
Two-Way Cost Automata and Cost Logics over Infinite Trees ∗

Achim Blumensath †

TU Darmstadt
blumensath@mathematik.tu-

darmstadt.de

Thomas Colcombet
Université Paris Diderot

thomas.colcombet@liafa.univ-paris-
diderot.fr

Denis Kuperberg
University of Warsaw

denis.kuperberg@gmail.com

Paweł Parys ‡

University of Warsaw
parys@mimuw.edu.pl

Michael Vanden Boom
University of Oxford

michael.vandenboom@cs.ox.ac.uk

Abstract
Regular cost functions provide a quantitative extension of regular
languages that retains most of their important properties, such as
expressive power and decidability, at least over finite and infinite
words and over finite trees. Much less is known over infinite trees.

We consider cost functions over infinite trees defined by an
extension of weak monadic second-order logic with a new fixed-
point-like operator. We show this logic to be decidable, improving
previously known decidability results for cost logics over infinite
trees. The proof relies on an equivalence with a form of automata
with counters called quasi-weak cost automata, as well as results
about converting two-way alternating cost automata to one-way
alternating cost automata.

Categories and Subject Descriptors Theory of computation [Au-
tomata over infinite objects]

1. Introduction
Boundedness is a central notion arising in both mathematics and
computer science. Indeed, being able to determine the existence
of bounds is an important form of quantitative reasoning in many
contexts, ranging from verification to model theory.

Consider the following boundedness questions:

• Given a finite state automaton with some costly transitions,
is there a bound n such that any finite word accepted by the
automaton has an accepting run which takes these costly edges
at most n times?

∗ The research leading to these results has received funding from the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no259454 and the project ANR 2010 BLAN 0202 02 FREC.
†Work partially supported by DFG grant BL 1127/2-1.
‡Work supported by the fellowship of the Foundation for Polish Science,
during the author’s post-doc stay at Université Paris Diderot.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603104

• Given some regular language L of finite words, is there a bound
n such that L∗ (consisting of any finite concatenation of words
from L) is equal to L0 ∪ L1 ∪ · · · ∪ Ln?
• Given a monadic second-order formula ϕ(X,x) positive in X ,

is there a bound n such that the least fixed point of ϕ over finite
words is always reached within n iterations?

We could add to this list many other questions like the star height
problem from language theory [1–4], the boundedness problem
for fixed points of monadic second-order formulae in model the-
ory [5, 6], the bounded repair problem in database theory [7], and
the resource bounded reachability problem in verification [8]. We
could also consider these problems over different classes of struc-
tures (like finite trees or infinite words). The theory of regular cost
functions introduced in [9] (and developed in subsequent papers) is
a powerful extension of the theory of regular languages that enables
all of these boundedness questions to be decided in a uniform way.

In the framework of cost functions, the notion of a language
is extended to the richer notion of a function from structures (like
words or trees) to N ∪ {∞}. The central decidability question is
whether a function is bounded by some n ∈ N over its domain (or
a regular subset of its domain). By identifying a language with its
characteristic function mapping structures in the language to 0 and
everything else to∞, these boundedness questions subsume clas-
sical language decision problems like universality and emptiness.

Like regular languages, these regular cost functions can be de-
scribed using a number of different formalisms. One way to define
these regular cost functions is using cost monadic logic, an exten-
sion of monadic second-order logic with an operator |X| ≤ N
which enables some limited reasoning about the cardinality of sets
(enough to distinguish notions of “large” and “small” for the pur-
poses of boundedness). These regular cost functions can also be
defined in terms of cost automata, which are traditional automata
enriched with a finite set of counters that can be incremented, reset,
or left unchanged on each transition, and are used to assign a value
from N ∪ {∞} to each input.

But the connections with regular languages do not end there.
Since the works of Rabin, Scott, and Büchi [10–12], there have not
been many attempts to extend the expressive power of the associ-
ated formalisms beyond regular languages, while at the same time
keeping most of their good properties – closure, decidability, and
the equivalent presentations in terms of regular expressions, alge-
bra, automata, and logic. To the best of our knowledge, the theory
of regular cost functions is the only extension that achieves faithful
extensions of classical results (in terms of closure, decidability, and

equivalent presentations) over finite words [9, 13], infinite words
[14], and finite trees [15]. This unique position makes it an attrac-
tive framework, since it subsumes many classical results while al-
lowing further questions about boundedness to be answered.

Central open question
The central open question in the theory is whether it can also be
faithfully extended to infinite trees. In particular the question “can
we solve satisfiability of cost monadic logic over infinite trees?” –
the counterpart of the theorem of Rabin for monadic second-order
logic – is still open.

This paper can be seen as a step to close this gap, by showing
that there is a robust subclass of decidable cost functions over
infinite trees that have natural correspondences with cost logics and
cost automata.

Showing decidability of the full logic would help answer some
fundamental questions about language and automata theory that
have been open for decades. One of the motivating open problems
like this is the (nondeterministic) Mostowski index problem, or
parity index problem, which asks, given a regular language of
infinite trees and a set of priorities P , is there a nondeterministic
parity automaton that accepts this language using only priorities
P ? It turns out that this problem can be reduced to a boundedness
question for regular cost functions over infinite trees [16]. Being
able to solve this problem is useful, since the number of priorities
in a parity automaton (even more so than the number of states)
reflects how complicated the automaton is. Indeed, minimizing the
number of priorities is especially important in verification, because
model checking against a property described by a parity automaton
is essentially exponential in the number of priorities.

Thus, our desire to understand and solve cost logics over infinite
trees comes from a desire to close the gap in the theory of regular
cost functions, as well as a desire to solve some long-standing and
important problems in automata theory.

