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Abstract. We introduce the notion of regular cost functions: a quanti-
tative extension to the standard theory of regular languages.
We provide equivalent characterisations of this notion by means of au-
tomata (extending the nested distance desert automata of Kirsten), of
history-deterministic automata (history-determinism is a weakening of
the standard notion of determinism, that replaces it in this context),
and a suitable notion of recognisability by stabilisation monoids. We
also provide closure and decidability results.

1 Introduction

When considering standard regular languages (say on finite words), some re-
sults appear as cornerstones on which the whole theory is constructed. The first
such kind of results are the equivalences between many different formalisms: non-
deterministic automata, deterministic automata, recognisability by monoids, reg-
ular expressions, etc. The second one consists in the numerous closure properties
that regular languages enjoy: union, intersection, projection (mapping under a
length-preserving morphism), complementation, etc. From these facts one can
derive a third kind of results: the equivalence with logical formalisms such as
monadic (second-order) logic. Finally, all these properties do not come at an un-
affordable price: emptiness is decidable, and hence the satisfaction of the logic
is also decidable.

In this paper, we present a quantitative extension to the standard notion of
regularity in which those cornerstone results still hold. We consider a quantitative
notion of regularity which allows to attach non-negative integer values to words,
such as the number of occurrences of a pattern, the length of segments, etc. One
also possess some freedom for combining those values, e.g., using minimum or
maximum. One can for instance describe the maximum number of occurrences of
letter a that are not separated by a letter b. Those integer values are considered
modulo an equivalence which preserves the existence of bounds, but does not
preserve exact values – as opposed to the usual way one considers quantitative
forms of automata. This is the price to pay for keeping all equivalences and
closure properties.

Originally, this work aimed at unifying and reinterpreting some recent results
from the literature. Let us review them.
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First, in [9] Kirsten gives a new proof to the decidability of the (restricted)
star-height problem1. This problem is known to be decidable from Hashiguchi
[7], but with a very difficult proof. The first part in Kirsten’s proof consists in
reducing the star-height problem to a problem of limitedness: decide the exis-
tence of a bound for some function defined by means of a nested distance desert
automata, a new form of automata introduced for this purpose. The second part
consists in proving the decidability of this limitedness problem. This is done by
turning this automata-related question into an algebraic one: the automaton is
translated into a monoid equipped with a stabilisation operator ]. The limit-
edness problem becomes easy to decide in this presentation. Kirsten’s paper is
itself the continuation of a long line of research concerning distance automata,
tropical semiring, desert automata, etc. [6, 8, 11–17].

Second, the paper [3] provides a study of an extension of the monadic second-
order logic over infinite words with new ‘bound’ quantifiers such as: ‘there exists
a set of arbitrary large size satisfying some property’. The goal being different,
the presentation is also significantly different, and getting results comparable to
the ones in the present paper requires a translation that we cannot detail here.
However, two new forms of automata are introduced in [3] as intermediate objects
in the proofs, namely B-automata and S-automata. The class of B-automata
corresponds essentially to the non-nested variant of the nested desert distance
automata, while the class of S-automata is a new dual variant. The decidability
of limitedness can be derived from this work but with a bad complexity (non-
elementary, as opposed to [9]). Independently, B-automata were also introduced
in [1] under the name of R-automata, and the decidability of the limitedness
problem established using another technique, yielding better complexity.

Other applications of the technique have also been described. Still in this
framework, the restricted star-height problem for trees has been shown decidable
[4], and the Mostowski hierarchy problem2 has been reduced to the corresponding
limitedness problem over infinite trees [5], which remains open. The existence
of a bound on the number of iterations necessary for reaching the fixpoint of a
monadic second-order formula over words has been also shown decidable using
distance automata [2].

Contribution. Our contribution can be roughly described as 1) a unification
of the ideas in [9] and [3], and 2) the development of a suitable mathematical
background and the establishment of new results in order to make this theory a
complete extension of the standard theory of regular languages. Let us be more
precise.

The first contribution lies in the definition of a cost function: cost functions
are mappings from words (or from any set in general) to ω + 1 quotiented by a
suitable equivalence that preserves the notion of bound (≈ in the paper). In our

1 Problem: given a regular language L of words and an integer k, is it possible to
describe L with a regular expression using at most k nesting of Kleene stars?

2 The hierarchy induced by the number of priorities used by a non-deterministic parity
automaton running on infinite trees.



framework, cost functions can be seen as a refinement of the notion of language
(each language can be seen as a cost function, while the converse is not true).

