
Regular cost functions over finite trees

Thomas Colcombet
LIAFA, CNRS and Université Paris Diderot,
Case 7014, 75205 Paris Cedex 13, France

thomas.colcombet@liafa.jussieu.fr

Christof Löding
RWTH Aachen, Informatik 7,

52056 Aachen, Germany
loeding@cs.rwth-aachen.de

Abstract

We develop the theory of regular cost functions over fi-
nite trees: a quantitative extension to the notion of regular
languages of trees: Cost functions map each input (tree) to
a value in ω+1, and are considered modulo an equivalence
relation which forgets about specific values, but preserves
boundedness of functions on all subsets of the domain.

We introduce nondeterministic and alternating finite tree
cost automata for describing cost functions. We show that
all these forms of automata are effectively equivalent. We
also provide decision procedures for them. Finally, follow-
ing Büchi’s seminal idea, we use cost automata for provid-
ing decision procedures for cost monadic logic, a quantita-
tive extension of monadic second order logic.

1 Introduction

Since the seminal works of Kleene [20] and Rabin and
Scott [24], the theory of regular languages is one of the cor-
nerstones in computer science. The theory has then been
extended to infinite words [6], to finite trees [27], and to
infinite trees [23]. This latter result is of such importance
that it is sometimes called the ‘mother of all decidability
results’.

Recently, the notion of regular cost function of words
has been presented as a candidate for being a quantitative
extension to the notion of regular languages [7], while re-
taining most of the fundamental properties of the original
theory such as the equivalence with logic and decidabil-
ity1. A cost function is an equivalence class of the functions
from the domain (e.g. words or trees) to ω + 1, modulo an
equivalence relation ≈ which allows some distortion, but
preserves the existence of bounds over each subset of the
domain. The model of cost functions is a strict extension

1Regular cost functions differ from other quantitative extensions to reg-
ular languages in the sense that they cannot be reduced to such other ex-
tensions, and that at the same time they retain very strong closure and
decidability properties.

to the notion of languages. The objective of this paper is to
extend this theory to finite trees.

Related works and motivating examples

A prominent question in this theory is the star-height
problem. This story begins in 1963 when Eggan formu-
lates the star-height decision problem [10], i.e., decide if
a regular language of words can be represented by a reg-
ular expressions using at most k nesting of Kleene stars.
This problem was quickly considered as central in lan-
guage theory, and as the most difficult problem in the
area. It took twenty-five years before Hashiguchi came
up with a proof of decidability spreading over four pa-
pers [14, 13, 15, 16]. Hashiguchi used in his proof the
model of distance automata. A distance automaton is a fi-
nite state non-deterministic automaton running over words
which can count the number of occurrences of some ‘spe-
cial’ states, and hence attach a value to each input. The
proof of Hashiguchi relies on a very difficult reduction
to the limitedness problem, i.e., the existence of a bound
over the function computed by an automaton over its do-
main. Hashiguchi established the decidability of this prob-
lem [13]. In 2005, Kirsten gave a much simpler and self-
contained proof to the star-height problem [19]. It relied
on a reduction to the limitedness problem for a more gen-
eral class of automata, the nested distance desert automata.
The notion of distance automata and its relationship with
the tropical semiring has also been the source of many in-
vestigations [14, 17, 21, 26, 29].

Other decision problems can also be reduced to limit-
edness questions over words: in language theory the finite
power property [25, 12] and the finite substitution problem
[2, 18], and in model theory the boundedness problem of
monadic formulas over words [3]. Distance automata are
also used in the context of databases and image compres-
sion. Automata similar to the ones of Kirsten have also been
introduced independently in the context of verification [1].

The automata used above compute a minimum over all
their runs over the input of some function. In [4], a new

1

dual form of automata, computing a maximum over all runs
of some functions, was introduced. The paper [4] was not
focused on those automata by themselves, but at infini-
tary variants that also used asymptotic considerations. This
makes the results difficult to compare (though all limited-
ness results can be deduced from it). However, the principle
of using a dual form of automata plays a very important role
in the present work.

Finally, the theory of those automata over words has
been unified in [7], in which cost functions are introduced,
and suitable models of automata, algebra, and logic for
defining them are presented and shown equivalent. Corre-
sponding decidability results are provided. The resulting
theory is a neat extension of the standard theory of regular
languages to a quantitative setting. All the limitedness prob-
lems from the literature appear as special instances of those
results, as well as all the central results known for regular
languages.

Besides the large number of results for distance automata
and related models on words, there are also some results
over trees. In [8], the star-height problem over trees has
been solved by a reduction to the limitedness problem of
nested distance desert automata over trees. The later prob-
lem was shown decidable in the more general case of al-
ternating automata. In [9] a similar attempt has been tried
for deciding the Mostowski hierarchy of non-deterministic
automata over infinite trees (the hierarchy induced by the
alternation of fixpoints). The authors show that it is pos-
sible to reduce this problem to the limitedness problem for
a combination of nested distance desert automata with par-
ity tree automata, while the decidability of this limitedness
problem for automata on infinite trees remains open. To
obtain a better understanding and to develop techniques for
the case of infinite trees, we start by studying cost functions
over finite trees in this paper.

Contributions

The present paper is the natural continuation of [7]. The
objective in [7] was to raise the standard theory of regular
languages of (finite) words to the level of cost functions.
This paper aims at the same goal, but for (finite) trees.

We define in this paper two dual forms of alternating fi-
nite tree automata, namely B- and S-automata (B-automata
were already used in [8]). We show that these automata are
equivalent and are also equivalent to their non-deterministic
variant (simulation and duality theorem). We also provide
closure and decidability results for those automata.

Establishing the duality/simulation theorem is very sim-
ilar to establishing the complementation [23, 11] or simula-
tion [22] results for automata over infinite trees. Our proofs
follow similar techniques, hence, we use games together
with a fine analysis of the shape of strategies in our proofs.

We also use new notions such as history-determinism, that
have no counterpart in the classical theory.

The remainder of the paper is organised as follows. Cost
functions are presented in Section 2. Cost automata over
words are introduced in Section 3. Games are presented in
Section 4. All results are combined in Section 5, where we
study cost tree automata. Finally, all the theory is used in
Section 6 for presenting cost monadic logic, an extension of
monadic logic equivalent to cost tree automata.

2 Cost functions

We are interested in representing functions f over some
set E assigning to each element of E a cost in ω + 1, i.e.,
each x ∈ E is mapped to a natural number or to the first
infinite ordinal ω. When using such functions for modeling
boundedness problems, the specific value of the function is
not of importance. Instead, we are interested in the behav-
ior of such functions on subsets of the domain, namely on
which subsets of the domain the functions are bounded. Us-
ing this abstract view we can compare functions: A function
f : E → ω+1 is below some other function g : E → ω+1,
written as f 4 g, if on each set X ⊆ E on which g is
bounded, f is also bounded. This defines a pre-order on
functions from E to ω + 1. The corresponding equivalence
is denoted by ≈, i.e., f ≈ g if f and g are bounded on
the same subsets of their domain. The equivalence classes
for ≈ are called cost-functions (over E).

An alternative definition uses standard comparison of
functions modulo a “stretching factor” α. Here α : ω → ω
is a non-decreasing mapping that we extend with α(ω) = ω.
For such α we define:

f 4α g iff f ≤ α ◦ g .

It is easy to verify that f 4 g iff f 4α g for some α.
We also compare single values using 4α with the seman-
tics n 4α m if n ≤ α(m). Throughout the paper, α, α′ etc
denote such stretching factors, also called correction func-
tions.

Cost functions over a set E can be seen as a refinement
of the subsets of the base set E. Indeed, given some sub-
setA ⊆ E, one defines its characteristic function χA which
maps elements in A to 0, and other elements to ω. We then
have for all A,B ⊆ E, A ⊆ B iff χB 4 χA. Conse-
quently, all the information concerning a set is preserved in
the cost function of its characteristic function: sets can be
seen as particular cases of cost functions. Note also that
χA∩B = max(χA, χB) and χA∪B = min(χA, χB).

3 Cost automata over words

We need a special notion of words in this work intro-
duced in Section 3.1. In Section 3.2 we introduce objec-

2

tives, which are the counterpart of accepting conditions in
the theory of automata over infinite objects. Word automata
are presented in Section 3.3 and their history-deterministic
variant in Section 3.4.

3.1 Words

It is necessary in our framework to have special symbols
that identify the end of words. For this reason, a word al-
phabet A = 〈A1,A0〉 consists of two disjoint sets of letters.
The letters in A0 are called final letters, as opposed to non-
final letters in A1. A word over A is a sequence in A∗1A0,
i.e., consisting of a sequence of non-final letters, and ter-
minating with a final letter. In order to avoid confusion, an
element in A∗1 will be called a sequence of non-final letters.
For coding words in the usual sense, we append the final
letter � to their end.

3.2 Objectives and basic objectives

An objective is a triple 〈C, f, goal〉 in which:

• C is a word alphabet of actions, letters in C0 are called
final actions,

• the value mapping f maps C∗1C0 to ω + 1,

• goal ∈ {min,max} is the goal.

Intuitively, an objective in the context of a game is assigned
to a player, and tells what is the function to optimise (f),
over what domain (C∗1C0), and whether the player’s aim is
to minimise or maximise this value (goal). The dual O of
an objective O is obtained by changing the goal, i.e., ex-
changing min for max, or max for min. In a game, this
represents the goal of the opponent. This notion of objec-
tive will be used for games as well as for automata.

We use some basic objectives, that can be seen as
the counterpart to basic acceptance conditions, like Büchi,
Muller, Streett, Rabin, or parity, in the theory of automata
over infinite objects (cf. [28]). The general mechanism for
defining our basic objectives is to use a counter that can
be incremented by one (i), reset to zero (r) or checked (c).
Elements in {i, r, c} are called atomic actions. We read a se-
quence of atomic actions over the counter from left to right,
and the counter, starting with value 0, evolves according
to the actions (the action c does not change the value of
the counter). From such a sequence u, one computes the
set C(u) ⊆ ω which collects all the values of the counter
when checked (i.e., when the action c is encountered). For
example C(iriiicicri) = {3, 4} because the counter values at
the two occurrences of c are 3 and 4, respectively.

