Tree-Walking Automata Cannot Be Determinized

Mikotaj Bojanczyk* and Thomas Colcombet**

Uniwersytet Warszawski, Wydzial MIM, Banacha 2, Warszawa, Poland

Abstract. Tree-walking automata are a natural sequential model for
recognizing tree languages. It is shown that deterministic tree-walking
automata are weaker than nondeterministic tree-walking automata.

Introduction

A tree-walking automaton (TWA) is a natural type of finite automaton working
over trees. The automaton is a finite memory device which walks around a tree,
choosing what move to make according to its current state and some information
about its current position in the tree. After a certain amount of walking the
automaton can choose to accept the tree. Even though TWA were introduced in
the early seventies by Aho and Ullman [AUT1], very little is known about this
model.

This situation is different from the “usual” tree automata — branching tree au-
tomata — which are a very well understood object. Both top-down and bottom-up
nondeterministic branching tree automata recognize the same class of languages.
Languages of this class are called regular, the name being so chosen because it
enjoys many nice properties of the class of regular word languages. The de-
terministic variants of branching tree automata are similarly well understood
— deterministic bottom-up automata also recognize all regular tree languages,
while deterministic top-down automata recognize a strict subclass of the class of
regular languages.

Tt is a classical result that every language recognized by a TWA is regular.
However most other fundamental questions pertaining to tree-walking automata
remain unanswered:

1. Is every regular language recognized by a TWA?
2. Can TWA be determinized?
3. Is the class of languages recognized by TWA closed under complementation?

It is believed that the answers to all three questions above are negative. There
has been much related research, which can be roughly grouped in two cate-
gories: nondefinability results for weakened models of tree-walking automata
[NS00,B0j03] and definability results for strengthened models of tree-walking au-
tomata [KS81,EH99,EHvB99]. The three questions stated above, however, have
remained open.

In this paper we answer question 2: we prove that there exists a language
which is recognized by a tree-walking automaton, but by no deterministic one.

* Supported by Polish KBN grant No. 4 T11C 042 25.
** Supported by the European Community Research Training Network GAMES.

1 Tree walking automata, patterns and the general idea

In this section we define tree-walking automata, specify our separating language
and prove it is recognized by a nondeterministic tree-walking automaton.

Preliminaries

For two integers ¢ and j, we denote by [i,j] the set {n : i < n < j}. The
trees we deal with in this paper are finite, binary trees labeled by a given finite
alphabet X. Formally, a X'-tree t is a mapping from N; C {1,2}* to X, where
N, is a finite, non-empty, prefix-closed set such that for any v € N;, vl € N,
iff v2 € N;. Elements of the set N; are called nodes of the tree. We use the
set Types = {r,1,2} x {l, f} to encode the possible types of a node: the first
component has the value r for the root, 1 for a left son and 2 for a right one; the
second component is [for a leaf or else f for fathers. For v € Ny, let type,(v) €
Types denote the type of this node. A direction is an element in [0, 2], where
informally 0 stands for ‘up’, 1 for ‘down-left’ and 2 for ‘down-right’. Let

dNtXNt*)[O,2]U{J_}

be the function assigning: i to pairs of the form (v, v-%), for i € {1,2}; 0 to pairs
of the form (v-i,v), for i € {1,2}; and L otherwise.

Definition 1 A tree-walking automaton over YX-treesis a tuple A = (Q, q1, F,),
where Q) is a finite set of states, q; € Q is the initial state, F' C @ is the set of
accepting states and 0 is the transition relation of the form

0 C Q x Types x X x Q x [0,2].
A run of A over a X-tree t is a sequence (vg, qo) - - . (Un, ¢n) satisfying
(qi, type (v:), t(vi), qix1, d(vi, vi41)) €0 for all ¢ € [0,n — 1].

A run is accepting, if v9 = v, = €, qo = qr and ¢,, € F. The automaton A accepts
a tree if it has an accepting run over it. A set of X-trees L is recognized by A if
A accepts exactly the trees in L. Finally, we say that a tree-walking automaton
is deterministic if ¢ is a function from @ x Types X X' to @ x [0, 2]. We use TWA
to denote the class of tree languages which are recognized by some TWA and
DTWA for languages recognized by some deterministic TWA.