We then introduce B- and S-automata, automata that accept cost functions
rather than languages. Those are slight extensions of the automata in [3]. We
establish the equivalence of the two forms of automata, via an elementary con-
struction, as well as the equivalence with their history-deterministic form. The
new notion of history-determinism is a weakening of the classical notion of de-
terminism (deterministic automata are strictly weaker in this framework). It is
needed for the further extension of the theory to trees. Quiet naturally, we call
regular the cost functions described by one of these formalisms.

The second aspect of the theory that we develop is the algebraic formalism.
We introduce the notion of stabilisation monoids: finite monoids equipped with a
stabilisation operator, inspired from [9]. We develop a mathematical framework
– new to the knowledge of the author – in order to define the semantics of
stabilisation monoids. The key result here is the existence of unique semantics
(that we call compatible mappings) for each stabilisation monoid3. Building on
these notions, we introduce the notion of recognisable cost functions. As we may
expect, these happen to be exactly the regular cost functions.

While describing the above objects, we prove the closure of regular cost func-
tions under operations which correspond to union, intersection, projection and
dual of projection in the world of languages. We also provide decision procedures
subsuming the limitedness results from [9].

Structure of the paper. We present in Section 2 cost functions and the au-
tomata part of the theory. We present in Section 3 the algebraic framework, and
the equivalent notion of recognisability.

Some notations

As usual, we denote by ω the set of non-negative integers and ω + 1 the set
ω ∪ {ω}. Those are ordered by 0 < 1 < · · · < ω. The identity mapping over ω is
id . Given a set E, Eω is the set of sequences of ω-length of elements in E. Such
sequences will be denoted by bold letters (a, b,. . . ). We fix a finite alphabet A
consisting of letters. The set of words over A is A∗. The empty word is ε. The
concatenation of a word u and word v is uv. The length of word u is |u|. The
number of occurrences of a letter a in u is |u|a.

2 Regular cost functions

We introduce in Section 2.1 the notion of cost function. We present B and S-
automata in Section 2.2, and their history-deterministic form in Section 2.3. The
key duality result is the subject of Section 2.4.

3 This result is reminiscent of the one for infinite words stating that each finite Wilke
algebra can be uniquely extended into an ω-semigroup.



2.1 Cost functions

A correction function is a mapping from ω to ω. From now, the symbols α, α′, . . .
implicitly designate correction functions. Given x, y in ω + 1, x 4α y holds
if x ≤ α(y) in which α is the extension of α with α(ω) = ω. For every set E,
4α is extended to (ω + 1)E in a natural way by f 4α g if f(x) 4α g(x) for
all x ∈ E, or equivalently f ≤ α ◦ g. Intuitively, f is dominated by g after it has
been ‘stretched’ by α. One also writes f ≈α g if f 4α g and g 4α f .

Some elementary properties of 4α are:

Fact 1 If α ≤ α′ and f 4α g, then f 4α′ g. If f 4α g 4α h, then f 4α◦α h.

Example 1. Over ω×ω, maximum and sum are equivalent for the doubling cor-
rection function (for short, (max) ≈×2 (+)). Proof: for all x, y ∈ ω, max(x, y) ≤
x+ y ≤ 2×max(x, y).

Our second example concerns mappings from sequence of words to ω. Given
words u1, . . . , un ∈ {a, b}∗, we have |u1 . . . un|a ≈α max(|K|,maxi=1...n |ui|a)
in which K is the set of indices i such that |ui|a ≥ 1 and α(θ) = θ2. Proof:
max(|K|,maxi=1...n |ui|a) ≤ |u|a ≤ Σi∈K |ui|a ≤ (max(|K|,maxi=1...n |ui|a))2 .

One also defines f 4 g (resp. f ≈ g) to hold if f 4α g (resp. f ≈α g) for
some α. A cost function (over a set E) is an equivalence class of ≈ (i.e., a set of
mappings from E to ω + 1). The relation 4 has other characterisations:

Proposition 1. For all f, g from E to ω+1, the following items are equivalent:

– f 4 g,
– ∀n ∈ ω.∃m ∈ ω.∀x ∈ E.g(x) ≤ n→ f(x) ≤ m , and;
– for all X ⊆ E, g|X is bounded implies f |X is bounded.