This base mechanism is instantiated in different ways
depending on the situation. In particular, one uses sev-
eral counters and non-atomic actions (such as ic or cr).

Hence, consider a finite set of counters Γ, and a set of
actions C1 ⊆ {i, r, c}∗ (those can be non-atomic). For
each sequence u over the alphabet CΓ

1 , we define C(u) as⋃
γ∈Γ C(uγ), in which uγ ∈ {i, r, c}∗ is obtained by pro-

jecting u to its γ-component. In other words, each action
in CΓ

1 tells for each counter what sequence of actions has
to be performed, and all the values collected by all counters
along a sequence of actions u are gathered into the unique
set C(u).

The B-objective (over counters Γ) is CostΓ
B =

〈〈{ε, ic, r}Γ, {[0], [ω]}〉, costΓ
B ,min〉 in which for all u ∈

({ε, ic, r}Γ)∗ and [x] ∈ {[0], [ω]},

costΓ
B(u[x]) = sup (C(u) ∪ {x}) .

This corresponds to the definition of B-automata as in [7],
except for the final letter in {[0], [ω]}. This difference
comes from the fact that we use here this last letter for cod-
ing accepting and rejecting states of an automaton: The let-
ter [0] should be understood as representing an accepting
state, while the letter [ω] corresponds to a non-accepting
state because it cancels all the computation before by mak-
ing the value of costΓ

B(u[ω]) equal to ω. The examples
are given in the context of one counter. The corresponding
goal is written Cost1

B , the value mapping being cost1
B . In

this case, we simplify all the notations and use the alphabet
{ε, ic, r} without explicit reference to the counter.

The S-objective (over counters Γ) is CostΓ
S =

〈〈{ε, i, r, cr}Γ, {[0], [ω]}〉, costΓ
S ,max〉 in which for all u ∈

({ε, i, r, cr}Γ)∗ and [x] ∈ {[0], [ω]},

costΓ
S(u[x]) = inf (C(u) ∪ {x}) .

The same comment applies to the final letters. This time,
[0] should be understood as rejecting, and the final letter [ω]
as accepting.

For technical reasons we also define a hierarchical ver-
sion of the B-objective, the hB-objective. In this case, the
set of counters Γ is totally ordered, and one sets HΓ ⊆
{ε, ic, r}Γ to be the set of counter actions such that when-
ever a counter is touched, all smaller counters are reset, i.e.,
c ∈ HΓ if for all γ′ < γ, c(γ) 6= ε implies c(γ′) = r. We
set CostΓ

hB to be 〈〈HΓ, {[0], [ω]}〉, costΓ
B ,min〉. The hB-

objective has particularly good properties when used in the
context of games, as shown by Theorem 8 below.

3.3 Cost-automata over words

A (non-deterministic word) cost-automaton A =
〈Q,A, I ,O ,∆1, F 〉 consists of a finite set of states Q, a
word alphabet A, a set of initial states I , an objective O =
〈C, f, goal〉, a set of non-final transitions ∆1 ⊆ Q × A1 ×
C1 ×Q, and a final transition mapping F : Q× A0 → C0.
The set ∆0 of final transitions is {(q, b, F (q, b)) : q ∈

3

Q, b ∈ A0}. It is convenient to see ∆ as a word alpha-
bet consisting of ∆1 and ∆0. For short, we call B-automata
(resp. S-automata, hB-automata) the cost automata using B-
objectives (resp. S-objectives, hB-objectives).

We assume that our automata are complete in the sense
that for all states q and all letters a ∈ A1, there exists
a transition of the form (q, a, c, r) in ∆1. In the case of
B-objective and S-objective, completeness can be obtained
simply by adding a trap state from which every non-final
transition is possible and is a loop, and only rejecting final
transitions are possible (this construction is consistent with
the definition of the semantics which follows).

A run ρ of the automaton is a word
(q0, a1, c1, q1) . . . (qn−1, an, cn, qn)(qn, b, d) over the
alphabet ∆ such that q0 is initial. The corresponding input
word In(ρ) is a1 . . . anb. One also says that ρ is a run
over a1 . . . anb. The output word Out(ρ) is c1 . . . cnd. The
value f(ρ) of a run ρ is f(Out(ρ)). The value of a word u
over A depends on the goal and is denoted by [[A]]:

• if goal = min, then [[A]](u) is the infimum2 of f(ρ)
for all runs ρ over u,

• if goal = max, then [[A]](u) is the supremum of f(ρ)
for all runs ρ over u.

Example 1 The following one counter B-automaton ac-
cepts the function minseg, which, to each word over the
alphabet {a, b} associates the minimal length of a maximal
segment of consecutive occurrences of a. States are repre-
sented by circles, and each transition (p, a, c, q) by an edge
from p to q labelled by a : c. Multiple transitions that differ
only by the input letter, e.g., (p, a, c, q), (p, b, c, q) are rep-
resented by a single edge labelled a, b : c. Initial states are
marked by ingoing arrows.

p q r

a, b : ε

b : ε

a : ic

b : ε

a, b : ε

Our automata do not have accepting states, but a final func-
tion F . In our case, it maps � to [0] for the states marked
by an outgoing edge, and to [ω] otherwise. Given an input
word, one constructs the optimal run as follows: the au-
tomaton guesses non-deterministically the beginning of the
shortest a-segment, and jumps to state q at this moment (it
can be at the beginning of the word). It then proceeds by
counting the length of this interval, until it reaches the end
of the word, or a letter b, in which case it goes to the trap
state r.

2We use infimum and supremum and not min and max for handling the
case when there are no runs, using inf ∅ = ω and sup ∅ = 0.

3.4 History-determinism

In general, the automata we consider cannot be made de-
terministic, even modulo ≈. For instance, the above Exam-
ple 1 requires to guess the interval of minimal length, and
this is ‘unavoidable’. In replacement of determinism, we
use the notion of history-determinism which is a semantic
driven weakening of the standard (syntactic) definition of
determinism.

Let us fix a cost automaton A = 〈Q,A, I,O ,∆, F 〉. A
translation strategy3 forA is a mapping δ which maps A∗1×
A1 to ∆1 and A∗1 × A0 to ∆0. This mapping tells how to
deterministically construct a run of A over a word. This
map is transformed into a mapping δ̃ from A∗1 to ∆∗1 and
from A∗1A0 to ∆∗1∆0 by δ̃(ε) = ε, and δ̃(va) = δ̃(v)δ(v, a)
for all v ∈ A∗1 and a ∈ A. Given a word u over A, if δ̃(u)
is a valid run of A over u, it is called the run driven by δ
over u. In the following, we assume that δ̃(u) is a valid run
for every word u.

An automaton is called history-deterministic if there ex-
ists α and for all n ∈ ω a translation strategy δn such that
for all words u,

• if goal = min and [[A]](u) ≤ n, f(δ̃n(u)) ≤ α(n),

• if goal = max and [[A]](u) ≥ α(n), f(δ̃n(u)) ≥ n.

In other words, when driven by δ, the automaton computes
a function ≈α-equivalent to its normal semantics. The trick
is that δ may require unbounded memory, and hence cannot
be implemented directly by the automaton in general. One
says that the automaton is α-history-deterministic when one
wants to make the correction function α explicit.

Example 2 The following automaton is an example of
a history-deterministic B-automaton accepting the func-
tion minseg from Example 1:

p q r

a : ε
b : r

a : ε

a : ic

b : ε

a, b : ε

We use the same convention as in the previous example con-
cerning accepting states. Let us assume that there is a run
of value at most n over the word u. This means that the
counter value never exceeds n. Thus the automaton was in
state q with counter value 0 after some b or at the begin-
ning of the word, then read at most n consecutive occur-
rences of letter a, followed by either the end of the word �

3The name comes from a more general presentation of the notion, in
which the notion of a translation strategy can be unified with the standard
notion of strategy in games.

4

or letter b allowing it to jump to state r. This witnesses that
minseg(u) ≤ n.

Conversely, assume that minseg(u) ≤ n. We de-
scribe the translation strategy δn as a deterministic process
for constructing the accepting run reaching r of value at
most n. The sole cause of non-determinism in this automa-
ton occurs when in state q, while reading letter a. The au-
tomaton can choose either to go to state p, and skip the
remaining of the a-segment (call this choice ’skip’), or to
stay in state q and increment and check the counter (choice
’continue’). There is no freedom in the definition of the
translation strategy δn, but in this case. The translation
strategy resolves this non-determinism by choosing the op-
tion ’continue’ as long as possible, i.e., as long as the value
of the counter is less than n, and by choosing to ’skip’ only
when it is unavoidable, i.e., when the counter has value n. It
is clear that following this translation strategy, the counter
will never exceed value n. It is also easy to see that follow-
ing this translation strategy, a run will terminate in state q
or r iff it contains an a-segment of length at most n.

Theorem 3 states the equivalence of all forms of au-
tomata.

Theorem 3 (duality, Theorem 1 in [7]) It is equivalent
for a cost function to be accepted by a B-automaton, an
S-automaton or an hB-automata, as well as by their history-
deterministic variants.

We call such cost functions regular. The proof of Theo-
rem 3 relies on algebraic techniques and the transformations
have a very high complexity. For simpler cases it is possi-
ble to provide direct constructions with better complexity,
stated in the following lemmas.

Lemma 4 The function costΓ
S (resp. costΓ

B) is accepted
by an id -history-deterministic B-automaton (resp. S-
automaton) of size 2|Γ| + 1 (whith id the identity function).

The constructions use similar ideas as in Example 2.

Lemma 5 The cost function costΓ
B is accepted by a deter-

ministic hB-automaton of size |Γ|!.