Weak and quasi-weak cost functions
In trying to solve the full logic, the weak fragment of cost monadic
logic (where second-order quantifiers range over finite sets only)
was a natural starting point for investigation. In [17], weak cost
monadic logic was shown to be decidable, and equivalent to a form
of weak alternating automata with counters.

However, weakness as defined for regular languages is not
canonical in the context of cost functions. Indeed, a new, richer
form of weakness emerged naturally in [18], in the form of quasi-
weak cost automata, that enjoy many of the good properties of
weak cost automata, but are strictly more expressive.

At the same time, there was a branch of work [5, 6] that sought
to study the boundedness problem for fixed point formulas, and it
turned out that the natural class of automata for problems like this
was the quasi-weak class.

Recently in [19], it was also shown that the quasi-weak class of
cost functions is strong enough to solve a special case of the weak
definability problem. The weak definability problem asks, given a
regular language of infinite trees, whether or not there is a weak au-
tomaton (equivalently, weak monadic second-order logic formula)
that captures the same language. Like the parity index problem,
the general version of this problem is open, and is of interest in
verification because the weakly definable languages constitute an
expressive but computationally feasible class of properties.

Thus, the quasi-weak class of cost functions emerged from a
variety of sources as an interesting subclass of regular cost func-
tions over infinite trees, with links to concrete decidable results and
natural logical questions. However, it was not known whether this
class corresponded to a natural extension of monadic second-order

logic. This paper addresses this question, and develops further tools
for understanding and working with cost logics over infinite trees.

Contributions
In this paper, we demonstrate that the class of quasi-weak cost
functions corresponds to natural cost logics.

• We characterize the class of quasi-weak cost functions in terms
of an extension of monadic second-order logic with a new form
of fixed points that allows only bounded unfolding.
• We describe an extension of the µ-calculus with this bounded

unfolding operator, and explain that the alternation-free frag-
ment of this logic also characterizes quasi-weak cost functions.
• We show how to translate a 2-way quasi-weak automaton (in

fact, any 2-way cost parity automaton) into an equivalent 1-
way automaton. This is the technical core of our contribution,
which is central to showing the equivalence of quasi-weak cost
automata and logic. Our translation differs from other similar
constructions in the context of regular languages in the sense
that the translation does not rely on a global positional deter-
minacy result in the underlying game, and instead uses only
local approximations of the two-way plays. Although the proof
is technical, we believe the ideas behind this construction may
be of independent interest, even outside of the theory of regular
cost functions.

Related work
This work builds on the classical results due to Rabin, Scott and
Büchi [10–12] about regularity for languages of words and trees,
both finite and infinite. It is also indebted to the work of Hashiguchi,
Leung, Simon and Kirsten [1, 3, 20, 21] on limitedness questions
(mainly in the context of solving the star height problem), and work
by Bojańczyk and Colcombet [22, 23] on MSO+U (another logic
related to boundedness).

Structure of this document
The article is organized as follows. In Section 2, we introduce
cost monadic logic, and its weak and quasi-weak fragments. We
then describe 2-way and 1-way alternating quasi-weak automata in
Section 3. In Section 4, our main results concerning equivalence
and decidability are given, and the essential ideas of the proof are
sketched. Finally, in Section 5 we mention some links with a cost
form of the µ-calculus that provide additional insight into the quasi-
weak class of cost functions.

Notation and conventions
A will denote a fixed finite alphabet. The set of finite and infinite
words over A is A∗ and Aω , respectively. The empty word is ε.
For simplicity we work primarily with infinite binary trees. Let
T = {0, 1}∗ be the unlabeled infinite binary tree. The set TA of
complete A-labeled binary trees consists of mappings t : T → A.
A branch π is a word {0, 1}ω .

2. Quasi-weak cost logic
2.1 Cost functions
We write N for the set of non-negative integers and N∞ for the
set N ∪ {∞} with the obvious ordering. Non-decreasing func-
tions N → N are called correction functions. We denote them
by α, β, Any such function is implicitly extended to N∞ by
α(∞) =∞.

Let E be a set and FE the set of functions E → N∞. For
f, g ∈ FE and a correction function α, we write f 4α g if
f ≤ α◦g (or if we are comparing single values n,m ∈ N, n 4α m

if n ≤ α(m)). We write f ≈α g if f 4α g and g 4α f . Finally,
f ≈ g (respectively, f 4 g) if f ≈α g (respectively, f 4α g)
for some α. Note that f 4 g holds if, and only if, f is bounded
over every set X ⊆ E over which g is bounded. The idea is that
the boundedness relation ≈ does not pay attention to exact values,
but does preserve the existence of bounds over all subsets of the
domain. A cost function over E is an equivalence class of FE/≈.
In practice, a cost function (denoted f, g, . . .) will be represented
by one of its elements inFE . In this paper,E will usually be TA and
functions defined by logics and automata will always be considered
as cost functions, i.e., up to ≈.

We can identify a language L with its characteristic function
χL mapping structures in the language to 0 and everything else to
∞. Note that for languages K and L, K ⊆ L iff χL 4 χK , so
deciding cost function equivalence subsumes language inclusion
testing in the classical setting.

Given two mathematical expressions E(x̄), F (x̄) denoting ele-
ments of N∞ and depending on variables x̄ (ranging over an im-
plicit domain clear from the context), we write E 4x̄ F to specify
that λx̄.E 4 λx̄.F where λx̄.E denotes the function mapping x̄ to
E(x̄) ∈ N∞. The relation ≈x̄ is defined accordingly.