We would like to point out here that reading the type of a node is an essen-
tial feature of tree-walking automata. Indeed, Kamimura and Slutzki showed in
[KS81] that TWA which do not have access to this information cannot recognize
all regular languages, being incapable of even searching a tree in a systematic
manner by doing a depth-first search, for instance.

eL

Fig. 1. The two kinds of well-formed trees

The separating language L

In this section we specify our separating language L, which we will eventually
prove to witness the inequality DTWA C TWA. Also in this section, we present a
nondeterministic TWA which recognizes L. A proof that no DTWA can recognize
L is more involved and will be spread across the subsequent sections.

The language L involves a very simple kind of trees, which we call well-formed
trees: {B, a, b, c}-trees which have all nodes labeled by the blank symbol B but
for three leaves: one leaf having label a; one leaf having label b and one leaf
having label c. Let us simply call a (resp. b, ¢) the only node labeled by a (resp.
by b, by ¢). Furthermore, in a well-formed tree we require the nodes a, b and ¢
to be lexicographically ordered. One can check that the set of well-formed trees
belongs to DTWA.

There are two possible kinds of well-formed trees: ones where the deepest
common ancestor of a and b is above ¢; and ones where the deepest common
ancestor of b and c is above a. The language L is the set of well-formed trees of
the first kind. This definition is illustrated in Figure 1.

We now proceed to describe a nondeterministic tree-walking automaton which
recognizes the language L.

Lemma 1. There is a nondeterministic TWA which recognizes L.

Proof. We will only give here an informal description of the automaton. This
automaton first checks deterministically that the tree is well-formed, then reaches
somehow the node labeled by c. From this node, it goes toward the root and at
some point v decides (using nondeterminism) to perform a depth-first search
from left to right. It then accepts the tree if in this search the first non-blank
node encountered is a b, i.e. the left-most non-blank leaf below v is labeled by b.

One can verify that there exists an accepting run of this automaton if and
only if the tree belongs to L. Indeed, when the tree belongs to L the automaton
chooses v to be the deepest common ancestor of b and ¢. On the other hand, if
a tree is well-formed but does not belong to L, there is no v ancestor of ¢ such
that the left-most non-blank leaf below v is labeled by b (this leaf is either a
or ¢), and thus the automaton does not accept the tree.

2 Patterns

In this section, we introduce the key technical concept of patterns and outline
how they can be used to show that L is outside DTWA. From now on we assume
that a deterministic tree-walking automaton

A:(Q7qI7F75)

is fixed; our aim is to prove that A does not recognize the language L.

Patterns and pattern equivalence

A pattern Ais a { B, x}-tree where the symbol * labels only leaves which are left
sons. The i-th x-labeled leaf (numbered from left to right) is called the i-th-port.
Port 0 stands for the root. The largest port number is called the arity of the
pattern, and we use Pat™ to denote the set of n-ary patterns.

Given A € Pat™, and n patterns Ay, ..., A, the composition A[Aq, ..., A,]
is obtained from A by simultaneously substituting each A; for the i-th port. We
may use * instead of some substituted patterns in a composition, the intended
meaning being that the corresponding ports remain untouched. When all A;’s
are x but for Dy we simply write A[A/k]. If furthermore A is a unary pattern,
we write A- A’ instead of A[A’/1]. Given a set P of patterns, we denote by C(P)
the least set of patterns which contains P and is closed under composition.

Definition 2 The automaton’s transition relation over an n-ary pattern A,
oA CQx[0,n] xQx[0,n],

contains a tuple (g,4,r,) if it is possible for A to go from state ¢ in port i to
state r in port j in A. This run is assumed not to visit any port along the way
but for the initial and final configurations, in which the ports are treated as
having type (1, f) (i.e. non-leaf left sons). In particular the port 0 is not seen as
the root and non null ports are not seen as leaves (to make composition work).

From the point of view of the automaton A, the relation Jo sums up all
important properties of a pattern and we consider two patterns equivalent if
they induce the same relation. More precisely, for two patterns A and A’ of the
same arity n, we write

AZAI iff 5A:5A’~

The essence of this equivalence is that if one replaces a sub-pattern by an equiv-
alent one, the automaton A is unable to see the difference. The following lemma
shows that ~ acts as a congruence with respect to pattern composition:

Lemma 2. For Ay ~ A} of arity n, Ay ~ A} and i € [1,n],

Ar[Ag/i] = Ay [Ay /i)

A consequence of the determinism of A is that for any pattern A of arity n,
the relation d 4 is a partial function from @ X [0, n] to @ x [0, n] (it may be partial
even if the original transition function is not since the automaton can be trapped
in a loop). For this reason, we use from now and on a functional notation for ¢
relations.