The construction of the hB-automaton uses the idea of the
latest appearance record construction known from the trans-
lation between acceptance conditions for ω-automata (see
for instance [28]).

4 Cost games

Our results for tree automata require the use of games.
Their definition is presented in Section 4.1. We show in
Section 4.2 how games can be composed with history-
deterministic automata, and in Section 4.3 we present re-
sults concerning the shape of winning strategies.

4.1 Definition

A cost game is a game involving two players, Adam and
Eva, the result of which is a value in ω + 1. As opposed to
what is often done, we do not partition the positions in the
game into positions belonging to Eva and positions belong-
ing to Adam. Instead we directly see the moves issued from
a position as a positive Boolean combination of possible
moves. One can see each such positive Boolean combina-
tion as a subgame in which Eva plays for each occurrence
of a disjunction, and Adam for each conjunction. Another
specificity is that actions label moves in our game (and not
positions), and that a special treatment is given to final po-
sitions, i.e., positions at which the play ends. Apart from
those specificities, all notions introduced here faithfully cor-
respond to the usual ones.

From now, B+(X) represents the set of positive Boolean
combinations of elements in X . Given some ϕ ∈ B+(X)
and some function h from X to B+(Y), ϕ[x ← h(x)] rep-
resents the formula ϕ in which h(x) has been substituted
for each occurrence of x for x ∈ X . One also denotes by ϕ
the dual of ϕ, i.e., ϕ in which disjunctions and conjunc-
tions have been exchanged. Given ϕ,ϕ′ ∈ B+(X), ϕ⇒ ϕ′

holds when ϕ′ is a consequence of ϕ for the usual meaning.
A cost game G = 〈V, v0, δ,O〉 consists of the following

components:

• V is the set of positions.

• v0 ∈ V is the initial position.

• O = 〈C, f, goal〉 is a basic objective (for Eva).

• δ : V → B+(C1×V)∪C0 is the control function. The
non-final moves in the game are the triples (v, c, v′) ∈
V × C1 × V such that some (c, v′) appears in δ(v).
M1 is the set of non-final moves. The final moves are
the pairs (v, c) ∈ V × C0 such that δ(v) = c. M0 is
the set of final moves. One requires that every position
either has a successor in M1, or is final. One finally
assumes that the game is of finite duration, i.e., that
the graph 〈V,M1〉 does not contain any infinite path
(and in particular no cycles).

The dual G of a game G is obtained by dualizing the
objective and the control relation. Dualization amounts to
exchanging the roles of the two players. In particular, all
definitions below are given for Eva, but their counterparts
for Adam is obtained by dualization of the game.

As for the transitions of automata, we see M0 and M1

as a word alphabet. A play π is a word of the
form (v0, a1, v1)(v1, a2, v2) . . . (vn, an) ∈ M∗1M0 (in
which v0 is indeed the initial position). The output of the
play π is Out(π) = a1 . . . an. The cost f(π) is f(Out(π)).
A strict prefix of a play is called a partial play. Its output

5

is defined accordingly. A strategy for Eva σE is a set of
plays such that for every partial play π ∈ M∗1 ending in a
position v,∧

{m ∈M(v) : πm ∈ pref (σE)} ⇒ δ(v) ,

in which M(v) is the set of moves of origin v, pref (σE) =
{u : uv ∈ σE, v ∈ M∗1M0}, and

∧
S denotes the con-

junction over all elements from the set S.
When goal = min, Eva aims at minimising over all

strategies the maximum value of all plays compatible with
the strategy. In other words, the value value(σE) of a strat-
egy for Eva σE (with respect to objective O) is defined as
the supremum of f(π) for π ∈ σE, and the value of a game
is the infimum of value(σE) for σE ranging over the strate-
gies for Eva. Dually, when goal = max, value(σE) is de-
fined as the infimum of f(π) for π ∈ σE, and the value of
a game is the supremum of value(σE) for σE ranging over
the strategies for Eva.

It is well known that games of finite duration are deter-
mined, i.e., that the best value that can be obtained by one
player is the same as the best value which can be obtained
by its opponent. In our case, this is formalised by the fol-
lowing proposition.

Proposition 6 For all cost games, value(G) = value(G) .

The two following sections give some key arguments for
working with games.

4.2 History-deterministic reduction

We now show how we can compose word automata with
games. The goal is to transform a game into an “equiva-
lent” one with a different objective (as it is known from the
theory of infinite games, e.g., the transformation of Muller
into parity games by the latest appearance record construc-
tion, cf. [28]). For this purpose we take the product of a
game with the automaton. The game outputs a word, which
is read by the automaton, which in turn yields a new word,
the non-determinism of the automaton being controlled by
player Eva. Hence, given a game G = 〈V, δ, 〈A, f, goal〉〉,
and a cost automatonA = 〈Q,A, I , 〈C, g, goal〉,∆, F 〉, one
defines the product A × G = 〈Q × V, δ′, 〈C, g, goal〉〉 in
which one sets δ′((q, v)) to be

δ(v)
[
(a, v′)←

∨
{(c, (q′, v′)) : (q, a, c, q′) ∈ ∆}

]
if v is non-final, and F (δ(v)) otherwise.

This construction is standard. However, it is also well
known that it fails to have the correct semantics in gen-
eral: it is not true that, when A accepts the function f , the
game A × G has the same value as G. It is classical that

this property holds either if the automaton is determinis-
tic, or if Adam is never allowed to play in the game (in our
case if all Boolean formulas are disjunctions). However, the
following lemma shows that when composing with history-
deterministic automata, good properties are recovered.

Lemma 7 Let A be an α-history-deterministic cost au-
tomaton over alphabet A and G = 〈V, δ, 〈A, [[A]], goal〉〉 be
a cost game, then value(G) ≈α value(A× G).

Proof Let A = 〈Q,A, I , 〈C, g, goal〉,∆, F 〉. Let us treat
the case goal = min. We claim that value(G) ≤ value(A×
G) (this part does not use the history-determinism of the
automaton). For this, consider a strategy for Eva σE in
the game A × G. We would like to project this strat-
egy into a strategy σ̃E in the original game G. For this,
for each non-final move m = ((q, v), c, (q′, v′)) in the
game A × G one associates a move in G m̃ = (v, a, v′)
such that (q, a, c, q′) ∈ ∆, and to each final move m =
((q, v), c), one associates a final move in G m̃ = (v, a)
such that F (q, a) = c (in both cases m̃ exists by definition
ofA×G). One then constructs σ̃E from σE by applying this
transformation to each move occurring in the strategy. One
can check that σ̃E is a strategy for Eva in G. Furthermore,
it is straightforward that value(σ̃E) ≥ value(σE) because
the plays in σ̃E are combined with a run of A, and the cost
of plays in σE is the minimal value of a run of A. Hence
value(G) ≤ value(A× G).

Conversely, let σE be a strategy for Eva in the game G
such that [[A]](σE) = n. Let δn be the translation strategy
for A. Let π = (v0, a1, v1) . . . (vk, ak) be a play in σE.
Let (p0, a1, c1, p1) . . . (pk, ak, ck) be the run driven by δn
over the word a1 . . . ak = Out(π), i.e., δ̃n(Out(π)). De-
fine π̃ to be ((p0, v0), c1, (p1, v1)) . . . ((pk, vk), ck), which
is a play in the game A × G. By assumption of history-
determinism, one knows that g(π̃) ≤ α([[A]](π)) ≤ α(n).
Finally set σ̃E = {π̃ : π ∈ σE}. It is not difficult to check
that σ̃E is a strategy for Eva in the game A × G. Further-
more, by the above remark, g(σE) ≤ α(n). Hence, overall,
we have established value(A× G) 4α value(G).

One uses the same argument when goal = max, replac-
ing ≤ by ≥ and 4 by <.

What is really interesting in this statement is that it is possi-
ble that every winning strategy for Eva in the game G may
require an unbounded quantity of memory (this is the case
for S-games in general), while at the same time it is possible
to win the gameA×G with a bounded quantity of memory
(this is the case for B-games). In this respect, this result dif-
fers a lot from the standard composition with deterministic
automata used in the literature.

6

4.3 On the shape of strategies

Given a strategy for Eva σE in some game G, and
some u ∈ pref (σE), u−1σE denotes the set {v : uv ∈
σE}. The strategy σE is called positional if for all u, v ∈ σE

ending in the same position, u−1σE = v−1σE. Given
a stretching function α, a game G is α-positional, if
there exists a positional strategy for Eva σE in G such
that value(σE) ≈α value(G). In other words, by play-
ing positionally, Eva commits an error which is bounded
by α. The following result has been established in [8] for
CostΓ

hB-objectives and the argument can easily be adapted
for CostΓ

hB-objectives.

Theorem 8 For all finite hierarchical sets of counters Γ,
the CostΓ

hB- and CostΓ
hB-games of finite duration are α-

positional, in which α(n) = n|Γ|.

Note finally an asymmetry here: this result does only
hold for the hierarchical B-condition. Using Lemma 5 one
can also show that strategies with finite memory are suffi-
cient in B-games (where the size of the memory depends
on the number of counters), whereas winning strategies in
S-games may require an unbounded quantity of memory in
general.

5 Cost tree automata

We introduce here our models of cost automata over
trees, and study their properties.

5.1 Trees

A ranked alphabet A consists of a finite set of letters,
each of them having a rank in ω. For r ∈ ω, we denote
by Ar the set of letters in A of rank r. Remark that this nota-
tion is compatible with the notion of word alphabet, which
is equivalent to a ranked alphabet that uses only ranks 0
and 1. The set TA of trees over the ranked alphabet A is the
least set containing A0, and such that if t1, . . . , tr are trees,
and a ∈ Ar, a(t1, . . . , tr) is a tree. A position in a tree is a
sequence in ω∗ such that ε is a position in every tree, and ix
is a position in a tree a(t1, . . . , tr) iff 1 ≤ i ≤ r and x is a
position in ti. Given a position x in a tree t = a(t1, . . . , tr),
t(x) denotes the letter at position x, i.e., a when x = ε,
and ti(y) when x = iy. A position such that t(x) has rank 0
is called a leaf. The set of all positions of t is denoted by
pos(t).