2.2 Cost monadic logic
Cost monadic second-order logic (CMSO) was introduced in [24]
as a quantitative extension of monadic second-order logic. As
usual, the logic can be defined over any relational structure, but we
restrict our attention to CMSO over trees. In addition to first-order
variables ranging over nodes of the tree and set variables ranging
over sets of nodes, CMSO uses a single additional variable N ,
called the bound variable, which ranges over N.

The atomic formulae in CMSO are those from MSO (the mem-
bership relation x ∈ X and relations a(x, x1, x2) asserting that
a ∈ A is the label at position x with children x1, x2 from left to
right), as well as a new predicate |X| ≤ N where X is any set
variable and N is the bound variable. Arbitrary CMSO formulae
are built inductively by applying boolean connectives and by quan-
tifying (existentially or universally) over first-order or set variables.
We require that any predicates of the form |X| ≤ N appear pos-
itively in the formula (i.e., within the scope of an even number of
negations).

If we fix a value n forN , the semantics of |X| ≤ N is what one
would expect: the predicate holds iff the value of X has cardinality
at most n. If, however, no value for N is specified then a sentence
ϕ in cost monadic logic defines a function [[ϕ]] : TA → N∞
by [[ϕ]](t) := inf {n : t, n |= ϕ}, where we write t, n |= ϕ if t
satisfies ϕ when all occurrences of N take value n. Notice that
in case ϕ is a pure MSO-sentence (not containing the predicates
|X| ≤ N), [[ϕ]](t) is 0, if t satisfies the sentence ϕ, and ∞
otherwise.

The weak variant of CMSO (denoted WCMSO) restricts the
second-order quantification to finite sets, and has been studied
in [17].

2.3 Bounded expansion and quasi-weak cost monadic logic.
In this paper, we introduce a new logic called quasi-weak cost
monadic logic, QWCMSO, which extends WCMSO by a bounded
expansion operator µN . This operator takes a function F mapping
sets of nodes to sets of nodes which is monotonic (i.e., X ⊆ Y
implies F (X) ⊆ F (Y)), and it computes F (N), where F (0) = ∅
and F (`+1) = F (F (`)). We denote this value as µNX.F (X) in
order to make the name of the variable over which the construction
is performed explicit.

To add this operator to WCMSO, we define the following new
bounded expansion construct

x ∈ µNZ.{y : ϕ(y, Z)} ,
where x, y are first order variables, Z is a set variable and ϕ(y, Z)
is a formula that uses Z positively, i.e., every predicate of the form
z ∈ Z appears below an even number of negations. This operator
binds the variables y and Z, while it leaves x free. We also require
that any such bounded expansion construct appears positively in the
formula. The semantics are as one would expect: {y : ϕ(y, Z)} is
a set which depends on Z, and is thus subject to the application of
µNZ. The variable N used here is the same bound variable used
in the predicates |X| ≤ N . As before, the semantics associate to a
sentence the least n which can be substituted for all occurrences of
N and make the sentence true.

Example 1. Let A = {a, b}. We use the operator µN to define
a formula counting the maximal number of consecutive a’s on a
branch starting at the root, where root(w) identifies the root of the
tree:

∃w
[
root(w) ∧
w ∈ µNX.

{
x : ∃yz[b(x, y, z) ∨

(a(x, y, z) ∧ y ∈ X ∧ z ∈ X)]
}]
.

This is equivalent (in the sense of the ≈ relation) to the CMSO
formula

∀X.[downclose(X) ∧ ((∀x ∈ X)a(x))→ |X| ≤ N] ,

where downclose(X) asserts that X is closed under the ances-
tor relation and a(x) is shorthand for ∃y, z.a(x, y, z).

3. Cost automata and games
In this section we introduce the model of automata used in this pa-
per: the alternating 1-way/2-way B-quasi-weak automata. We con-
sider classical parity automata over trees equipped with a finite set
of counters Γ that can be incremented ic, reset r, or left unchanged
ε (but whose values do no affect the flow of the automaton). Let
C := {ic, r, ε} be the alphabet of counter actions. Each counter
starts with value zero, and the value of a sequence of actions is
the supremum of the values achieved during this sequence. For in-
stance (ic)(ic)rε(ic)ε has value 2, ((ic)r)ω has value 1, and
(ic)r(ic)2r(ic)3r . . . has value ∞. The set ActΓ

P := CΓ × P
collects the counter actions for a finite set Γ of counters and some
finite set of priorities P . To an infinite sequence over ActΓ

P , we
assign the value ∞ if the maximum priority occurring infinitely
often in it is odd (i.e., if it does not satisfy the parity condition);
otherwise, the value is the supremum of the values achieved by the
counters (in case of several counters, we take the counter with the
maximal value).

Formally, an (alternating) two-way B-parity automaton over the
alphabet A is a tuple 〈Q,A, q0,Γ, P, δ〉 consisting of a finite set of
states Q, an initial state q0 ∈ Q, a finite set Γ of counters, a finite
set P of priorities, and a transition function

δ : Q× A→ B+({↑,↙,↘,	} ×ActΓ
P ×Q)

mapping a state and a letter to a positive boolean combination of
triples of the form (d, c, q). Such a triple encodes the instruction
to send the automaton to state q in direction d while performing
action c. The directions↙ and↘ move to the left or right child, ↑
moves to the parent, and 	 stays in place. We assume that δ(q, a)
is written in disjunctive normal form for all q and a. Without loss
of generality, we assume that the automaton never proceeds in
direction ↑ from the root of the tree.