Outline of the proof

In order to prove that A cannot recognize L, we will produce three patterns:
a nullary pattern Ag, a unary pattern A; and a binary pattern A;. We then
prove that compositions of these patterns satisfy several desirable properties.
In particular, we ultimately show that for deterministic automata the following
equivalence holds:

A2[*7A2] ~ A2[A2, *] . (1)

Having this equivalence, proving that A does not recognize L becomes a simple
matter. Consider a context where a B-labeled tree is plugged for the port 0, and
three trees with one a, b and c respectively are plugged into the ports 1,2, 3.
If we plug the left pattern from (1) into this context, we obtain a tree in L,
and if we plug the right pattern, we obtain a tree outside L. However, since the
patterns are equivalent, the automaton L cannot distinguish the two resulting
trees and will either accept both or reject both, hence A does not recognize L.

Since the deterministic automaton 4 was chosen arbitrarily, it follows that
L ¢ DTWA. Together with Lemma 1, we obtain this paper’s contribution:

Theorem 1. The class DTWA is strictly included in the class TWA.

What remains to be done is to construct the patterns Ay, A; and As, which
we do in Section 3; and then study properties of those patterns using the de-
terminism of 4, which we do in Section 4. The culmination of this study is
Corollary 4, from which the key equivalence (1) follows.

3 Basic patterns

In this section, we define the patterns Ag, A; and Ay and prove a basic property
related to their composition (Lemma 4 and 5). Before we do this, we need to
first a simple result concerning finite semigroups.

In order to define the patterns 4y, A1, As we need to state first a classical
result concerning semigroups. Let us recall that a semigroup is a set together
with an associative binary operation, which we write multiplicatively here.

Lemma 3. For every finite semigroup S and any u,v € S, there exist u’,v' € S
such that the elements U = u-u’ and V = v-v' satisfy the following equations:

U=U0.U=UV and V=vV.U=V.V.

Let us now describe the construction of the patterns Ag, A1, As and prove
Lemma 4. The insightful reader will notice that the determinism of A is not used
in this part of the proof.

Let us denote by Bj the full binary tree of depth k. As the pattern equiv-
alence relation ~ is of finite index, there exists m,n such that m +1 < n
and B,, ~ B,. Let Aq be B,,. In the tree B,,, the tree A appears at least twice
as a subtree rooted in a left son, thus there exists a binary pattern Ax such
that Ax[Ao, Ag] = B,,. Consider now the following two unary patterns:

A, =Ax[*,Ag] and A, = Ax[Ao,#] .

Let S be the semigroup whose elements are patterns in C({A,, A,}) and where
the multiplication operation is the composition of unary patterns. Since S is a
finite semigroup (modulo ~), there exist, by Lemma 3, unary patterns A, and
Ay in C({Ay, Ay }) such that the two patterns Ay = A,-A and Ay = A, A,
satisfy the following equivalences:

AUEAU-AU’ZAU-AV and Av’:Av-AU’ZAv-AV .

Let us define now 4A; to be Ay and Ay to be A;-Ax[Ay Ay, Ay -Aq]. Finally,
let C4 stand for the set C({Ao, A1, A2}) and let C} stand for C4 N Pat™. The
following lemma shows that, from the point of view of the automaton A, all
patterns of a given small arity in C4 look the same:

Lemma 4. For all k € [0,2] and all A € Ck, A~ A.
Proof. Let us establish first the three following equivalences:

— Aj-Ap >~ Ap. It is enough to prove by a simple induction that for all pat-
terns A in C({Ay, Ay}), A-Ag >~ Ao.

— A A~ A~ A[A/i] for all n-ary patterns A € C4q and ¢ € [1,n]. This
follows from the equivalence

Al = AU ~ AU'AU = Al-Al

and the definition of Ay, where the pattern A; appears next to every port.
— Ag[Ag, x| = As[x, Ag] =~ A;. By symmetry, we only prove one equivalence:

AQ[A(), *] = Al'Ax[Au/~A1'A0, Aval]
~ Al-Ax[AQ,AU/-Al] ~ AU'AV'AU ~ AU = Al .