5.2 Cost alternating tree automata

A cost alternating tree automaton A = 〈Q,A, qin ,O , δ〉
consists of a finite set of states Q, a ranked al-

phabet A, an initial state qin ∈ Q, an objec-
tive O = 〈C, f, goal〉 and a transition function δ :[⋃
i>0

Q× Ai → B+([1, i]× C1 ×Q)
]
∪ [Q× A0 → C0],

where [1, i] denotes the set {1, . . . , i}. The semantics of
cost alternating automata is defined in terms of games.
Given a tree t over A, one defines the game A × t = 〈Q ×
pos(t), (qin , ε), δ′,O〉 by setting δ′(p, x) = δ(p, t(x))) for
t(x) ∈ A0, and

δ′((p, x)) = δ(p, t(x)) [(n, c, q)← (c, (q, xn))]

otherwise. One defines [[A]](t) to be value(A× t).
A cost (non-deterministic) tree automaton is a cost alter-

nating tree automaton A = 〈Q,A, qin ,O , δ〉 such that there
exists ∆ ⊆ ∪i>0Q×Ai×(C1×Q)i such that for all states q
and all a ∈ Ai with i > 0,

δ(q, a) =
∨

(q,a,(c1,q1),...,(ci,qi))∈∆

∧
n∈[1,i]

(n, cn, qn) .

An equivalent definition of [[A]] that is used in the ex-
ample below can be given when A is non-deterministic,
say defined by the transition relation ∆. A run over t
is a pair σ = (r, c) consisting of the mapping r
from pos(t) to Q and the mapping c from pos(t) \
{ε} to C, and such that for all non-leaf x ∈
pos(t), (r(x), t(x), (c(x1), r(x1)), . . . , (c(xr), r(r))) ∈
∆, r(ε) = q0, and for all leaf x ∈ pos(t), c(x) =
δ(r(x), t(x)). Given a branch x0 < x1 < · · · < xk, i.e., a
maximal sequence of positions ordered by prefix, its cost for
σ is f(c(x1) . . . c(xk)). The cost of a run σ is the supremum
if goal = min (otherwise the infimum) of f(τ) when τ
ranges over all branches of the tree. The value [[A]](t) is
the infimum (resp. the maximum if goal = max) over the
values of all runs over t.

Example 9 Consider the alphabet A consisting of A0 =
{a, b} and A2 = {f} (all other Ai’s are empty). One aims
at counting the number of occurrences of leaves labeled
by a using a non-deterministic B-automaton. Our automa-
ton uses two states p and q, and the following set of transi-
tions (the ? is for later reference to the transition):

∆ =


(p, f, (ε, p), (ε, p))
(q, f, (ε, q), (ε, p))
(q, f, (ε, p), (ε, q))
(q, f, (ic, q), (ic, q)) ?


δ(p, a) = [ω]
δ(p, b) = [0]
δ(q, a) = [0]
δ(q, b) = [ω]

We assume that both states are initial (this is not strictly
speaking in the definition, but can be simulated in an easy
way by introducing a new initial state).

This automaton is simpler to read as a bottom-up deter-
ministic one. The objective of Eva is to minimize the maxi-
mum value over all branches. As a consequence, the state p

7

must necessarily be used for every b-labeled leaf, and the
state q over every a-labeled leaf (otherwise the cost1

B value
of the corresponding branch is immediately ω). Then, the
transitions force the state p to be used if and only if the sub-
tree rooted in the corresponding position does not contain
any a-labeled leaf. Conversely, q is used iff there exist an
a-labeled leaf below. Now, the cost of a branch of the run is
exactly the number of occurrences of the transition ?. This
transition is used iff state q is assumed by the run at both
children. In other words, the value S(t) computed by the
automaton over a tree t is the maximal number of separat-
ing positions in a branch, where a separating position is a
position below which both subtrees contain an a. It is easy
to check that S(t) ≤ |t|a ≤ 2S(t) where |t|a is the number
of occurrences of a-leaves.

Lemma 10 Functions computed by alternating B-
automata, alternating S-automata, and alternating
hB-automata are effectively equivalent.

Proof From alternating S-automata to alternating B-
automata: Consider an S-automaton A over counters Γ. By
Lemma 4, let S be an id -history-deterministic B-automaton
which accepts costΓ

S . One then easily constructs by dualiz-
ing A and product with S, an automaton B such that for all
trees t, B× t is a game isomorphic to S × (A× t). We then
directly get that for all trees t, [[B]](t) = value(B × t) =

value(S × (A× t)) (1)
= value(A× t) (2)

= value(A × t) =
[[A]](t), where (1) is by Lemma 7 for α = id , and (2) is
by Proposition 6. The same composition principle allows
similarly to go from B-automata to S-automata and from B-
automata to hB-automata (using Lemma 5).

The non-deterministic automata have different ‘natural’
closure properties. In particular, one uses the two new
operations of inf-projection and sup-projection. Given
two ranked alphabets A and B, a translation from A

to B is a mapping h from An to Bn for each n. It
is naturally extended into a mapping h̃ from TA to TB
by h̃(a(t1, . . . , tr)) = h(a)(h̃(t1), . . . , h̃(tr)). Given a
mapping f from TA to ω + 1, the (inf, h)-projection of f
is the mapping finf,h from TB to ω + 1 defined by:

finf,h(t) = inf
{
f(t′) : h̃(t′) = t

}
(= inf f(h̃−1(t)))

The (sup, h)-projection of f is defined similarly by:

fsup,h(t) = sup
{
f(t′) : h̃(t′) = t

}
(= sup f(h̃−1(t)))

Lemma 11 B-automata are closed under min,max and
inf-projection, hB-automata are closed under min and inf-
projection, and S-automata are closed under min,max and
sup-projection.

5.3 Simulation and duality result

We are now able to state and prove the main result
of the paper. It shows the simulation result, i.e., that
alternating automata can be transformed into equivalent
non-deterministic automata, as well as the duality result,
which states that non-deterministic B-automata and non-
deterministic S-automata are equivalent. The proof method
is inspired from modern presentations (see e.g., [28]) of
similar results for automata on infinite trees: the simulation
theorem of Muller and Schupp [22] and Rabin’s comple-
mentation lemma [23].

Theorem 12 (simulation and duality) It is effectively
equivalent for a cost function to be accepted by a tree
B-automaton, S-automaton, or hB-automaton, as well as
with their alternating versions.

Proof (sketch) By Lemma 10, alternating tree S-, B-, and
hB-automata are effectively equivalent. Furthermore, hB-
automata are B-automata over a restricted output alpha-
bet. Therefore it is sufficient for us to show how to
transform an alternating tree hB-automaton into (1) a non-
deterministic tree hB-automaton and (2) a non-deterministic
tree S-automaton. We sketch the proof of (1), the proof of
(2) uses the same technique.

Consider an alternating tree hB-automaton A =
〈Q,A, qin ,CosthB , δ〉. Given a tree t, the value [[A]](t)
is defined as the infimum over the values of all strategies
σE for Eva in A × t. According to Theorem 8 it is suffi-
cient to consider positional strategies. Now note that we can
code such a positional strategy by annotating t at each inner
node x with all the tuples (p, c, q, n) such that (c, (q, xn))
is a possible move from (p, x) according to σE, and simi-
larly the leaf nodes with tuples (p, c) for the possible σE-
moves from (p, x). Denote this annotated tree by tσE . We
construct a tree hB-automaton B such that [[B]](tσE) ≈α
value(σE) for some correction function α. We obtain the
desired automaton by applying an inf-projection to B de-
fined by the mapping that removes the strategy annotations.

The construction of B works as follows: Consider some
path τ through tσE and define its cost to be the supremum
over the costs of all σE-plays that stay on this path. This
defines a cost function over words. It is not very difficult
to see that this cost function is regular and therefore there
exists a history-deterministic hB-automatonD computing it
(according to Theorem 3). The automaton B is constructed
by simulating D over all branches of the tree (in each di-
rection B takes a transition that D could have taken when
reading the corresponding path coded as a word). Since
D is history-deterministic, we obtain that [[B]](tσE) is the
supremum over the costs of the paths through τ computed
by D (formally we apply Lemma 7). This corresponds to
the value of σE, as desired.

8

5.4 Decidability

In the spirit of algorithms for automata on infinite trees
([28]), we can use games to decide 4.

Theorem 13 The relation 4 is decidable over regular cost
functions of finite trees.

In particular, the uniform universality problem (whether
the function is bounded on the whole domain) is decidable,
since it amounts to test whether f 4 0. This result was
already known from [8] for alternating tree hB-automata.

6 Cost monadic logic

In this section, we briefly state/recall the consequences
of our results in logical terms. Let us recall that monadic
second-order logic (monadic logic for short) is the exten-
sion of first-order logic with the ability to quantify over sets
(i.e., monadic relations). Formally monadic formulae use
first-order variables (x, y, . . . , ranging over elements of the
structure), and monadic variables (X,Y, . . . ranging over
sets of elements), existential and universal quantification
over both first-order and monadic variables, boolean con-
nectives, the membership predicate (x ∈ X), as well as all
the predicates in the relational structure.

In cost monadic logic, one uses a single extra variable N
of a new kind, called the bound variable, which ranges over
non-negative integers. Cost monadic logic is obtained from
monadic logic by allowing the extra predicate |X| ≤ N –
in which X is some monadic variable and N is the bound
variable – iff it appears positively in the formula (i.e., under
the scope of an even number of negations). The semantics
of |X| ≤ N is, as one may expect, to be satisfied if (the
valuation of)X has cardinality at most (the valuation of)N .
If we push negations to the leaves, one obtains the following
syntax:

φ ::= ∃x.φ | ∀x.φ | ∃X.φ | ∀X.φ
| φ ∨ φ | φ ∧ φ | x ∈ X | x 6∈ X
| R(x1, . . . , xr) | ¬R(x1, . . . , xr) | |X| ≤ N

in which x, x1, . . . , xr are first-order variables, X is a
monadic variable, and R is some predicate symbol of ar-
ity r.