Acceptance of an input tree t by a B-automaton A is defined in
terms of a game (A, t) between two players: Eve is in charge of

the disjunctive choices. She tries to minimize counter values and to
satisfy the parity condition. Adam, on the other hand, is in charge
of the conjunctive choices and tries to maximize counter values or
to sabotage the parity condition. As the transition function is given
in disjunctive normal form, each turn of the game consists of Eve
choosing a disjunct and Adam then selecting a single tuple (d, c, q)
from it. We assume that each disjunction is nonempty, and each
disjunct contains a tuple with direction other than ↑; in other words,
from every position there is some move (i.e., the automaton cannot
get stuck at the root).

A play of A on the tree t is a sequence

q0, (d1, c1, q1), (d2, c2, q2), . . .

compatible with t and δ, i.e., q0 is initial, and for all i ∈ N,
(di+1, ci+1, qi+1) appears in δ(qi, t(xi)) where xi is the node of
t after following the directions d1d2 . . . di starting from the root.
The value val(π) of a play π is the value of the sequence c1c2 . . .
as defined above. We will say that π is n-winning (for Eve) if
val(π) ≤ n.

A strategy for one of the players in the game (A, t) is a function
that returns the next choice given the history of the play. If this
function depends only on the current position in the game (rather
than the full history), then it is positional. Note that choosing a
strategy for Eve and a strategy for Adam fixes a play in (A, t). We
say that a play π is compatible with a strategy σ if there is some
strategy σ′ for the other player such that σ and σ′ together yield the
play π. A strategy for Eve is n-winning if every play compatible
with it is n-winning. We say that Eve n-wins the game if there is
some n-winning strategy for Eve. An automaton n-accepts a tree t
if Eve n-wins the game (A, t). We denote by [[A]] : TA → N∞ the
function given by [[A]](t) := inf {n : A n-accepts t} .

We will sometimes use automata that start from some position
other than the root. We will call such automata localized. For
localized automata, we use the notation [[A]]v(t) to specify the
node v the automaton starts at. We can also consider cost automata
with other well-known acceptance conditions. For instance, a B-
Büchi automaton is a B-parity automaton using priorities {1, 2}.
In this case, we often assume that priorities label states rather than
edges (always possible by adding intermediate states), and refer to
Büchi states (priority 2) and non-Büchi states (priority 1).

If every δ(q, a) uses only directions↙ and↘, then we call A
one-way. Moreover, if every δ(q, a) is of the form∨

i

(↙, ci, qi) ∧ (↘, c′i, q′i) ,

A is nondeterministic. For such a one-way nondeterministic au-
tomaton, we define a run to be the set of possible plays compatible
with some fixed strategy of Eve. Since the only choices of Adam
are in the branching, a run labels the entire binary tree with states,
and choosing a branch yields a unique play of the automaton. A run
is accepting if it is accepting on all branches, and the value assigned
to a run of a B-automaton is the supremum of the values across all
branches. For nondeterministic automata, the choices of Eve and
Adam in the game described above can be viewed as Eve picking
a transition (↙, ci, qi) ∧ (↘, c′i, q′i), and Adam choosing a direc-
tion (which uniquely determines which atom Adam picks from the
conjunction). Unless otherwise indicated, we assume automata to
be alternating.

Variants of weakness for cost automata
Weak alternating automata are Büchi automata with the restriction
that no cycle of the automaton visits both Büchi and non-Büchi
states (this is equivalent to the original definition in [25]). We
consider two variants of this classical notion of weakness for cost
automata. An alternating B-Büchi automaton is called

B-weak if in all cycles, either all states are Büchi, or no state is
Büchi,

B-quasi-weak if in all cycles that contain both a Büchi and a non-
Büchi state, there is a counter that is incremented and never
reset in this cycle.

The weakness property implies that every play in the game
associated with this automaton has to eventually stabilize, either
in a strongly connected component where all states are Büchi (so
the play is winning for Eve), or in a strongly connected component
where no state is Büchi (so the play is winning for Adam). In fact,
this stabilization occurs after at most |Q|-many changes of mode
between Büchi states and non-Büchi states (where Q is the set of
states of the automaton). These automata were studied in [17], and
have the same expressive power as WCMSO.

Similarly, the quasi-weakness property implies that any play
that does not stabilize after kn-changes of mode (for some constant
k depending on the automaton) has a counter with value greater
than n. Such plays cannot be n-winning for Eve, independent of
any other consideration. Quasi-weak automata were introduced in
[18]. They are strictly more expressive than weak automata (i.e.,
WCMSO), but not as expressive as general cost automata (and in
particular not as expressive as full CMSO).

Thus, the difference between these models is in the number
of allowed mode changes: unrestricted for B-Büchi automata;
bounded by some function of n for B-quasi-weak automata; and
bounded by some constant for B-weak automata.

4. Equivalences
4.1 The main theorem and the general approach
Our goal is to show the equivalence of the various models of quasi-
weak logics and automata we have introduced, as stated by the
following main theorem.

Theorem 2. Let f be a cost function over infinite trees. Then the
following statements are equivalent:

• f is recognizable by a 1-way B-quasi-weak automaton;
• f is recognizable by a 2-way B-quasi-weak automaton;
• f is definable in QWCMSO.

Moreover, the translations between these formalisms are effective.
We call such a cost function f a quasi-weak cost function.

Since f 4 g is decidable for functions f, g defined by 1-way
B-quasi-weak automata [18], we obtain the following decidability
result as a corollary.

Corollary 3. Given quasi-weak cost functions f and g over infinite
trees, it is decidable whether or not f 4 g.

We now describe our approach for proving Theorem 2. The
translation from B-quasi-weak automata to the logic is standard, so
we concentrate on the translation from QWCMSO to B-quasi-weak
automata, which goes via 2-way automata.