The last characterisation shows that the relation ≈ is an equivalence relation
that preserves the existence of bounds. Indeed, all this theory can be seen as an
automata theoretic method for proving the existence/non-existence of bounds.

Cost functions over some set E ordered by 4 form a lattice. Given a sub-
set X ⊆ E, one denotes by χX its characteristic mapping defined by χX(x) = 0
if x ∈ X, ω otherwise. It is easy to see that for all X,Y ⊆ E, χX 4 χY iff
Y ⊆ X. To this respect, the lattice of cost functions is a refinement of the lat-
tice of subsets of E equipped with the superset ordering. Keeping this in mind,
the notion of regular cost function developed in the paper is an extension of
the standard notion of regular language. This extension is strict as soon as E
is infinite: there are cost functions that are not equivalent to any characteristic
mapping. Consider for instance the size mapping over words, or the number of
occurrences of some letter.

2.2 Automata

We present here the automata model we use. A cost automaton (that can be
either a B-automaton or an S-automaton) is a tuple 〈Q,A, In,Fin, Γ,∆〉 in



which Q is a finite set of states, A is the alphabet, In and Fin are respectively
the set of initial and final states, Γ is a finite set of counters, and ∆ ⊆ Q×A×
{ε, i, r, c}Γ ×Q is the set of transitions. The idea behind the letter in {ε, i, r, c}Γ
(called an action) is that each counter (the value of which ranges over ω) can
either be left unchanged (ε), be incremented by one (i), be reset to 0 (r), or
be checked (c). A run σ of an automaton over a word a1 . . . an is defined as a
sequence q0, a1, c1, q1, . . . , qn−1, an, cn, qn such that q0 is initial, qn is final and for
all i = 1 . . . n, (qi−1, ai, ci, qi) ∈ ∆. Given a run σ, each counter ι ∈ Γ is initialized
with value 0 and evolves from left to right according to ci(ι): if ci(ι) is ε or c, the
value is left unchanged, if it is i, it is incremented by 1, if it is r, the counter is
reset. The set C(σ) ⊆ ω is the set of values taken by the counters when checked
(i.e., the value of counter ι when ci(ι) = c). The difference between B-automata
and S-automata comes from their dual semantics, [[·]]B and [[·]]S respectively:

for all u ∈ A∗, [[A]]B(u) = inf{supC(σ) : σ run over u} ,
and, [[A]]S(u) = sup{inf C(σ) : σ run over u} ,

in which we use the standard convention that inf ∅ = ω and sup ∅ = 0. Remark
that if A is a non-deterministic finite automaton in the standard sense, accepting
the language L, then it can be seen as a cost automaton without counters. Seen as
a B-automaton, [[A]]B(u) = χL, while seen as an S-automaton [[A]]S(u) = χA∗\L.

Remark 1 (variants). The other similar automata known from the literature can
essentially be seen as special instances of the above formalism. The B-automata
and S-automata in [3] use only actions in {ε, i, cr} in which cr is an atomic
operation that checks the counter and immediately resets it. The models are
equivalent but the history-determinism (see below) cannot be achieved for S-
automata in this restricted form. The hierarchical automata correspond to the
case when Γ = {1, . . . , n} and for all transitions (p, a, c, q), if for all i ∈ Γ ,
if c(i) 6= ε implies c(j) = r for all j < i. The nested distance desert automata of
Kirsten corresponds to hierarchical B-automata that use actions in {ε, ic, r} in
which ic is an atomic operation which increments the counter and immediately
checks it. The R-automata in [1] use also actions in {ε, ic, r}, but without the
hierarchical constraint. All those models are equivalent, up to ≈.

We conclude the section by showing some easy closure properties. Given a
mapping f from A∗ to ω+ 1 and a length-preserving morphism h from A∗ to B∗
(B is another alphabet) the inf-projection and sup-projection of f with respect
to h are the mappings finf,h and fsup,h from B∗ to ω + 1 defined for v ∈ B∗ by:

finf,h(v) = inf{f(u) : h(u) = v} and fsup,h(v) = sup{f(u) : h(u) = v}.

By simply adapting the standard constructions for intersection, union, and pro-
jection of non-deterministic automata, we get:

Proposition 2. The mappings accepted by B-automata (resp. S-automata) are
closed under min and max. The mappings accepted by B-automata (resp. S-
automata) are closed under inf-projection (resp. sup-projection).