Given a sentence φ of cost monadic logic (i.e., with N
as sole free variable), let us write S, n |= φ when the for-
mula φ holds over the relational structure S when the bound
variable N takes value n. From the positivity requirement
on the occurrences of the predicates |X| ≤ N , it is clear
that S, n |= φ implies S,m |= φ for all m ≥ n. We use
a sentences of cost monadic for defining values over struc-
tures as follows. Given a cost monadic sentence φ and a

relational structure S, one defines [[φ]](S) ∈ ω + 1 as fol-
lows:

[[φ]](S) = inf{n : S, n |= φ} .

Example 14 When representing a digraph as a struc-
ture, the elements are the vertices of the digraph, and
the predicate edge(x, y) expresses the existence of an
edge of source x and target y. The monadic for-
mula reach(x, y,X):

reach(x, y,X) ::= ∀Z.
(x ∈ Z ∧ ∀z, z′. ((z ∈ Z ∧ z′ ∈ X ∧ edge(z, z′))→ z′ ∈ Z))

→ y ∈ Z

describes the existence of a path in a (directed) graph from
vertex x to vertex y such that all vertices appearing in the
path, but the first one, belong to X . Indeed, it expresses
that every set Z containing x and closed under taking edges
ending in X , also contains y. Consider now the following
cost monadic sentence:

diameter ::= ∀x, y.∃X.|X| ≤ N ∧ reach(x, y,X).

It defines the diameter of a graph: the diameter of a graph
is the least n such that for all pair of states x, y, there exists
a set of size at most N allowing to reach y from x. Re-
mark that the formula produces value ω if the graph is not
strongly connected.

We are interested in using cost monadic logic for defin-
ing values over finite trees. In the case of trees over a ranked
alphabet A, the elements of the structure are the positions in
the tree, and there is a predicate a of arity r + 1 for each
letter a of rank r. The statement a(x, x1, . . . xr) holds if
the letter at position x is a, and its children are, from left to
right, x1, . . . , xr.

Over (finite or infinite) words as well as (finite or in-
finite) trees, the expressiveness of monadic logic coincide
with standard forms of automata [5, 6, 27, 23]. Those fun-
damental results are all established in the same way (cf.
[28]). In our case, we obtain the following result.

Theorem 15 A cost function over finite trees is regular if
and only if it is definable in cost monadic logic.

Proof From logic to automata. As in the case of monadic
logic, one shows that to each connector of the logic cor-
responds an operation under which regular cost functions
are closed. For instance, consider a cost monadic formula
φ∨ψ, then one easily shows that [[φ∨ψ]] = min([[φ]], [[ψ]]).
It follows that disjunction corresponds to the min opera-
tion over cost functions. Pushing further this relationship,
one gets that conjunction corresponds to the max operation,
monadic existential quantification (and also first-order ex-
istential quantification as a particular case) corresponds to

9

inf-projection, and universal quantification corresponds to
sup-projection. Concerning the constants, the only novelty
compared to standard monadic logic is the predicate |X| ≤
N . However, by definition, [[|X| ≤ N]] evaluates to the
cardinal of X . The corresponding cost function | · |B as-
sociates to each A-tree the number of positions labelled by
letters in B ⊆ A. This cost function is regular, using a slight
extension of Example 9.

From automata to logic. One writes a formula guessing
a run and computing its value, as usual.

Corollary 16 The relation 4 is decidable over cost
monadic definable functions over finite trees.

7 Conclusion

In this paper we have extended the theory of regular cost
functions to the case of finite trees, showing all equivalence,
closure and decidability results we could expect. The tech-
niques involved are game-theoretic (in a way similar to the
theory of languages of infinite trees), and require the use
of new notions such as history-determinism. A challeng-
ing continuation would be the extension of those results
to infinite trees. This would imply the decidability of the
Mostowski hierarchy by [9].

References

[1] P. A. Abdulla, P. Krcál, and W. Yi. R-automata. In CON-
CUR, pages 67–81. Springer, 2008.

[2] S. Bala. Regular language matching and other decidable
cases of the satisfiability problem for constraints between
regular open terms. In STACS, volume 2996 of Lecture Notes
in Computer Science, pages 596–607. Springer, 2004.

[3] A. Blumensath, M. Otto, and M. Weyer. Boundedness of
monadic second-order formulae over finite words. In 36th
ICALP, Lecture Notes in Computer Science, pages 67–78.
Springer, July 2009.

[4] M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In
LICS 06, pages 285–296, Aug. 2006.

[5] J. R. Büchi. Weak second-order arithmetic and finite au-
tomata. Z. Math. Logik Grundl. Math., 6:66–92, 1960.

[6] J. R. Büchi. On a decision method in restricted second order
arithmetic. In Proceedings of the International Congress on
Logic, Methodology and Philosophy of Science, pages 1–11.
Stanford Univ. Press, 1962.

[7] T. Colcombet. The theory of stabilisation monoids and reg-
ular cost functions. In 36th ICALP, number 5556 in Lecture
Notes in Computer Science, pages 139–150, Rhodos, July
2009. Springer.

[8] T. Colcombet and C. Löding. The nesting-depth of disjunc-
tive µ-calculus for tree languages and the limitedness prob-
lem. In CSL, number 5213 in Lecture Notes in Computer
Science, pages 416–430, Bertinoro, Sept. 2008. Springer.

[9] T. Colcombet and C. Löding. The non-deterministic
Mostowski hierarchy and distance-parity automata. In 35th
ICALP, number 5126 in Lecture Notes in Computer Science,
pages 398–409, Reykjavik, July 2008. Springer.

[10] L. C. Eggan. Transition graphs and the star-height of regular
events. Michigan Math. J., 10:385–397, 1963.

[11] Y. Gurevich and L. Harrington. Trees, automata and games.
pages 60–65, 1982.

[12] K. Hashiguchi. A decision procedure for the order of regular
events. Theoretical Computer Science, 8:69–72, 1979.

[13] K. Hashiguchi. Limitedness theorem on finite automata with
distance functions. J. Comput. Syst. Sci., 24(2):233–244,
1982.

[14] K. Hashiguchi. Regular languages of star height one. Infor-
mation and Control, 53(3):199–210, 1982.

[15] K. Hashiguchi. Representation theorems on regular lan-
guages. J. Comput. Syst. Sci., 27(1):101–115, 1983.

[16] K. Hashiguchi. Relative star height, star height and finite
automata with distance functions. In Formal Properties of
Finite Automata and Applications, pages 74–88, 1988.

[17] K. Hashiguchi. New upper bounds to the limitedness of dis-
tance automata. Theor. Comput. Sci., 233(1–2):19–32, 2000.

[18] D. Kirsten. Desert automata and the finite substitution prob-
lem. In STACS, volume 2996 of Lecture Notes in Computer
Science, pages 305–316. Springer, 2004.

[19] D. Kirsten. Distance desert automata and the star height
problem. RAIRO, 3(39):455–509, 2005.

[20] S. C. Kleene. Representation of events in nerve nets and
finite automata. In C. E. Shannon and J. McCarthy, editors,
Automata Studies, pages 3–42. Princeton University Press,
Princeton, New Jersey, 1956.

[21] H. Leung and V. Podolskiy. The limitedness problem on dis-
tance automata: Hashiguchi’s method revisited. Theoretical
Computer Science, 310(1-3):147–158, 2004.

[22] D. Muller and P. E. Schupp. Alternating automata on infi-
nite objects, determinacy and Rabin’s theorem. In M. Nivat
and D. Perrin, editors, Automata on Infinite Words, volume
192 of Lecture Notes in Computer Science, pages 100–107.
Springer, 1985.

[23] M. O. Rabin. Decidability of second-order theories and au-
tomata on infinite trees. Trans. Amer. Math. soc., 141:1–35,
1969.

[24] M. O. Rabin and D. Scott. Finite automata and their decision
problems. IBM J. Res. and Develop., 3:114–125, Apr. 1959.

[25] I. Simon. Limited subsets of a free monoid. In FOCS, pages
143–150. IEEE, 1978.

[26] I. Simon. On semigroups of matrices over the tropical semir-
ing. ITA, 28(3-4):277–294, 1994.

[27] J. W. Thatcher and J. B. Wright. Generalized automata the-
ory with an appliucation to a decision problem in second-
order logic. Math. Syst. Theory, 2:57–81, 1968.

[28] W. Thomas. Languages, automata and logic. In G. Rozen-
berg and A. Salomaa, editors, Handbook of language theory,
volume 3, chapter 7, pages 389–455. Springer Verlag, 1997.

[29] A. Weber. Finite-valued distance automata. Theoretical
Computer Science, 134(1):225–251, 1994.

10

p q r

i : ε
r, cr : r

[0]:[0]
[ω]:[ω]

i : ε

i:ic
r:r

[0]:[0]
[ω]:[ω]

cr : ε

i, r, cr : ε

[0]:[0]
[ω]:[0]

Figure 1. B-automaton AB
cost1

S
accepting cost1

S

Appendix

Proof of Lemma 4

We start by showing that the function costΓ
S can be ac-

cepted by an id -history-deterministic B-automaton. The
construction that we present is such that the B-automaton
uses the same set Γ of counters. Such an automaton
AB

costΓ
S

reads sequences over the word alphabet on which
the S-objective is defined, namely the non-final letters
{ε, i, r, cr}Γ and the final letters {[0], [ω]} such that for
each word w over this alphabet we have [[AB

costΓ
S
]](w) =

costΓ
S(w). In fact, it would be sufficient if [[AB

costΓ
S
]] ≈

costΓ
S but for our construction even equality holds.