Note now that every pattern in C4 of arity in [0, 2] is either one of Ag, Ay, As or is
a composition in which only patterns of arity no bigger than 2 are involved. The
lemma is then established by using an induction driven by this decomposition,
where each step corresponds to one of the equivalences above.

As an application of Lemma 4, we conclude this section by a description of
runs that start and end in the same port of a pattern:

Lemma 5. For n > 1, all patterns A € C}, all states q, v and all i € [1,n]:
6a(q,0) = (r,0) iff 6a,(q,0)=(r,0),
5A(Qa Z) = (Ta Z) Zﬁ 6A1 (qv 1) = (Ta 1) .

Proof. The right to left implications follow from the fact that for all A € C} and
all i € [1,n], the following equivalence holds (Lemma 4):

The left to right implications follow from the fact that for all A € C} and all
i € [1,n], the following equivalence holds (Lemma 4):

i—1 times n—1i times

Al ’ZA[Ao,...,Ao,*,Ao,...,Ao] .

4 Swinging removal

From now on, we will be using the fact that the automaton A is deterministic.
We start by hiding the case when the automaton “swings”, i.e. enters and exits a
pattern of nonzero arity by the same port. Technically, we replace the § functions
with a higher-level construct v, which can be considered as equivalent to J, but
furthermore has several desirable extra properties (Lemmas 7, 9 and 10).

Consider a unary pattern of the form A; - Ay, with the nodes v < w cor-
responding to the 1-ports of the two component A; patterns. For a state ¢,
consider the unique maximal run of A which starts in (¢,v) and visits neither
the root nor w. If this run is finite, we call the state r in which node v is last
visited the e-successor s.(q) of g, else s.(q) is undefined.

We say ¢ is an upward state if it can appear after A has traversed a pattern A,
in the up direction, i. e. for some state r, da, (r,1) = (¢,0) holds. Similarly we
define a downward state by swapping the role of ports 0 and 1. We use Qu and
@Qp to denote the sets of upward and downward states respectively.

We now introduce a new type of function which we will use instead of the ¢
functions. This replacement aims at eliminating the hassle involved with swing-
ing. For A € CJ, the partial function

Ya: Qp x {0} UQu x [1,n] — Qu x {0} UQp x [1,n]

is defined as va(q,7) = da(s:(q), 7). From now on, we simplify slightly the nota-
tions by using o, 71 and 2 for respectively ya,, 74, and ya,.

We remark here, somewhat ahead of time, that the function v is turns
out to be completely defined for A € C4. This because — thanks to the choice
of the function’s domain — we can be sure that the automaton does not loop.
The intuitive reason for this is that an upward (or downward) state has already
“survived” the traversal of a A; pattern, and it will not loop without good reason.
The formal proofs are in Lemma 6 for patterns of nonzero arity and in Lemma
9 for the pattern Ay.

Lemma 6. For any q € Qp, v1(¢,0) = (¢,1). For any ¢ € Qu, 11(¢,1) = (¢,0).

Proof. Let ¢ € Qp. By definition, there is some r such that da, (r,0) = (¢,1).
Consider the pattern A;-A;, with v labeling the interface between the two A,
patterns and a run on this pattern which starts in (r,0). The first time the node
v is passed, state ¢ is assumed, since d, (r,0) = (¢, 1). The last time v is passed
state s.(q) is assumed, by definition of s.. Since A; ~ A; - Ay, the run of the
automaton starting with state r in port 0 of A;-A; must end with state ¢ in
port 1, the last traversal of the lower A; pattern going downward from s.(g) in
v to ¢ in port 1. Hence 71(q,0) = 04, (s:(q),0) = (g,1). The proof for ¢ € Qu
is obtained by swapping the roles of ports 0 and 1.

The following lemma, which follows straight from the definition of the ~
function, shows why ~ allows us to ignore swinging:

Lemma 7. For any A € Ca of arity n > 1, states q, r and any port i € [0,n],
if va(q,i) = (r,7) then i # j.

Proof. We only do the case where ¢ is a downward state and hence i = 0. Let
¢ = s:(q). Assume that the lemma is not true, hence j = 0. This means that
04(¢’,0) = (r,0). By Lemma 5, d,(q’,0) = (r,0) and hence 71(¢q,0) = (r,0), a
contradiction with Lemma, 6.

We start with a simple description of the behaviour of downward states:
Lemma 8. For q € Qp, either v2(q,0) = (q,1) or v2(q,0) = (¢,2) holds.

