground term rewriting system (RGTRS) are not colored graphs
defined by a recognizable relation R. The vertices are terms of Ty, (F), and there



is an edge labelled by e between two terms ¢; and to if one can obtain t; by
replacing a subterm t¢] by t) in ¢, with (¢],e,t5) € R. Formally, the graph of
ground term rewriting by R is the graph:

GTRHT(R) = (nr(f)a{(tl7e7t2) | Ju € Dtl thza
(t’f,e,té‘) € R, t1|(Dtl —ulN*) = t2|(D,;2 —u]N*)})

Figure 2 gives an example of the infinite grid as a RGTRS. The types are O =
{6.,0,6'} where 6, is the root type. The set of symbols is F = {P : (6¢',0,.), Z :
6, Z' - 0, S :(0,8), S": (0,0)} The recognizable relation used is R =
{(Z,a,5(2)), (7',0,5'(Z"))}.

Theorem 1. The VRP-equational graphs are exactly the RGTRS up to isomor-
phism and color removal.

The idea of the translation is almost straightforward. One identifies subtrees
of regular VRP-trees with types, and colors with states of the automaton. The
same construction can also be applied for non regular VRP-trees. It leads to an
infinite set of types.

Remark 2. In the RGTRS, the typing policy is used as a technique for restricting
the set of vertices. The prefix recognizable graphs are defined as prefix rewriting
systems of words (or equivalently linear terms), but the vertices are restricted by
a general recognizable (rational) language. Restricting vertices of RGTRS with
a recognizable relation increase the power of the system and leads to graphs
which do not have a decidable reachability problem (whereas RGTRS have, see
Theorem 3). However the RGTRS restricted to linear terms gives exactly the
prefix recognizable graphs up to isomorphism!.

Remark 3. Another technique for restricting vertices is to use a root vertex and
keep only vertices reachable from the root. This approach is used by Loding [9].

Léding studies those graphs when restricted to bounded tree-width and shows
that the resulting graphs are pushdown graphs. In the next section we perform
the same study for VRP-equational graphs.

5 Tree-width of VRP-equational graphs

In this section we study the VRP-equational graphs of bounded tree-width. We
show that those graphs are exactly the HR-equational graphs (Theorem 2).

Definition 2. A tree decomposition of a graph G is an undirected tree (a con-
nected undirected graph without cycle) T = (Vr, Er) with subsets of Vg as ver-
tices such that:

! In fact, one can restrict RGTRS by a top-down deterministic tree automaton without
changing the power of the system. In general, top-down deterministic tree automaton
are less expressive than recognizability. On linear terms, both are equivalent.



1. for any edge (v,e,v') € Eq, there is a vertex N € Vr such that v,v' € N.
2. for any vertex v € Vg, the set of vertices containing v, {N € V; | v € N} is
a connected subpart of T'.

The tree-width of a graph G is the smallest k € INU {oo} such that G admits
a tree decomposition with vertices of cardinality smaller than or equal to k + 1.
If k is finite, the graph is of bounded tree-width.

Intuitively, a graph is of tree-width £ if it can be obtained by ‘pumping up at
width &’ a tree. An equivalent definition is that a graph is of tree-width k if it can
be obtained by a (non-deterministic) graph grammar with at most k + 1 vertices
per rule. This notion does not rely on orientation nor on labelling of edges. It
is defined up to isomorphism and is continuous. Let < be the binary relation
defined by G < G’ if G is isomorphic to a subgraph of G’ up to relabelling and
edge reversal. It has the important property that if G < G’ then the tree-width
of G is smaller or equal to the tree-width of G'.

Given a regular VRP-tree £, we aim at eliminating the ® operators of the tree
under the constraint of bounded tree-width. We then obtain a regular VR-tree of
isomorphic interpretation. To this purpose, we assume that ¢ is normalized: none
of its subtrees has the empty graph as interpretation (normalization is possible
if [¢] is not empty). Under this constraint, for any subtree s of ¢, we have [s] < [t]
(this would not be true anymore if ¢ was not normalized because the empty graph
is an absorbing element of ®). The first consequence of normalization is that all
subtrees of ¢ have an interpretation of bounded tree-width.