For a single counter the corresponding B-automaton is
very similar to the automaton from Example 2. It is depicted
in Figure 1.

Before showing that the automaton is history-
deterministic let us show that it indeed accepts costΓ

S .
For this purpose, let u[x] be an input word. If x = 0, then
cost1

S(u[x]) = 0. A corresponding run of AB
cost1

S
that has

cost 0 always outputs ε for input i (moving from q to p
or from p to p). The produced output sequence is of the
form û[0] where û does not contain any check position.
Therefore sup(C(û) ∪ {0}) = 0.

Now consider the more interesting case that x = ω and
thus cost1

S(u[x]) = inf C(u). Each run of AB
cost1

S
that does

not end in the state r outputs [ω] at the end and therefore has
cost ω. Thus, if u does not contain any check position, then
all runs of AB

cost1
S

have cost ω which is the correct value
because inf ∅ = ω.

Now assume that u does contain check positions. Con-
sider such a check position and the block of increments be-
fore, i.e., the decomposition of u as either u1ri · · · icru2 or
i · · · icru2 if there is no reset before the check position under
consideration.

For each such check position there is a run of AB
cost1

S

that outputs ε on all increments in u1 and is in state q with

counter value 0 directly before the block of increments (ei-
ther by moving from q to q or p to q on the reset before
the block or because the block starts at the beginning of the
word). Now the automaton outputs ic on each input i and
moves to state r when cr is reached. The cost of this run ex-
actly corresponds to the number of increments in the block
before the check position under consideration. Note that
these are all the runs that end up in state r. Thus the cost of
u[x] is the minimum over the costs of these runs, which is
the same value as provided by cost1

S = inf C(u).
This shows that the automaton indeed computes cost1

S .
It remains to show that it is history deterministic. We fix n
and define a translation strategy δn (similar to the one from
Example 2): Note that the only nondeterminism to resolve
is on input i in state q. The strategy is to remain in state
q until the counter value of the automaton has reached n.
If another input i follows, then AB

cost1
S

takes the transition
from q to p.

Now let u[x] be such that cost1
S(u[x]) ≤ n. If x = 0,

then the final output of the automaton is [0], and since the
strategy δn ensures that the counter never exceeds n, we ob-
tain that the cost of the run defined by δn is at most n. If
x = ω, then inf C(u) ≤ n. In particular, this means that
there is a check position in u such that the block of incre-
ments before this position has length at most n. Consider
the first check position with this property. The run provided
by δn is in state q with counter value 0 directly before the
block of increments is processed. Then it remains in q, and
since the number of increments is no more than n, it moves
to r when the check position is reached. The cost of this run
is at most n.

Having settled the case of one counter, we observe that
we can generalize the construction to several counters by
taking one copy of AB

cost1
S

for each counter and then taking
the product of all these copies, where each copy processes
the input counter instructions of the counter it is dealing
with. The only thing that remains is to specify the output on
the final letters. Note that the only interesting case is when
some copies have reached state r but other copies are still
in p or q at the end of the word, and the final letter is [ω]. In
fact, as soon as one of the copies has reached state r, then a
small value of some counter has been checked, witnessing a
small value of the input. Accordingly, we define the output
for the final letters [ω] to be [0] as soon as one of the copies
of the automaton has reached reached state r.

The product automaton has size 3|Γ|, which is more than
the claimed 2|Γ| + 1 states. The reason is that in the above
construction we can merge all the states containing at least
one copy of the state r. This is safe since as soon such a
state is reached the final letter of the computation will be [0]
independently of the remaining input. Furthermore, one se-
quence of increments has been tested, and when applying δn
this means a small sequence of increments has been found

11

p q

ic:i
r:r

r, ic : cr

[0]:[0]
[ω]:[ω]

ic, r : ε

[0]:[ω]
[ω]:[ω]

Figure 2. S-automaton AS
cost1

B
accepting cost1

B

in the input.

We now show the second part of the claim, namely that
costΓ

B can be accepted by an S-automaton. The idea is sim-
ilar to the one presented above. In fact, the automaton is
even simpler. It is shown in Figure 2 for a single counter.

Basically, the counter value ofAS
cost1

B
corresponds to the

counter value of the input sequence as long as the run is in
state p. ThenAS

cost1
B

can move at any time from p to q, thus
producing a run with a single check whose cost is at most
the cost of the input sequence. For an input word u[ω] we
have cost1

B(u[ω]) = ω. This can be achieved by AS
cost1

B

by simply not moving to state q and thus producing a run
without check positions. For u[0], following the explana-
tion above, we have runs of cost m for all counter values
m that occur in u. ThereforeAS

cost1
B

computes the maximal
counter value that occurs in u.

The translation strategy δn stays in p as long as the
counter value is below n and then moves to q. One can
easily check that this strategy has the desired property.

For the generalization to several counters we again take
the product of |Γ| many copies of AS

cost1
B

. The final output
in the product always translates [ω] to [ω], and translates [0]
to [ω] if at least one of the copies has reached state q: If one
copy was able to find a big sequence of increments, then this
is sufficient for proving that the input has a big value.

Proof of Lemma 5

Consider the set Γ = {1, . . . , k} of counters. The non-
final letters for the B-condition are {ic, r, ε}Γ. For simplic-
ity, we denote the operations on counter j by icj and rj .

The hB-automatonA that we construct uses the same set
of counters with the natural ordering 1 < · · · < k. For
better readability we denote the operations on the hierarchi-
cal counters, i.e., letters in H{1,...,k} ⊆ {ε, ic, r}{1,...,k}, by
capital letters, i.e., by

ICj for j ∈ {0, . . . , k} and Rj for j ∈ {1, . . . , k}:

• Rj for j ∈ {0, . . . , k} maps every counter from 1 to j
to r, and every counter from j+1 to k to ε. Remark that
the case j = 0 corresponds to the case of all counters
sent to ε.

• ICj for j ∈ {1, . . . , k} maps every counter from 1
to j − 1 to r, the counter j to ic, and every counter
from j + 1 to k to ε.

The construction of A uses the idea of latest appearance
record known from the translation between acceptance con-
dition for ω-automata (see, e.g., [28]).

• The states of A are permutations over the set of coun-
ters {1, . . . , k}. The initial state is an arbitrary permu-
tation, e.g., the identity 〈1, . . . , k〉.

• The final transitions map [x] to [x].

• To define the non-final transitions, consider a state
〈j1, . . . , jk〉 and an input letter a from {ic, r, ε}Γ. Let
h be the maximal index such that a(jh) 6= ε, i.e., the
position of the rightmost counter in the permutation
that is manipulated by a. (If no such h exists, we out-
put ε and leave the state unchanged.) We define the
transition

〈j1, . . . , jk〉
a:Ih−−→ 〈j1, . . . , jk〉

if a(jh) = ic, and

〈j1, . . . , jk〉
a:Rh−−−→ 〈jh, j1, . . . , jh−1, jh+1, . . . jk〉

if a(jh) = r.

Note that in the first case the permutation does not
change, while in the second case we move jh to the
front of the permutation.

We prove that [[A]] ≈α costΓ
B for α(N) = kNk by show-

ing the following claim: Let w ∈ {ic, r, ε}Γ and let u be the
output sequence produced by A for input w. Then

costΓ
hB(u) ≤ costΓ

B(w) ≤ k · costΓ
hB(u)k.

Assume that costΓ
B(w) = k ·Nk and pick a subsequence

v of w that contains a corresponding number of occurrences
of some increment icj and no rj . Consider the evolution of
the position of j in the permutation (the state of A). Be-
cause rj does not occur in v, j can only move to the right,
and this can happen at most k times. Hence, there must
be a subsequence of v containing at least Nk times icj on
which the position h of j in the permutation is stable. For
each occurrence of icj in this subsequence the automaton
outputs ICh or a bigger increment. Since the position of j is
stable, there is no output of a reset Rh or higher. A count-
ing argument (or an induction on k) yields that at least one

12

counter reaches value N , i.e., N ≤ costΓ
hB(u). We obtain

costΓ
B(w) ≤ k · costΓ

hB(u)k.
Now assume that costΓ

hB(u) = M and pick a subse-
quence u′ of u that contains M times some increment ICh
and no higher counter operation. Since no higher counter
operation occurs, the permutation is stable from position h
to the right. Let j be at position h in the permutation. Each
time ICh is output byA there must be icj in the correspond-
ing input letter of w. And since the position of j is stable in
the permutation, there is no rj occurring on this segment of
the input. Thus, costΓ

hB(u) ≤ costΓ
B(w).

Proof of Lemma 11 (closure of non-deterministic
automata)

The proofs follow the standard approach: the minimum
for B-automata, hB-automata as well as the maximum for
S-automata, are obtained by taking the disjoint union of the
two automata (and adding a new initial state for sticking to
the definitions), while the maximum for B-automata, as well
as the minimum for S-automata, are obtained by a product
construction that simulates the two original automata con-
currently. The inf-projections and sup-projections are ob-
tained by simply translating the letters in the transition. We
just formalize the constructions, the correctness proofs be-
ing very simple.

Let A = 〈Q,A, qin ,O , δ〉 and A′ = 〈Q′,A, q′in ,O ′, δ′〉
be two non-deterministic tree automata over the same
ranked alphabet A, which have objectives of same nature,
i.e., either a B-objective, or an S-objective.