Proof. Let v2(q,0) = (r,i). By Lemma 7 , i € {1,2}. Let us assume, with-
out lessening of generality, that i« = 1. Since A; ~ Aq[*, Ag], we obtain that
~1(q,0) = (r,1). Hence it must be that » = ¢, since v1(¢,0) = (¢, 1) holds by
Lemma 6.

Lemma 9. For all A € Cy, the partial function va is completely defined.

Proof. Consider a pattern A of nonzero arity n and assume that va(g,i) is
undefined for some i € [0,n]. Let us consider first the case when ¢ # 0. If we
plug all the ports of A but ¢ with a Ay pattern, we get a pattern equivalent to
A;. But this would imply that 1 (g, ¢) is undefined, a contradiction with Lemma
6. The case of ¢ = 0 is proved analogously.

For the case of A = Ay, let us assume for a moment that when entering from
(¢,0), the automaton gets lost in the pattern. But then, since Ay ~ Ag[x, Ag] ~
As[Ap,] and by Lemma 8, A would also get lost in A; when entering from
(q,0), a contradiction with Lemma 6.

The following lemma shows that to establish the equivalence of two patterns,
it is enough to study the ~ functions.

Lemma 10. Forn >0 and all A, A" € C}, A~ A’ if and only if yA =yar.

Proof. The left to right implication is straightforward and, in fact, true for any
pattern. The right to left implication is more involved. It is known for arities up
to two from Lemma 4. Let us consider two patterns A and A’ of arity at least
one such that vA = v+, and a state q. Three cases have to be studied.

— If 54,(q,0) is undefined then so is §4(q,0), since A; - A ~ A. The same goes
for d4/(g,0).

— If 64,(¢,0) = (r,0) for some r, by Lemma 5, da(q,0) = da-(¢,0) = (r,0).

— Otherwise d 4, (q,0) = (r,1) for some r. As A; is equivalent to A in which all
nonzero ports but one are replaced by Ag, we obtain that (g, 0) is defined.
Let (r/,4) be this value. According to Lemma, 5, i # 0. Let us consider now
the run of the automaton in pattern A; - A ~ A. It crosses first the junction
point with state da,(q,0) = (r,1), then after some walk, reaches the same
node with state s.(r). Finally it crosses the A pattern and reaches port i in
state 7', which means d(r,0) = (+/, 7). We obtain that

5A(Qa 0) = 5A(S€ (7’), 0) =74 (7’, 0) .
Similarly d/(q,0) = ya-(r,0), and hence 6a(q,0) = d./(gq,0).
The same method can be applied for ports in [1,n].

From now on, the « function is used as if it was the original ¢ function, in
particular with respect to composition.

5 Generic behaviours

In this last part we show that, essentially, A can only do depth-first searches over
patterns in C4. Using this characterization, we prove the main technical lemma
of this paper, Lemma 12. This characterization is obtained by analyzing the -
functions. Due to the domain of v we need to consider two cases: downward
states in port 0 and upward states in the other ports.

A good understanding of the behaviour of downward states in patterns from
C4 comes from Lemma 6: if a downward state ¢ starts in port 0 of a pattern
A € Cy, it will emerge in state ¢ either in the leftmost or the rightmost nonzero
port.

The description of the behaviour of upward states is more involved. When
starting in a nonzero port, an upward state may go in the direction of the root,
but it may also try to visit a neighboring nonzero port (something that does not
appear in the A; pattern used to define upward states). The following definition,
along with Lemma 11, gives a classification of the possible behaviours of upward
states:

Definition 3 We say that a pair of states (¢,7) € Qp x Qu has right to left
depth-first search behaviour if

72(6170) = (Q72)7 70(%0) = (T70>7 '72(T7 2) = (CL 1)7 and 72(ra 1) =(n 0)'

A left to right depth-first search behaviour is defined symmetrically by swapping
the roles of ports 1 and 2. An upward state r has ascending behaviour if

Y2(r, 1) = 72(r, 2) = (r,0) .
The following lemma shows that Definition 3 is exhaustive:

Lemma 11. For any upward state r, either r has ascending behaviour, or there
exists a downward state q such that the pair (q,r) has either right to left or left
to right depth-first search behaviour.