First step: The first step of the transformation eliminates subtrees of the for-
m s = ®(so, $1) appearing infinitely in a branch of the tree. Using normalization,
we obtain that for all n, either [so]™ < [s], either [s;]" < [s] (with G® = 0 and
G™! = G ® G™). Lemma 1 handles such cases.

Lemma 1. Let G be a graph such that for all n, G < G' and G’ is of bounded
tree-width, then all edges in G are loops® (of the form (z,e,x)).

In fact, the unsynchronised product of a graph G with a graph with only loops
does not behaves like a real product. It leads to the graph G duplicated a finite
or an infinite number of times, with colors changed and possibly loops added.
The same result can be obtained without product, and furthermore, this trans-
formation can be performed simultaneously everywhere in a tree. The first step
of the transformation amounts to apply this technique until there is no branch
of the tree with an infinite number of product operators.

Second step: After the first step of the transformation, among the subtrees
with ® at root, at least one does not contain any other ® operator. Let ®(sq, 1)
be this subtree. Its interpretation is of bounded tree-width, and so and s; are
VR-trees. Lemmas 2 and 3 then hold.

% If G has a non-looping edge, then G™ has the hypercube of dimension n as subgraph.
The hypercubes do not have a bounded tree-width, thus G’ is not of bounded tree-
width.



Lemma 2. If the unsynchronised product of two graphs is of bounded tree-width
then one of the graphs has all its connected components of bounded size.

Lemma 3. VR-equational graphs are closed by unsynchronised product with
graphs having all their connected components of bounded size®.

It follows that [®(sg, s1)] is & VR-equational graph. It is then sufficient to replace
in the tree all occurrences of ®(sg, s1) by a VR-tree of isomorphic interpretation.
After iteration of this process, there is no more product operator left, and thus
the original graph is VR-equational up to isomorphism.

The HR-equational graphs are originally described as the smallest solution
of equational systems with hyperedge replacement operators. Barthelmann has
proved that those graphs were exactly the VR-equational graphs of bounded
tree-width (see [1]). Theorem 2 concludes.

Theorem 2. The VRP-equational graphs of bounded tree-width are exactly the
HR-equational graphs up to isomorphism.

It is interesting as the HR-equational graphs have a decidable monadic theory
whereas VRP-equational graphs do not (the infinite grid is the classical counter-
example). In Section 6 we extend the known result that the first order theory
with reachability remains decidable for VRP-equational graphs.

6 Decidability of logic

In this section, we prove that for all trees ¢ which have a decidable monadic
theory, [t] has a decidable first order theory with reachability predicate (Theo-
rem 3).

6.1 Monadic second order logic

During this part, ¢ will be a (not necessarily regular) VRP-tree. We use here the
monadic second order logic on VRP-trees. We do not define precisely what this
logic is (the reader may find a description of it in [15]). Informally, we are allowed
in monadic formula to use the classical logic connectives (e.g V, A, =), existential
(3) and universal (V) quantifiers over variables of first and monadic second order.
Variables of first order are interpreted as nodes of the tree ¢t and are written in
small letters. Monadic second order variables are interpreted as sets of nodes and
are written in capital letters. If z is a first order variable then 20 represents its
left child, and z1 the right one (this notation is compatible with the definition
of nodes as words). The predicates allowed are equality of first order variables
(e.g z = y0) and membership (e.g z € X). The first order constant € is the
root, of the tree. The symbols of ¢ are described by a finite set of second order
constants of same name. For instance, expressing that the symbol at node z is ®
is written z € ®.

3 Notice that it changes the number of colors used.



We also use for simplicity classical operations on sets (e.g. U,C, ... ) and
quantification over known finite sets (colors, labels and functions from colors to
colors). We also write zIN* the set of nodes under z. Those extensions can be
encoded into the monadic formulas without any difficulty.

If ¥ is a closed monadic formula, we write t £ ¥ to express the satisfaction
of ¥ by t.

As an example, we define the predicate finitetree(r, X)) which is satisfied if X
is a finite connected subset of D; ‘rooted’ at r.

childof(z,y) =2z =y0OA(V n, y €n)
Ve=ylAN(ye€d V y € Q)

finitetree(r, X) =r € X A Vz € X, x =r xor Jy € X, childof(z, y)
A-(@W C X, W #0A Yz € W,3y € W, childof(y, z))

The predicate childof(z,y) means that x appears just under y in the tree t.
Then, we define a finite connected subset X ‘rooted’ at r as a set such that
every element, except the root r, has a father in the set and which do not
contain an infinite branch W.