We use a well-known technique to enable automata to refer to
free set variables. Given t ∈ TA and sets of nodes E1, . . . , Ek, we
write (t, E1, . . . , Ek) for the tree over the alphabet A × {0, 1}k
obtained from t by labeling each node v by k bits of extra infor-
mation, the i-th bit being 1 if v ∈ Ei and 0 otherwise. First-order
variables are treated as singleton sets. Using this encoding, every
statement relating automata to logic can be used in a context with
free variables, so we can consider cost automataA that correspond
to formulae with free set variables X̄ . Given values Ē for these
variables, [[A]](t, Ē) denotes the evaluation of the automaton on
the tree (t, Ē).

As usual, translating formulae to automata amounts to showing
the closure of the automaton model under operations that simu-
late the constructions of the logic. For simulating disjunction and
conjunction, we must show closure under taking the minimum and
maximum (respectively) of the functions computed by B-quasi-
weak automata. This is obvious for alternating automata. B-quasi-
weak automata must also be provided for the atomic predicates. All
of this is standard.

There are three non-trivial constructs: weak existential quanti-
fiers, weak universal quantifiers, and bounded expansions. Essen-
tially, by adapting the proof from [17], one can show that 1-way
B-quasi-weak automata have the closure properties corresponding
to the weak quantifiers (it corresponds to the closure under weak
inf- and sup-projection of 1-way B-weak automata in [17]).

The natural way to deal with bounded expansion is to per-
form it on localized 2-way B-quasi-weak automata, so it remains
to show how to (i) translate a 1-way B-quasi-weak automaton into
a localized 2-way B-quasi-weak automaton (Section 4.3), (ii) con-
struct from this a localized 2-way B-quasi-weak automaton for the
bounded expansion (Section 4.2), and (iii) translate a (localized) 2-
way B-quasi-weak automaton into a 1-way B-quasi-weak automa-
ton (Section 4.4).

4.2 The bounded expansion operation on automata
The bounded expansion operator is applied to a formula ϕ(x, Y)
which is syntactically monotonic in Y . Testing if

z ∈ µNY.{x : ϕ(x, Y)}
can be viewed as a game which starts in node x = z with a given
value n for the number of iterations and that proceeds in turns as
follows:

• Eve chooses some set Y such that ϕ(x, Y) holds (if it is not
possible, she loses), then
• Adam chooses some element x ∈ Y (if it is not possible, he

loses), and the game proceeds to the next turn.

If the game exceeds n turns, Adam is declared the winner. It is
straightforward to check that Eve wins this game if and only if
z ∈ µNY.{x : ϕ(x, Y)} for N ≤ n.

We implement this idea by taking an automaton A equivalent
to ϕ(x, Y), and transforming it into a new automaton that simu-
lates the game. For A we take a localized 2-way B-quasi-weak au-
tomaton with one free variable Y . We assume priorities label states.
This automaton n-accepts a tree (t, Y) starting from position x if
t, n |= ϕ(x, Y) (in fact, modulo ≈).

The construction outputs a new localized 2-way B-quasi-weak
automaton B with no free variables, which n-accepts a tree t from
position x iff Eve wins the above game from initial position x. This
new automaton B has the same states, the same initial state, the
same priority function, and the same counters asA, along with one
additional counter, say, γ. The transition function δB is defined for
all states p and all letters a as:

δB(p, a) = δA(p, (a, 0)) ∨ [δA(p, (a, 1)) ∧ (, Iγ , q0)] ,

where Iγ resets all counters of A and increments the counter
γ. This transition function expresses that Eve is required to say
whether she uses the assumption that the current a-labelled posi-
tion, say y, belongs to the set Y . If she assumes it does not, she can
take the transition allowed in A for nodes not in Y (the first dis-
junct in the transition function above). If she assumes y ∈ Y (the
second disjunct), Adam and Eve can continue to play in the cur-
rent round according to δA(p, (a, 1)) (intuitively, this corresponds
to Adam checking that t, n |= ϕ(x, Y) truly holds). Otherwise,
Adam can ask to use y as his choice in the game by using the tran-
sition (, Iγ , q0). This advances one turn in the game, so the new

counter is incremented, all counters ofA are reset, and the automa-
ton A is restarted in state q0 at y.

Theorem 4. For every localized 2-way quasi-weak automaton A
with one free set variable, there exists a localized 2-way quasi-weak
automaton B with no free variables such that

[[B]]z(t) ≈t,z [[z ∈ µNX.{x : [[A]]x(X) ≤ N}]](t) .

4.3 From 1-way to localized 2-way
Translating a 1-way automaton into an equivalent 2-way automaton
is straightforward. The subtlety here is that we need to transform
a 1-way automaton that has a first-order variable x as input, i.e.,
reading the word (t, {x}) into a localized 2-way automaton that
starts from node x, but reads only t.

Theorem 5. For every 1-way B-quasi-weak automatonA with one
free first-order variable, there exists a localized 2-way B-quasi-
weak automaton A` with no free variables such that

[[A]](t, {x}) ≈t,x [[A`]]x(t) .

The difficulty here is that the automaton A over the input
(t, {x}) may cross the node x several times (on different plays),
and make use of the fact that x is labeled. This is problematic
since a localized automaton cannot remember this position, so the
automaton would not know if/when it returns to x.

This would not be a problem if A were nondeterministic. Un-
fortunately,A is alternating, and making it nondeterministic would
leave the class of quasi-weak automata (this situation occurs al-
ready for weakly definable languages). There is a known solution
to this problem (due to Muller, Saoudi, and Schupp [25]), which
is to make the automaton A nondeterministic, but only on a finite
portion of the tree containing both the root and x. We are able to ac-
complish this using machinery already present in the proof for the
closure of 1-way cost automata under the weak existential quanti-
fier.