2.3 History-determinism

In general B and S-automata cannot be determinised (even modulo ≈). We
consider here automata which possess a weaker property: history-determinism
(note that this notion is meaningful even for other kinds of non-deterministic
automata). Informally, a non-deterministic automaton is history-deterministic
if it possible to choose deterministically the run while accepting an equivalent
function. The subtlety comes from the fact that cost automata do not have a suf-
ficient memory for ‘implementing’ this deterministic choice. History-determinism
can be seen as a semantic notion of determinism as opposed to the standard no-
tion that we can refer to as state-determinism4. This notion is required for the
extension of the theory to trees.

Formally, let us fix ourselves a cost automaton (either B or S) with unique
initial state A = 〈Q,A, {q0},Fin, Γ,∆〉. A translation strategy5 for A is a map-
ping δ from A∗×A to ∆ which tells deterministically how to construct a run of A
over a word. One defines the run of A over the word u driven by δ inductively
as follows: if u = ε, the run is q0. If u is of the form va, the run is the run of A
over v driven by δ prolonged with the transition δ(v, a) (if this procedure does
not provide a valid run over u, then there is no run driven by δ over this entry).
If A is a B-automaton the value [[A]]δB(u) is supC(σ) where σ is the run of A
over u driven by δ, and ω if there is no such run. If A is an S-automaton the
value [[A]]δS(u) is inf C(σ) where σ is the run of A over u driven by δ, and 0 if
there is no such run.

A B-automaton is history-deterministic if there exists α and for all n ∈
ω a translation strategy δn such that for all words u, [[A]]B(u) ≤ n implies
[[A]]δn

B (u) ≤ α(n). An S-automaton is history-deterministic if there exists α and
for all n ∈ ω a translation strategy δn such that for all word u, [[A]]S(u) ≥
α(n) implies [[A]]δn

S (u) ≥ n. In other words, the automaton, when driven by δ,
computes an ≈α-equivalent function.

2.4 Duality and regularity

Duality relates all the above notions together. It is central in the theory.

Theorem 1 (duality). A cost function over words is accepted by an [history-
deterministic] [hierarchical] B-automaton, iff it is accepted by an [history-deter-
ministic] [hierarchical] S-automaton. Those equivalences are effective and of el-
ementary complexity. Such cost functions are called regular.

In fact, the proof of Theorem 1 and Theorem 3 below are interdependent. Indeed,
the way to transform a cost function accepted by a B-automaton into a cost
function accepted by an S-automaton (and vice-versa) is to transform it first

4 In state-determinism, given the current state and a letter, there is only one possible
transition, while in history-determinism, given the prefix of word seen so far (the
history), and a letter, it is possible to uniquely choose one transition.

5 The name comes from the game theoretic part which is not developed here.



into a recognisable cost function, and only then to construct an S-automaton.
The results have been separated in this abstract for being easier to present.

One can remark that in the absence of counters, translating a B-automaton
into an S-automaton (and vice-versa) is easy to achieve by using any complemen-
tation construction for standard non-deterministic automata. Hence Theorem 1
can be seen as a replacement for both the results of complementation and de-
terminisation in the classical theory of regular languages.

Even if not explicitly stated, the equivalence between [hierarchical] B-auto-
mata and [hierarchical] S-automata, can be derived from the results in [3]. How-
ever, using the proof in [3] entails a long theoretical detour, and the constructions
in [3] give a non-elementary blowup in the number of states. Furthermore, the
notion of history-determinism has no equivalent in [3].

3 Stabilisation monoids and recognisable cost functions

In this section we describe our algebraic characterisation of regular cost func-
tions. The core algebraic object is the stabilisation monoid that we describe in
Section 3.1. In Sections 3.2, 3.3 and 3.4, we show how to attach semantics to
stabilisation monoids. In Section 3.5 we introduce recognisability, state that it
is equivalent to regularity and give a decidability result.

3.1 Stabilisation monoids

A monoid M = 〈M, ·〉 is a set M equipped with an associative operation ·
that has a neutral element 1, i.e., such that 1 · x = x · 1 = x for all x ∈M . One
extends the product to products of arbitrary length by defining π from M∗ to M
by π(ε) = 1 and π(ua) = π(u) ·a. An idempotent in M is an element e ∈M such
that e · e = e. One denotes by E(M) the set of idempotents in M. An ordered
monoid 〈M, ·,≤〉 is a monoid 〈M, ·〉 together with an order ≤ over M such that
the product · is compatible with ≤; i.e., a ≤ a′ and b ≤ b′ implies a · b ≤ a′ · b′.