6.2 First order theory with reachability of VRP-interpretations

Our first goal is to encode the VRP-interpretation of ¢ into monadic formulas.
To obtain this encoding we first remark that each vertex of the resulting graph
can be uniquely identified with a special kind of finite subset of D;. Let ¢ be a
VRP-tree and r one of its nodes, it amounts to associate to each vertex of [t"] a
non-empty finite connected subpart of D; rooted at r. This finite rooted subset
can be seen as the equivalent term of a RGTRS system.

If ¢(r) = n then {r} encodes the only vertex of [t"].

If (r) = [¢] or t(r) = [n b2 n'] the vertices of [t"] are exactly the vertices
of [t™°]. Let X be the encoding of a vertex of [t"], then {r} U X encodes the
same vertex in [t"].

If t(r) = @, then a vertex of [t"] has its origin either in [t"°], either in [¢"!].
Let v be a vertex of [t"*] (for some a € {0,1}) and X its encoding, then {r}UX
uniquely encodes the vertex in [¢"].

Finally, if t(r) = ®, then each vertex of [¢t"] originates from both a vertex
of [t™°] and a vertex of [t"!]. Let X, be the encoding of the origin vertex in [t™°]
and X; be the encoding of the origin vertex in [t"'], then {r}UX,UX; uniquely
encodes the vertex in [¢"].

We can translate this description into a monadic predicate vertex(r, X ) which
is satisfied by ¢ if X encodes a vertex of [t"]. We can also describe a monadic
predicate color.(r, X) which is satisfied by ¢ if the vertex encoded by X has
color ¢ in [t"], and a predicate edge,(r, X, X') which is satisfied by ¢ if there
is an edge of label e between the vertex encoded by X and the vertex encoded
by X’ in [[t"]. The validity of the approach is formalized in Lemma 4.



Lemma 4. For all r, the graph [t"] is isomorphic to G = (V,, Ey,1n,) with:

Vi ={X C D; | t E vertex(r, X)}
E. ={(X,e,X") | t Fedge,(r,X,X")}
nr(X) =n such that tFE color,(r, X) .

We define also the monadic predicate path 4, (X, X’) which satisfies the fol-
lowing lemma.

Lemma 5. Let A C A be a set of labels and let X, X' be two vertices of Ge.
There is a path with labels in A’ between X and X' in G, iff t E pathy, (X, X').

The proof of this result is technical : it involves the encoding of simpler problems
such as “is there a path between a node of color n and a node of color n’ 27.

Using the two previous lemmas, it is easy to translate a first order formula
with reachability predicate over [t] into a monadic formula over ¢. The main
theorem is then straightforward.

Theorem 3. The VRP-interpretation of a tree having a decidable monadic sec-
ond order theory has a decidable first order theory with reachability predicate.

7 Conclusion

__bounded tree-width

5./stems on wo_rds pushdown g HR-equational H VR—equationaI graphs
(decidable monadic theory) graphs graphs H prefix recognizable graphs
systems on terms g(?und tertm L HRP—equational VRP—equitionaI graphs
i ; rewriting systems =
(decidable first order g Sy ‘ graphs? recognizable ground
theory with reachability ) term rewriting systems

finite degree

Fig. 3. A partial classification of families of graphs

System on words where already well known. This paper is a step toward
a corresponding classification for systems on terms. The hierarchy obtained is
depicted in Figure 3. The ground term rewriting systems must be understood rec-
ognizable ground term rewriting systems of finite rewriting relations (see Remark
3). Notice that there is probably a natural family of graphs — HRP-equational
graphs — between ground term rewriting systems and VRP-equational graphs.

An open question is the nature of the family of graphs obtained by e-closure
of VRP-equational graphs (VR-equational graphs are closed by this operation).
It also has a first order theory with reachability predicate decidable (e-closure



preserves it). We assume that this family of graphs strictly contains the family
of VRP-equational graphs.

Lastly, we have studied the more general family of graphs obtained by VRP-
interpretation of infinite trees with a decidable monadic second order theory.
Those graphs have a first order theory with reachability predicate decidable. In
fact, it is probable that weak monadic second order theory is sufficient.
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