4.4 From 2-way to 1-way
We now turn to the key technical contribution of the paper: trans-
forming 2-way B-quasi-weak automata into their 1-way version.
We remark that it is trivial to transform a localized 2-way B-quasi-
weak automaton into an equivalent non-localized one, so the local-
ized property is irrelevant here.

Before proceeding, let us briefly review the construction from
Vardi [26] that transforms a 2-way parity automaton A into an
equivalent 1-way parity automaton B (this result can also be de-
duced from other constructions like the unfolding or iteration). The
behavior of A on t can be represented as a parity game. By posi-
tional determinacy of parity games, Eve has a positional winning
strategy if A accepts t. Moreover, for any position x ∈ T , loops
(i.e., finite paths from x to x) in this strategy can be summarized by
their starting state, ending state, and maximum priority. The 1-way
version guesses a labeling of t with a positional strategy together
with these loop summaries, and then runs a 1-way deterministic
parity automaton that checks that the labeling is valid and that ev-
ery play consistent with the strategy satisfies the parity condition.
The loop summaries are used to avoid backtracking.

The above approach fails in our case for two reasons. First,
there is no known result of positional or finite memory determinacy
for the games produced by 2-way B-quasi-weak automata (the re-
sults are known for acyclic arenas like those produced by 1-way
B-quasi-weak automata [18], but the arenas produced by 2-way au-
tomata may be cyclic). Second, the construction described above
naturally outputs a nondeterministic automaton, and hence the out-
put automaton cannot be quasi-weak (since quasi-weak and weak
nondeterministic automata are strictly less expressive than their al-

ternating versions). Thus, we have to use a less direct approach to
prove the following theorem.

Theorem 6. Given an alternating 2-way B-parity automaton A2,
there effectively exists an alternating 1-way B-parity automatonA1

such that

[[A2]](t) ≈t [[A1]](t) .

Moreover, if A2 is quasi-weak, then A1 is also quasi-weak.

The proof consists of four steps.
(1) We first describe a way to summarize the history of a play of

A2. The idea is that the summary of a play collapses loops (finite
paths that start and end at the same position in the tree) in this play
to a single move described by a global action. This global action
records the maximum priority, and (for each counter) whether the
counter was reset at least once, incremented at least once but not
reset, or left unchanged.

We then prove that Eve always has a summary-dependent strat-
egy, i.e., a strategy where Eve’s choices depend only on the sum-
mary of the history of the play rather than the full history of the
play.

Lemma 7. Assume that A2 n-accepts a tree t for some n ∈ N.
Then Eve has an α(n)-winning summary-dependent strategy, for α
independent of t.

This summary-dependent strategy is constructed from an arbitrary
n-winning strategy for Eve. In case there are several loops in the
original strategy with the same summary, the summary-dependent
strategy chooses the loop in which the counters had the greatest
value, and then continues from there. This ensures that the counter
values in the resulting summary-dependent strategy will not grow
too much (and in fact are bounded by α(n) for some correction
function α independent of the input tree). The parity condition will
also be satisfied, since replacing loops by other loops having the
same maximal priority, does not change whether or not the play is
winning. We give the details of this proof in the next subsection.

(2) We construct a new alternating 2-way automatonA1.5 which
never goes up (but may stay in the same node). It is not a B-
parity automaton because it uses a more complicated acceptance
condition, described below.

In general, the automaton A1.5 simulates the run of A2 on
some t. However, when A2 wants to go down from some node x,
Eve has to make some declarations about the two parts of the rest
of the game: the part of the game before returning to x (i.e., the part
in the subtree of t below x), and the part after returning to x (which
may visit the children of x again). For the first part she gives a set
D of constraints, that is of pairs (c, q) that assert that there is a play
compatible with her strategy which returns to x, finishing in state q
and performing global action c. To describe the second part, Eve
declares another set Cc,q of constraints for each pair (c, q) ∈ D.
This set Cc,q describes the different ways her plays could go up to
the parent of x if she returns to x in state q after performing global
action c. In other words, Eve is declaring relevant information about
loops and upward moves, to help us simulate the operation of A2

without actually moving upwards in t.
Indeed, after Eve makes these declarations, Adam can decide

to verify either the part after a loop (in which case he stays in the
same node) or he can decide to verify the assumptions about a loop
(in which case he moves down in the tree). Later, when A2 wants
to go up, we just check whether the current summary and state are
in the previously declared set of constraints, and immediately win
or lose in A1.5 based on this.

What is the winning condition ofA1.5? WheneverA1.5 directly
simulates A2, we output the same actions. When A1.5 follows
some declared loop with global action c, we just output c. The

sequence of actions output in this way should be bounded by a
number n. But this is not enough, since it does not bound the values
on paths of A2 which go up in the tree. To deal with such paths,
whenever A1.5 moves down, we also output Eve’s declarations
after coming back from a loop (based on the sets Cc,q for each
(c, q) ∈ D described above). We can view these declarations as
a graph. The graph connects the pairs responsible for returning to
a node x with the pairs describing moves up to the parent of x;
an edge in the graph is labeled by the global action of such a path
going up. At each moment when we go down in A1.5 we output a
slice of such a graph, and the winning condition requires that in the
whole graph constructed from such slices, each path should have
value bounded by n. As mentioned earlier, this ensures that the
value coming from upward paths in the plays consistent with Eve’s
strategy is also bounded.

Notice that in this construction, Eve must make the same dec-
larations after coming up from two loops that have the same sum-
mary. Thus, to show thatA2 andA1.5 are equivalent, it is important
that Eve has a summary-dependent strategy in A2, as obtained in
point (1).