Consider first the case of two S-automata.
Hence O = 〈{ε, ic, r}Γ, {[0], [ω]}, costΓ

B ,min〉 and
O ′ = 〈{ε, ic, r}Γ′

, {[0], [ω]}, costΓ′

B ,min〉.
Minimum of B-automata. Wlog, we assume that Γ = Γ′

(up to adding some useless counters to the automata when
required), and by consequence O = O ′. One constructs
a non-deterministic tree B-automaton B = 〈Q] Q′]
{q+

in},A, q
+
in ,O , θ〉 in which θ is defined by the transition

relation:

Θ = ∆ ∪∆′

∪ {(q+
in , a, (c1, p1), . . .) : (qin , a, (c1, p1), . . .) ∈ ∆}

∪ {(q+
in , a, (c1, p1), . . .) : (q′in , a, (c1, p1), . . .) ∈ ∆′}

and for each a of arity 0, each q ∈ Q, θ(p, a) = δ(p, a),
each p ∈ Q′, θ(p, a) = δ′(p, a), and θ(q+

in , a) =
[min(x, x′)] in which δ(qin , a) = [x] and δ(q′in , a) = [x′].
One easily checks that [[B]] = min([[A]], [[A′]]).
Minimum of hB-automata. The same above construction
applied to hB-automata yields an hB-automaton.
Maximum of B-automata. We construct a non-deterministic
tree B-automaton B = 〈Q×Q′,A, (qin , q′in),O ′′, θ〉 for the

maximum, in which O ′′ is

〈{ε, ic, r}Γ]Γ′
, {[0], [ω]}, costΓ]Γ′

B ,min〉 ,

the transition relation Θ is

Θ = {((p, p′), a, (c1c′1, (q1, q
′
1)), . . . , (crc′r, (qr, q

′
r))) :

(p, a, (c1, q1), . . . , (cr, qr)) ∈ ∆,
(p′, a, (c′1, q

′
1), . . . , (c′r, q

′
r)) ∈ ∆′}

where cc′ ∈ {ε, ic, r}Γ]Γ′
maps γ ∈ Γ to c(γ) and γ ∈ Γ′

to c′(γ′), and θ((p, p′), a) = [max(x, x′)] for δ(p, a) =
[x] and δ(p′, a) = [x′]. One easily checks that [[B]] =
max([[A]], [[A′]]).

Inf-projection of B-automata. We start from the non-
deterministic tree B-automaton A as above. Let h
be a translation. One constructs a tree B-automaton
〈Q,A, qin ,O , δh〉 in which δh is defined by ∆h over non-
leaf symbols:

∆h = {(p, h(a), (c1, q1), . . .) : (p, h(a), (c1, q1), . . .) ∈ ∆} .

and by δh(p, b) = [min{x : δ(p, a) = x, h(a) = b}].
Inf-projection of hB-automata. The above construction ap-
plied to an hB-automaton yields an hB-automaton.

Maximum of S-automata. This is the same construction as
for the minimum of B-automata. (Use S-objectives, and ex-
change min for max in the definition of the final transitions)

Minimum of S-automata. This is the same construction as
for the maximum of B-automata. (Use S-objectives, and ex-
change max for min in the definition of the final transitions)

Sup-projection of S-automata. As for the inf-projection of
B-automata (replace min by max in the definition of the
transition function of leaf symbols).

Proof of Theorem 12 (simulation and duality)

By Lemma 10 alternating tree S-, B-, and hB-automata
are effectively equivalent. Furthermore, hB-automata are
special cases of B-automata. Therefore it is sufficient for us
to show how to transform an alternating tree hB-automaton
into (1) a non-deterministic tree hB-automaton and (2) a
non-deterministic tree S-automaton. We give the proof of
(1) and then explain how to adapt it for (2).

Consider an alternating tree hB-automaton A =
〈Q,A, qin ,CosthB , δ〉. Given a tree t, the value [[A]](t) is
defined as the infimum over the values of all strategies σE

for Eva in A× t. According to Theorem 8 it is sufficient to
consider positional strategies. Now note that we can code
such a positional strategy by annotating t at each inner node

13

x with all the tuples (p, c, q, n) such that (c, (q, xn)) is a
possible move from (p, x) according to σE, and similarly
the leave nodes with tuples (p, c) for the possible σE-moves
from (p, x). Denote this annotated tree by tσE . Below we
show how to construct a tree hB-automaton B such that
[[B]](tσE) ≈α value(σE) for some correction function α.
We obtain the desired automaton by applying the (inf, h)-
projection to B defined by the mapping h that removes the
strategy annotations.

The construction of B works as follows: Consider some
path τ through tσE . Since the domains of t and tσE are
equal, τ is also a path through t. Recall that σE is a set of
plays in the game A × t, and a play in A × t corresponds
to a path through t together with states and outputs of the
automaton. Denote the set of plays in σE in which the path
through t is τ by σE|τ .

We identify τ with its ending leaf node n1 · · ·nm.
The path τ together with the tree tσE induces a word
w(σE, τ) = (a0, n1) · · · (am−1, nm−1)am where aj =
tσE(n0 · · ·nj−1).

We define a cost function f over such words by as-
sociating to each word the supremum over the costs
of all σE-plays that stay on τ , i.e., f(w(σE, τ)) =
supπ∈σE|τ (value(π)). It is not very difficult to see that this
cost function is regular: The cost of a single play staying on
τ is computed by costΓ

B , since A is a B-automaton. We can
construct an S-automaton guessing a play and computing its
costΓ

B value (Lemma 4). By the semantics of S-automata
the cost of the word is the supremum over all costs of pos-
sible runs, where each run computes the cost of a play. This
shows that the cost function that we consider is regular and
therefore there exists a history-deterministic hB-automaton
D computing it (according to Theorem 3).

The automaton B is constructed by simulating D over
all branches of the tree: A transition of D is of the form
(p, (a, n), c, q), where a is a letter from the label alphabet
for tσE , and n is a direction in the tree. To define the tran-
sition function of B we let δB(p, a) be the disjunction of all
possible conjunctions of the form

i∧
n=1

(n, cn, qn)

where (p, (a, n), cn, qn) is a transition of D.
This construction results in a tree hB-automaton B. We

claim that the value that is computed by B on tσE is the
supremum over all values computed by D on paths through
tσE . This is the value of σE because

supτ [[D]](w(σE, τ))
= supτ supπ∈σE|τ {value(π)}
= value(σE)

To show this property we view the construction of B as
a composition ofD with a game as considered in Lemma 7:

The game G(tσE) is played over the nodes of tσE , and
Adam, starting from the root, can choose in each move a
successor of the current node (Eva has no choices). The
output is the label of the current node together with the di-
rection taken by Adam. The result of such a play is a word
of the form w(σE, τ). To define the objective of the game,
we let the cost of a play be the cost of w(σE, τ) as defined
above. The goal function for Eva is min.

Since Eva has no choices and therefore only a single
strategy, we obtain that value(G(tσE)) is the supremum
over the cost of all w(σE, τ), which is the value of σE as
explained above. Since D computes the cost function from
the objective of the game, we can apply Lemma 7 and ob-
tain that value(G(tσE)) ≈α′ value(D × G(tσE)) for some
α′.

We note further that D × G(tσE) is the same game as
B × tσE , and therefore B computes the value of σE on tσE ,
as desired.

This ends the proof of (1), the simulation of alternating
tree hB-automata by nondeterministic ones.

The proof of (2), the simulation of alternating tree hB-
automata by non-deterministic tree S-automata uses exactly
the same technique. The main difference is that we have to
use strategies σE for Eva in the dual game A× t. The cost
of a word w(σE, τ) is now the infimum over the cost of all
plays in σE|τ .

As before we construct a word automaton D computing
this cost function over the w(σE, τ), but this time it is a
history-deterministic S-automaton. Again we run it over all
branches of the tree. The resulting tree S-automaton com-
putes the infimum over all w(σE, τ) for all τ . Therefore,
we obtain the correct value for the strategy σE because its
value is value(σE) = infπ∈σE(value(π)).

Proof of Theorem 13 (decidability)

We show that we can decide f1 4 f2 for regular cost
functions over trees. The algorithm for deciding this prob-
lem works in a similar fashion as a standard algorithm for
deciding the inclusion L1 ⊆ L2 for regular languages of
infinite trees. For the latter problem one starts from an au-
tomaton for L1 and an automaton for the complement of
L2. Then one decides the emptiness of the intersection us-
ing games (see, e.g., [28]).

We use Theorem 12 to represent f1 by an S-automaton
A1, and f2 by a B-automaton A2, and then we also rely on
games, as explained in the following.

The games that we consider are similar to the cost games
defined in Section 4. Unfortunately, we need slightly more
general games to solve the decision problem. But we can
use the same techniques, in particular Lemma 7.

We want to decide f1 4 f2 for a tree S-automaton A1

computing f1 and a tree B-automaton A2 computing f2.

14

We have

f1 64 f2 ⇔ ∃n∀m∃t : f1(t) ≥ m and f2(t) ≤ n. (1)

To verify the property on the right hand side, it suffices
to find a number n and a family of trees (tj)j such that
f1(tj) ≥ j and f2(tj) ≤ n for all j. We do this by exhibit-
ing a family of strategies in a game that is derived from a
product automaton A of A1 and A2.

Let A1 = 〈Q1,A, q
1
in ,CostΓ1

S , δ1〉 and A2 =
〈Q2,A, q

2
in ,CostΓ2

B , δ2〉 and denote by ∆1 and ∆2 the re-
spective sets of inner node transitions.

In the following, we denote by SΓ1 the output alphabet
of A1, and by BΓ2 the output alphabet of A2.

We now apply a standard product construction toA1 and
A2. The output alphabet of the product is the product of the
two output alphabets. We are interested in the objectives of
A1 and A2 on this product alphabet. By abuse of notation
we define for a word u over SΓ1 × BΓ2

• costΓ1
S (u) = costΓ1

S (pr1(u)), where pr1(u) denotes
the projection of u to the SΓ1 components, and

• costΓ2
B (u) = costΓ2

B (pr2(u)), where pr2(u) denotes
the projection of u to the BΓ2 components.

The product A = A1 ⊗ A2 is the tuple A =
〈Q,A, qin ,O1,O2, δ〉 with the following components:

• Q = Q1 ×Q2

• qin = (q1
in , q

2
in)

• O1 = 〈SΓ1 × BΓ2 , costΓ1
S ,max〉

• O2 = 〈SΓ1 × BΓ2 , costΓ2
B ,min〉

• The transition function is defined by the set ∆ contain-
ing the inner transitions

((p, q), a, [(c1, d1), (p1, q1)], . . . [(ci, di), (pi, qi)])

for all (p, a, (c1, p1), . . . , (ci, pi)) ∈ ∆1 and
(q, a, (d1, q1), . . . , (di, qi)) ∈ ∆2.