We are now ready to introduce the new notion of stabilisation monoid.

Definition 1. A stabilisation monoid 〈M, ·,≤, ]〉 is an ordered monoid 〈M, ·,≤〉
together with an operator ]: E(M)→ E(M) (called stabilisation) such that:

– for all a, b ∈M with a · b ∈ E(M) and b · a ∈ E(M), (a · b)] = a · (b · a)] · b;6
– for all e ∈ E(M), (e])] = e] ≤ e;
– for all e ≤ f in E(M), e] ≤ f ];
– 1] = 1.

From now, we consider that all stabilisation monoids are finite.

The intuition is that e] represents what is the value of en when n becomes ‘very
large’. This idea – which is incompatible with the classical view on monoids –
fits well with the following consequences of the definition:

for all e ∈ E(M), e] = e · e] = e] · e = e] · e] = (e])] .
6 This equation states that ] is a consistent mapping in the sense of [9, 10].



Most of the remaining of the section is devoted to the formalisation of this
intuition. This requires the development of a suitable mathematical framework.
This approach is then validated by Theorem 2 which associates unique semantics
to stabilisation monoids.

3.2 Cost sequences

In order to give quantitative semantics to stabilisation monoids, the basic object
is not the element of the monoid, but sequences of such elements. New rela-
tions �α and ∼α are used to relate such sequences together. Those are tightly
connected to 4α and ≈α (see Section 3.3 for a formalisation of this link).

From now, θ and θ′ implicitely range over ω. Given an ordered set (E,≤), a
correction function α, and two sequences a, b ∈ Eω, define a �α b to hold when:

∀θ.∀θ′. α(θ) ≤ θ′ → a(θ) ≤ b(θ′) .

We set ∼α to be �α ∩ �α. The following fact is easy (analogue to Fact 1):

Fact 2 If α ≤ α′ and a �α b, then a �α′ b. If a �α b �α c, then a �α◦α c.

The mapping α is used as a parameter of ‘precision’ for ∼ and �. The above
fact states that using one transitivity step costs precision. (In practice, when
doing proofs, we omit the correction function subscript, and rather ensure that
the proofs conform to a structural property – very natural at use – ensuring that
the length of chains of transitivity steps are bounded.)

A sequence a is said α-non-decreasing if a �α a. Fact 3 is for helping in-
tuition: it shows that one can almost think of α-non-decreasing sequences as if
those were non-decreasing functions, and simplify the relation �α in this case:

Fact 3 Every α-non-decreasing sequence is ∼α-equivalent to a non-decreasing
sequence. If a and b are non-decreasing, then a �α b iff a ≤ b ◦ α.

The above inequality a ≤ b ◦α conveys the important intuition that a is ‘domi-
nated’ by b after ‘shrinking’ its coordinates (by α). This has to be compared to
the definition of 4α in which the correction function is used for ‘stretching’.

From now, we identify each element a ∈ E with the sequence constant equal
to a. According to Fact 3, the relation �α (whatever is α) coincide with ≤
over those sequences. Hence the α-non-decreasing sequences equipped with the
relation �α can be seen as a refinement of (E,≤).

We introduce now an important tool: α-monotonic mappings. This notion
simplifies a lot the work with the �α and ∼α relations. Given two ordered sets
(E,≤) and (F,≤), a mapping f from E to Fω is said α-monotonic if

∀a, b ∈ E. a ≤ b→ f(a) �α f(b) .

You can remark that in particular, for each a ∈ E, since a ≤ a, we have f(a) �α
f(a), and hence f(a) is α-non-decreasing. Every α-monotonic f from E to Fω

can be turned into a mapping f̃ from Eω to Fω by setting:

for all a ∈ Eω and all θ ∈ ω, f̃(a)(θ) = f(a(θ))(θ) .



The following proposition discloses some key properties of α-monotonicity:

Proposition 3. Let f : E → Fω be α-monotonic and a, b ∈ Eω, then:

a �α b implies f̃(a) �α f̃(b) .

In particular, if f : E → Fω and g : F → Gω are α-monotonic, then g̃ ◦ f
is α-monotonic. Furthermore (̃g̃ ◦ f) = g̃ ◦ f̃ .

3.3 Relationship between �α and 4α

As mentioned above, �α and 4α are tightly connected. We introduce in this
section some useful notations and formalise this link in Proposition 4.