(3) To replace our winning condition by a B-parity condition,
we form a product ofA1.5 with an automaton recognizing the win-
ning condition of A1.5. Usually, such a construction would use a
deterministic automaton. Unfortunately, cost automata cannot al-
ways be determinized [24] so this is not possible. However, ev-
ery cost automaton can be made “history-deterministic”, which is
enough to ensure that it can be run on every branch of the game tree
of A1.5 without causing conflicts. We refer the interested reader to
[24].

(4) Finally, we eliminate from A1.5 moves using the 	 direc-
tion. For each state q, letter a, and goal set G of downward moves,
we consider a local game G(q, a,G) describing the local (di-
rection) moves that are possible before moving downwards. Down-
ward moves are terminal positions in the game: they are winning if
they are in the goal setG, and losing otherwise. It can be shown that
it is decidable whether Eve wins such a game. The idea is to trans-
form this B-parity game into a game with a Streett winning condi-
tion, and solve the resulting Streett game using standard methods
(see [27] for more details). The desired 1-way automaton A1 has
the same input alphabet, set of states, set of counters, and initial
state as A1.5. For a state q and input letter a, its transition function
is defined as follows: Eve chooses a goal set G such that she wins
in G(q, a,G); then Adam chooses any transition (d, c, q′) ∈ G and
performs it.

Combining steps (1)–(4), we obtain an alternating 1-way B-
parity automaton A1 that is equivalent to the original alternating
2-way B-parity automaton A2 (up to ≈). A closer examination of
the construction shows that quasi-weakness is preserved.

4.5 Summary-dependent strategies (Proof of Lemma 7)
As mentioned earlier, it is an open problem whether in each B-
parity game that is n-winning for Eve, she has a finite memory
strategy that is α(n)-winning, for some correction function α that
is independent of the size of the game. In this section, we seek to
prove a weaker property, saying that there exists a strategy which
depends only on a summary of the play (Lemma 7).

Let A2 = 〈Q,A, q0,Γ, δ〉 be a 2-way B-parity automaton. The
transition function δ has type

Q× A→ B+({↑,↙,↘,	} ×Act ×Q) .

The set of actions Act gathers counter actions and parity ranks:
Act = C × {i, i + 1, . . . , j}, where C = {ic, ε, r}Γ and i ≤
j are natural numbers. For simplicity, we will assume that the
automaton A2 satisfies the following conditions.

• We assume that the counter actions are hierarchical, which
means that when some counter is incremented or reset, then
simultaneously all counters with higher numbers are reset, i.e.,
every action is of the form

(ε, . . . , ε, r, . . . , r) or (ε, . . . , ε, ic, r, . . . , r) .

It is known that every B-parity automaton can be converted into
an equivalent one using only hierarchical actions [24].
• We assume that our alphabet is a product A = A′×{0, 1}, and

that each input tree t has the root marked by 1 in the second
coordinate; additionally we assume that A2 never tries to go in
the ↑ direction from the root of the tree. This assumption does
not decrease the generality of the result.
• We assume that the states in A2 can be partitioned as follows.

d-states q ∈ Qd for d ∈ {↑,↙,↘} are such that for all
a ∈ A, δ(q, a) is a single transition performing action ε in
direction d.

Universal states q ∈ Q∧ are such that for all a, δ(q, a)
is a conjunction of transitions staying in the same node
(direction).

Existential states q ∈ Q∨ are such that for all a, δ(q, a)
is a disjunction of transitions staying in the same node
(direction).

Moreover, we assume that in the game (A2, t) (for each tree t),
there is some move possible from each position, and between
each pair of positions there is at most one move. It is always
possible to achieve this normal form, by using additional inter-
mediate states.

We are now ready to analyze the operation of A2. The set of
actions Act in the transition function is naturally equipped with a
product operation, describing the global action of a sequence of
actions. This product is defined component-wise: on the part from
{i, i+ 1, . . . , j}, it corresponds to the maximum of the priorities,
and on the part from {ic, ε, r}, it corresponds to the maximum
according to the order ε ≤ ic ≤ r. Therefore, if c and c′

are actions in Act , we can talk about the resulting action cc′.
We use the symbol ε also to denote the neutral element of this
product, that is ((ε, . . . , ε), i). We define the value of a finite
sequence of counters as the maximum value of any counter in any
moment while executing this sequence of actions. Recall that the
value of an infinite sequence of actions takes into account also the
parity condition. When we have a path whose edges are labeled by
actions, we define the global action or the value of this path as the
global action or the value of the sequence of actions on this path.

Notice that the global action contains all pertinent information
about priorities, but loses some information about counter values,
namely the value of a path, since for instance icn is contracted
to ic. This means that we will have to be able to retrieve this
information in some way when doing such a contraction.

We must now define a summary of a play. Formally, let

q0, (d1, c1, q1), (d2, c2, q2), . . . , (dm, cm, qm)

be an initial fragment of a play in the game (A2, t). Let xi be the
node in the tree after following the directions d1d2 . . . di start-
ing from the root. The summary starts from q0. Then for i =
1, 2, . . . ,m we proceed as follows. If xi−1 is such that all xj for
j ≥ i are proper descendants of xi−1, then we simply append
(di, ci, qi) to the summary. Otherwise, let j ≥ i be the small-
est index for which xj = xi−1. Then to the summary we append
(x, cici+1 . . . cj , qj) (on the second coordinate we have the prod-
uct of the actions), and we continue generating the summary from
i := j+1. For example if d1 . . . d7 =↙↙↙↑↑	↙, the summary

is

q0, (↙, c1, q1), (x, c2c3c4c5, q5), (, c6, q6), (↙, c7, q7) .

Notice that in a summary we never use the ↑ direction.
A strategy (of Eve) is called summary-dependent if the choices

of Eve depend only on the summary of the history of the play.
We will show that it is enough to consider summary-dependent
strategies.