Note thatA has two objectives and thus is not an automaton
in the strict sense. Nevertheless, we can adapt the definition
of the game A × t with the only difference that the game
now has two objectives inherited fromA. A strategy σE for
Eva in this game A × t has two values, one according to
O1 and one according to O2. Denote these two values by
value1(σE) and value2(σE).

Since in the product A the two automata A1 and A2

move independently, each strategy σE inA× t corresponds
to a pair of strategies σ1

E in A1 × t and σ2
E in A2 × t such

that

value1(σE) = value(σ1
E) and value2(σE) = value(σ2

E).

We now define a game GA fromA such that each strategy τE
in this game corresponds to a tree t and a strategy σE inA×
t. To verify (1), it will be sufficient to find a family (τ jE)j
of strategies in this game such that value1(τ jE) > j and
value2(τ jE) ≤ n for some n. The game GA corresponds to
the emptiness game known from automata on infinite trees
([28]).

Let GA = 〈Q, qin , η,O1,O2〉 where the control relation
η is defined as η(q) =

∨
a∈A δ(q, a). Note that in this def-

inition we have final and non-final moves from the same
state. This simplifies the definition and does not cause any
difficulties when treating such games. In fact, in Section 4
we never use the property that a position allows only final
or only non-final moves.

The difference to cost games as treated in Section 4 is
that we have two objectives, and that the game is not of
finite duration. The notion of strategy is adapted to this set-
ting without any problem: in particular strategies in general
form can contain infinite plays (i.e., infinite sequences of
non-final moves) as it is standard in the theory of infinite
games. To clearly distinguish strategies in GA and in A× t
we denote the strategies in GA by τE. A finite duration strat-
egy is one that does not contain an infinite play.

For finite duration strategies τE we define two values
value1(τE) and value2(τE) according to the two objectives,
as in Section 4.

The game GA corresponds to a game A × t, where the
positions of t are removed and the choice of the label t(x)
(used to define the control relation ofA× t) is given to Eva.
Hence, it is not surprising, that each finite duration strategy
τE in GA corresponds to a tree t and a strategy σE in A× t,
and vice versa.

Summarizing the above considerations, the following
lemma reformulates (1) in terms of strategies in GA.

Lemma 17 There exists a number n and a family (τ jE)j of
finite duration strategies for Eva in GA with value1(τ jE) ≥ j
and value2(τ jE) ≤ n for all j iff f1 64 f2.

To find such a family of strategies we transform GA into
a game with an ω-regular objective. Note that the strategy
τ jE has to increment all the counters from Γ1 at least j times
before checking them on each play if value1(τ jE) ≥ j is
satisfied. On the other hand, since we want value2(τ jE) ≤
n, all the counters from Γ2 have to be reset before they are
incremented more than n times. For growing j the length
of the plays of the strategy also has to grow to satisfy the
first condition. We solve this by computing one strategy in
an ω-regular game.

It turns out that the B-objective is very similar to a Streett
condition but the S-objective is difficult to capture using ω-
regular games. We tackle this problem by first transforming

15

the S-objective into a B-objective over Γ1 using the automa-
ton AB

cost
Γ1
S

from the proof of Lemma 4, and the construc-

tion from Lemma 7 for composing history-deterministic au-
tomata and games.

In fact, we consider the game

G̃A = AB
cost

Γ1
S

× GA

where AB
cost

Γ1
S

is only used to transform the output of GA
from the alphabet SΓ1 . (See Section 4 for the definition of
the product of an automaton with a game.)

That is, we dualize GA, thus turning O1 into a S-
objective. Then we take the product with AB

cost
Γ1
S

which

transforms O1 into a B-objective. Finally, we dualize the
resulting game again and obtain a game with two objectives
O ′1 and O2, where O2 is the same B-objective as in GA, and
O ′1 is a B-objective over Γ1.

Adapting the proof of Lemma 7 to this specific setting,
we can conclude that we can transfer strategies between G̃A
and GA while preserving the two values.

We can rewrite Lemma 17 as follows:

Lemma 18 There exists a number n and a family (τ jE)j of
finite duration strategies for Eva in G̃A with value1(τ jE) ≥ j
and value2(τ jE) ≤ n for all j iff f1 64 f2.

As announced earlier, we now view G̃A as an ω-regular
game. We use some standard notions and constructions
from the theory of regular games of infinite duration. The
reader who is not familiar with this theory is referred to
[28].

Basically, we are looking for a strategy σ that ensures
that all counters of Γ2 are either reset infinitely often or in-
cremented only finitely often, and furthermore that at least
one of the counters of Γ1 is incremented infinitely often and
reset only finitely often (note that we are working with a
B-condition over Γ1 now, where on each increment we also
check the counter). From such a strategy we can synthe-
size the desired family of finite duration strategies for Eva,
provided that at each point Eva can ensure to terminate the
game such that the values are not “spoiled” by the final let-
ters. This means that Eva has to ensure that she can always
reach positions of the game that produce ([ω], [0]) as final
letters.

Thus, in a first step we compute the set of all positions in
G̃A from which Eva can ensure to reach a position that al-
lows a final move with output ([ω], [0]). This can be done by
a simple construction (called attractor construction in [28]).
We remove all other positions from G̃A, obtaining G̃′A.

We now consider the following winning condition for
outputs of infinite plays in G̃′A: Eva wins an infinite play
if

1. at least one counter from Γ1 is incremented infinitely
often and reset only finitely often, and

2. all counters from Γ2 are incremented finitely often or
are reset infinitely often,

Additionally, Eva loses every finite play.
Using the standard terminology of infinite games, the

first condition is a Streett condition, and the second con-
dition is a Rabin condition (see, e.g., [28]). In any case it is
possible to formalize the conjunction of the two conditions
as a Muller condition.

Lemma 19 There exists a number n and a family (τ jE)j of
finite duration strategies for Eva in G̃A with value1(τ jE) ≥ j
and value2(τ jE) ≤ n for all j iff Eva has a winning strategy
in the Muller game G̃′A.

Proof We first show how to construct (τ jE)j from a winning
strategy σ in the Muller game G̃′A. A standard result from
the theory of infinite duration games says that if Eva has
a winning strategy in a Muller game, then she also has a
winning strategy using finite memory. Let σ be such a finite
memory winning strategy for Eva.

Consider an infinite play in G̃′A according to σ. Because
σ uses finite memory, there cannot be a segment in the play

• that starts and ends in the same position,

• the memory of σ is the same at the start and the end of
the segment, and

• a counter from Γ2 is incremented in this segment but
not reset.

Otherwise there would be a play according to σ that loops
on this segment, and in this play the counter γ would be
incremented infinitely often but reset only finitely often. We
can conclude that all the counters from Γ2 are incremented
at most n times before being reset for some n that does
not depend on the play but only on the size of G̃′A and the
memory used by σ.

We now define τ jE: In τ jE we play according to σ. From
the above consideration we already know that all counters
from Γ2 stay below n. Furthermore, since at least one
counter from Γ1 is incremented infinitely often and reset
only finitely often, one of these counters eventually reaches
a value greater than j. Once this happens, we use the at-
tractor strategy of Eva to reach a final position that outputs
([ω], [0]).

For the other direction we assume that Eva does not have
a winning strategy in the Muller game G̃′A. By finite mem-
ory determinacy of Muller games Adam has a winning strat-
egy σ using finite memory.

Now assume that we have a family (τ jE)j of strategies
for Eva in G̃A with the desired properties. First note that all

16

plays according to τ jE end with final letter ([ω], [0]) (other-
wise value1(τ jE) = 0 or value2(τ jE) = ω). Therefore, all
plays of τ jE stay within the sets of positions of G̃′A.

Thus, we can consider the plays πj that are produced
when Eva plays according to τ jE and Adam plays according
to σ.

In πj we call a segment that starts and ends with the same
position in the game and the same memory content of σ a
looping segment. Assume that there is a looping segment in
πj that has the following two properties:

• Some counter from Γ1 is incremented and not reset.

• Each counter from Γ2 is reset or not incremented.

By repeating such a looping segment Eva could force a
play against σ in G̃′A that infinitely often increments some
counter from Γ1 without resetting it, and in which each
counter from Γ2 is either infinitely often reset or only
finitely often incremented. This contradicts the choice of
σ as a winning strategy for Adam.

Hence, on each looping segment in πj

• each counter from Γ1 is either reset or not incremented,
or

• some counter from Γ2 is incremented and not reset.

We refer to this property as (?)
Now pick a large j and some segment β in πj on which

some counter γ from Γ1 is incremented j times without be-
ing reset. Let k be the product of the size of G̃A and the size
of the memory of σ.

Pick a looping segment inside β that contains the largest
number of increments of γ among all looping segments in-
side β. Such a looping segment still contains at least j

k
increments of γ.

On this looping segment some counter ζ1 from Γ2 is in-
cremented and not reset by (?). By the property of τ jE this
counter is incremented at most n times. Since we have cho-
sen j >> n very big, we can find a subsegment β1 of β that
still contains j1 = j

kn increments of γ and no increment of
ζ1. Again we find a looping subsegment of β1 with many
increments of γ, and a counter ζ2 from Γ2 that is incre-
mented and not reset on this subsegment. We continue this
construction ` = |Γ2| times, resulting in a segment that con-
tains j

(nk)`
increments of γ but no increment of any counter

from Γ2, contradicting (?).
Hence, the family (τ jE)j cannot exists if Adam has a win-

ning strategy in the Muller game G̃′A.

Combining Lemma 19 and Lemma 18 we obtain an al-
gorithm for solving the problem f1 4 f2: We construct the
Muller game G̃′A and decide if Eva has a winning strategy
in this game.

17