Proof. Let r be an upward state. We first show that either v»(r,1) = (r,0)
or vy2(r,2) = (r,0). Let us suppose that vo(r, 1) # (r,0) must hold. By Lemma 7
we have ~o(r,1) = (gq,2) for some downward state ¢g. Let ' be the downward
state such that vo(¢,0) = (+/,0). Since A; ~ Ag[x, Ag] and 1 (r,1) = (r,0)
(Lemma 6), we obtain that v2(r/,2) = (r,0), and hence ~1(r',1) = (r,0). Since
7 (r’,1) = (+,0), we obtain r = r' and ~3(r, 2) = (r,0). Thus, either vy5(r,1) =
(r,0) or va(r,2) = (r,0).

If both cases hold, then r has ascending behaviour. Otherwise exactly one
case holds, without lessening of generality let us assume it is:

72(7’, 2) = (T7 O)a and VQ(Ta 1) 7é (T7 O) (2)
As in the reasoning above, let ¢ be the state such that
72(74) 1) = ((L 2) . (3)

We claim that (q,r) has left to right depth-first search behaviour. As we have
seen before,

0(¢,0) = (r,0) . (4)

Since we already have the equations (2), (3) and (4), to establish that the pair
(g,r) has left to right depth-first search behaviour we only need to prove the
equation (5).

Since ¢ is a downward state, then by Lemma 8 the value of 2(g,0) must
be either (¢,1) or (g,2). But the second case cannot hold, since together with
equations (2) and (4) this would give us ya, [« 4,)(¢,0) = (r,0), a contradiction
with Lemma 7. This means that

and, hence, (g,) has left to right depth-first search behaviour. The right to left
depth-first search behaviour case is obtained by a symmetric argument when the
roles of ports 1 and 2 are exchanged in the assumptions (2).

Now that we know exactly how the automaton behaves for upward and down-
ward states, we obtain the following as a simple consequence of Lemmas 8 and 11,
none of whose described behaviours make it possible to distinguish patterns of
the same arity:

Lemma 12. For all n and all A, A" € C}, the functions yA and yar are equal.

Proof. The statement of the lemma follows from the following characterization
of moves over an arbitrary pattern A € C4 of arity n > 1:

— For any downward state ¢, by Lemma 8, two cases may happen:
® If 41(¢,0) = (¢, 1) then ya(q,0) = (¢, 1).
* If 1(¢,0) = (¢,2) then ya(q,0) = (¢, n).
— If ¢ is an upward state then, by Lemma 11, three cases may happen:
o If the state ¢ has ascending behaviour, va(q,7) = (¢,0) for all i € [1,n].
o If for some downward state r, the pair (g,r) has right to left depth-

firt-search behaviour, then ya(q,i) = (r,i + 1) for all ¢ € [1,n — 1] and
va(g,n) = (¢,0).

o If for some downward state r, the pair (q,r) has right to left depth-firt-

search behaviour, then v (gq,0) = (¢,0) and va(q,i) = (r,i — 1) for all
i€[2,n].

The above lemma, together with Lemma 10, gives us the required:

Corollary 4 The equivalence Az[Asy, %] ~ As[*, As] holds.

Acknowledgment

We would like to thank C. Loding and A. Meyer for reading previous versions
of this paper.

References

[AU71] A. V. Aho and J. D. Ullman. Translations on a context-free grammar. In-
formation and Control, 19(5):439-475, dec 1971.

[Boj03] M. Bojaticzyk. 1-bounded TWA cannot be determinized. In FSTTCS 2003:
Foundations of Software Technology and Theoretical Computer Science, 23rd
Conference, Mumbai, India, December 15-17, 2008, Proceedings, volume 2914
of Lecture Notes in Computer Science, pages 62,73. Springer, 2003.

[EH99] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In

G. Paum J. Karhumaki, H. Maurer and G. Rozenberg, editors, Jewels are
forever, contributions to Theoretical Computer Science in honor of Arto Sa-
lomaa, pages 72-83. Springer-Verlag, 1999.

[EHvB99] J. Engelfriet, H. J. Hoogeboom, and J.-P. van Best. Trips on trees. Acta

[KS81]

[NS00]

Cybernetica, 14:51-64, 1999.

T. Kamimura and G. Slutzki. Parallel two-way automata on directed ordered
acyclic graphs. Information and Control, 49(1):10-51, 1981.

F. Neven and T. Schwentick. On the power of tree-walking automata.
In Automata, Languages and Programming, 27th International Colloquium,
ICALP 2000, volume 1853 of LNCS, 2000.