Given an ordered set (E,≤), an ideal is a subset I ⊆ E such that for all a ∈ I
and b ≤ a, b ∈ I. Its complement in E is I. Given a ∈ E, the ideal generated
by a is Ia= {b ∈ E : b ≤ a}. Given a sequence a ∈ Eω and an ideal I, set
I[a] = sup{θ + 1 : a(θ) ∈ I}7 and a ∈ Eω, set I[a]= inf{θ : a(θ) ∈ I}.

One goes back and forth between �α and 4α using Proposition 4:

Proposition 4. For all a, b ∈ Eω, a �α b iff I[a] <α I[b] for all ideal I ⊆ E.

3.4 Compatible mappings

In this section, we capture the semantics of stabilisation monoids via the notion
of compatible mappings (see definition below). We establish the existence and
unicity of this semantics (Theorem 2).

Definition 2. Given a stabilisation monoid M = 〈M, ·,≤, ]〉, a mapping ρ
from M∗ (words over M) to Mω is compatible with M if for some α we have:

Monotonicity. ρ is α-monotonic,
(M∗ is ordered by a1 . . . am ≤ b1 . . . bn if m = n and ai ≤ bi for all i)

Letter. for all a ∈M , ρ(a) ∼α a, and ρ(ε) ∼α 1,
(a and 1 denote the constant sequences equal to a and 1 respectively)

Product. for all a, b ∈M , ρ(ab) ∼α a · b,
(a · b denotes the constant sequence equal to a · b)

Stabilisation. for all e ∈ E(M), m ∈ ω, ρ(em) ∼α (e]|me),
(em denotes the word consisting of m occurrences of the letter e)
(for a ≤ b in M , set (a|mb) ∈Mω to map [0,m) to a and [m,ω) to b)

Substitution. for all u1, . . . , un ∈M∗, n ∈ ω, ρ(u1 . . . un) ∼α ρ̃(ρ(u1) . . . ρ(un)).
(in which ρ(u1) . . . ρ(un) is naturally seen as an α-non-decreasing sequence
of words instead of a word over α-non-decreasing sequences)

7 The +1 makes the theory more smooth, e.g., for Proposition 4.



Example 2. Consider the stabilisation monoid M with three elements ⊥ ≤ a ≤ b,
for which the product is defined by x · y = min≤(x, y) (hence b = 1), and the
stabilisation by b] = b and a] = ⊥] = ⊥. Given a word u ∈ {⊥, a, b}∗, one sets:

ρ(u) =


b if u ∈ b∗

⊥||u|aa if u ∈ b∗(ab∗)+

⊥ otherwise.

The mapping ρ is compatible with M:

Monotonicity. We prove id -monotonicity. Let u ≤ v. If v ∈ b+ then ρ(u) ≤
b = ρ(v) (since ρ(v) = b is maximal), i.e., ρ(u) �id ρ(v). If u contains the
letter ⊥ then ρ(u) = ⊥ ≤ ρ(v). Otherwise, since u ≤ v, u and v contain at
least one occurrence of a, and no occurrence of ⊥. Hence ρ(u) = (⊥||u|aa)
and ρ(v) = (⊥||v|aa). But since u ≤ v, |u|a ≥ |v|a. We get that ρ(u) �id ρ(v).

Letter. We have ρ(b) = b, ρ(⊥) = ⊥ and ρ(a) = ⊥|1a. This implies ρ(a) ∼α a
for α(θ) = max(1, θ).

Product. The only non trivial case is ρ(aa) = (⊥|2a) ∼α (⊥|1a) = a · a which
holds for α(θ) = max(2, θ).

Stabilisation. Every element is an idempotent. Let m ≥ 1. For all x ∈ M ,
ρ(xm) = x]|mx by definition.

Substitution. Let u1, . . . , un ∈ M∗ and u = u1 . . . un. If for all i, ui ∈ b∗,
then ρ(u) = b = ρ̃(ρ(u1) . . . ρ(un)). If the letter ⊥ occurs in some ui,
then ρ(u) = ⊥ = ρ̃(ρ(u1) . . . ρ(un)). Otherwise u contains no ⊥, and at
least one occurrence of a. Let K be the set of indices i such that ui contains
an occurrence of a. By applying the definition of ρ and ρ̃ we claim that

ρ̃(ρ(u1) . . . ρ(un)) = ⊥|max(|K|,maxi∈K |ui|a)a ,

indeed if θ < |ui|a for some i, then ρ(ui)(θ) = ⊥, and as a consequence
ρ̃(ρ(u1) . . . ρ(un))(θ) = ⊥. And otherwise, if θ < |K|, (ρ(u1) . . . ρ(un))(θ)
contains no occurrences of ⊥, but |K|-many occurrences of a, and hence
once more ρ̃(ρ(u1) . . . ρ(un))(θ) = ⊥. Finally, if θ ≥ max(|K|,maxi∈K |ui|a),
then (ρ(u1) . . . ρ(un))(θ) contains no occurrences of ⊥ and at most θ oc-
currences of a. We obtain ρ̃(ρ(u1) . . . ρ(un))(θ) = a. Using Example 1 one
has max(|K|,maxi∈K |ui|a) ≈α |u|a (for α(θ) = θ2), and consequently using
Proposition 4, ρ(u) ∼α ρ̃(ρ(u1) . . . ρ(un)).

Remark 2. Let us state the link with the standard monoids. Consider a monoid
M = 〈M, ·〉. It can be turned into a stabilisation monoid 〈M, ·,≤, ]〉 by a) setting
≤ to be the equality, and b) setting e] = e for all idempotents e. In this case,
it is easy to see that defining for all words u ∈ M∗, ρ(u) to be the sequence
constant equal to π(u) provides a compatible mapping (for α = id , i.e., ∼α is
the equality). According to Theorem 2 below, this is the only possible mapping
compatible with 〈M, ·,≤, ]〉.

Theorem 2 states that stabilisation monoids have unique semantics. It is
reminiscent of the existence of unique extensions of finite Wilke algebras into
ω-semigroups in the theory of regular languages of infinite words.



Theorem 2. For every stabilisation monoid, there exists a mapping ρ compat-
ible with it. Furthermore it is unique up to ∼.

3.5 Recognisability

We now define the notion of recognisability for cost-functions.
(We use the definitions of Section 3.3.) Given a stabilisation monoid M =

〈M, ·,≤, ]〉, a length-preserving morphism h from A∗ to M∗, and an ideal I ⊆M ,
the triple M, h, I recognises the mapping f : A∗ → ω + 1 if there exists α such
that for all u ∈ A∗, f(u) ≈α I[ρ(h(u))] in which ρ is a mapping compatible
with M . A cost function from A∗ to ω + 1 is recognisable if some (equivalently
all) function in the class are recognised by some M, h, I.

Example 3. For A = {a, b}, the function | · |a which counts the number of occur-
rences of a in a word is recognisable. For this, consider the monoid of Example 2,
the morphism defined by h(a) = a, h(b) = b, and the ideal I = {⊥}. Then we
have |u|a = I[ρ(u)] for all u ∈ A∗. This means that | · |a is recognisable.

As one can expect, recognisability and regularity coincide:

Theorem 3. A cost function over words is regular iff it is recognisable.

As mentioned above, this theorem and Theorem 1 are proved at the same time.
This proof is much more involved than the equivalent one for regular languages.

We conclude our description by a decidability result.

Theorem 4. The relation 4 is decidable over recognisable cost functions.

This decidability result extends previous results. For instance, the bounded-
ness problem (deciding the existence of n ∈ ω such that f(u) ≤ n for all words u)
corresponds to f 4 0. The standard limitedness problem (the boundedness over
the support of the function) corresponds to f 4 χL where L is {u : f(u) < ω}.

4 Conclusion

We have introduced the notion of regular cost functions over words: equivalence
classes of functions from words to ω + 1. We have shown that those cost func-
tions enjoy many equivalent representations: algebraic and automata theoretic.
This paper is mainly oriented toward the algebraic part, in particular with The-
orem 2 which shows that stabilisation monoids have a semantics independent
from the automata counterpart. From those equivalences we obtain that the
class of regular cost functions enjoy closure under min, max, inf-projection and
sup-projection. From those closure properties, it is possible to derive an equiv-
alence with a suitable extension of monadic second-order logic (not presented
in the paper). We also provide a decision procedures for the 4 relation, and
as a consequence the equivalence of cost functions. This result generalises the
decidability of the limitedness problem in [9] and [1].



The results were carefully stated so that the extension of the theory to trees
is possible (subject of a following paper). In particular we have introduced the
notion of history-determinism, a semantic notion which replaces the classical
notion of determinism in this framework. Let us finally remark that this whole
framework can be extended without any problem to infinite words.
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