We are now ready to prove the following strengthening of
Lemma 7:

Assume that A2 n-accepts a tree t for some n ∈ N. Then
Eve has an (n+ 1)k-winning summary-dependent strategy,
where k is the number of hierarchical counters in A2.

Proof. Let t be an A-labeled binary tree, and σ an n-winning
strategy in the game (A2, t). Let tσ be the strategy tree describing
all plays compatible with σ. Each node of tσ is labeled by a position
in (A2, t), which is a pair: a node of t and a state. Recall that, due
to our normalization of A2, two consecutive positions of the game
determine the action of the move between these positions. To each
node x of tσ we assign a tuple vσ(x) = (n1, . . . , n|Γ|) of values of
the counters after performing the actions on the path from the root
of tσ to x. We will be comparing such tuples lexicographically.
For a summary η = q0, (d1, c1, q1), . . . , (dm, cm, qm) we define
node(η) to be the node of t reachable by following the directions
d1d2 . . . di starting from the root (where xcorresponds to staying
in the same node).

First, some summaries η = q0, (d1, c1, q1), . . . , (dm, cm, qm)
are assigned a node g(η) of tσ , labeled by (node(η), qm) This is
done by induction on m. If m = 0, as g(η) we just take the root of
tσ . Otherwise, let η′ := q0, (d1, c1, q1), . . . , (dm−1, cm−1, qm−1).
If g(η′) is not defined, we also leave g(η) undefined. Otherwise,
assume first that dm 6= x. If g(η′) has a child y labeled by
(node(η), qm) (by our normalization assumption, there is at most
one such child), we take g(η) := y. Otherwise, we leave g(η) un-
defined. The other possibility is that dm = x. Consider the set Y
of all descendants y of g(η′) which are labeled by (node(η), qm),
such that all nodes on the path from g(η′) to y, excluding g(η′)
and y, are labeled by proper descendants of node(η), and that the
path from g(η′) to y has global action cm. As g(η) we take a node
y ∈ Y such that vσ(y) = maxz∈Y vσ(z), where the max-operator
refers to the lexicographic order. If there are multiple nodes y ∈ Y
with maximal vσ(y), we can take any of them. If Y is empty, we
leave g(η) undefined. Observe that in both cases, g(η) (if defined)
is a descendant of g(η′), and the global action of the path from
g(η′) to g(η) is cm.

Next, we construct a summary-dependent strategy ρ. When the
history of the play has summary η, we simply look at the node g(η),
and we move in the same way as σ. Notice that g(η) is labeled by
our current position, so this move is legal. If g(η) is undefined,
we can move in any way; we will see below that when playing
according to ρ we will never reach such situation.

It remains to see that ρ is winning. Take any play π =
q0, (d1, c1, q1), (d2, c2, q2), . . . consistent with ρ. Let πi be the
prefix of π of length i, and let ηi be its summary. For each i, let yi
denote the child of g(ηi−1) such that the transition from g(ηi−1) to
yi is (di, ci, qi). Such a node exists (assuming that g(ηi−1) is de-
fined): recall that the position after πi−1 is the same as in g(ηi−1);
either it is a position of Eve and (di, ci, qi) is the move to the only
child of g(ηi−1), or it is a position of Adam and we have children
corresponding to all moves from this position.

Now, by induction on i > 0 we will show that g(ηi) is defined,
and that vσ(g(ηi)) ≥ vσ(yi). Let

q′0, (d
′
1, c
′
1, q
′
1), . . . , (d′m, c

′
m, q

′
m) := ηi ,

η′ := q′0, (d
′
1, c
′
1, q
′
1), . . . , (d′m−1, c

′
m−1, q

′
m−1) .

We have two possibilities. First assume that d′m 6= x. Then we
simply have ηi−1 = η′, and we see that g(ηi) = yi. The other
possibility is that d′m = x. Then η′ is a prefix of ηi−1, so g(ηi−1)
(and yi) is a descendant of g(η′), and the global action of path from
g(η′) to yi is c′m. This means that yi belongs to the set Y used to
define g(ηi). So g(ηi) is defined, and vσ(g(ηi)) ≥ vσ(yi).

Next, we observe the value of counter k. Consider k-tuples
vk(x) which are defined as vσ(x), but contain only the values of
the first k counters. Notice that vσ(x) ≤ vσ(y) implies vk(x) ≤
vk(y). If ci increments counter k, then all counters with smaller
numbers are not changed (recall that in A2 we only have hierar-
chical actions), so vk(g(ηi−1)) < vk(yi) ≤ vk(g(ηi)). And if the
k-th counter is not changed by ci, then all counters with smaller
numbers are unchanged as well, so vk(g(ηi−1)) = vk(yi) ≤
vk(g(ηi)). We have only (n + 1)k tuples with k values between
0 and n. This means that in π we cannot have a fragment where the
k-th counter is incremented more than (n + 1)k times and never
reset. Thus the value of the counter is always at most (n+ 1)k.

It remains to verify the parity condition. We can construct the
summary also for the infinite play π; it is an infinite sequence η =
q′0, (d

′
1, c
′
1, q
′
1), (d′2, c

′
2, q
′
2), Consider the (unique) sequence

j0, j1, j2, . . . such that ηji is the prefix of η of length i (in other
words, ji is the length of the prefix π that yields the summary ηji
of length i). Notice that the global action of the fragment of π
between the ji−1-th and ji-th step has global action c′i, and also
the path from g(ηji−1) to g(ηji) has global action ci. It follows
that the maximal priority appearing infinitely often in π is the same
as in the branch of tσ containing all g(ηji). All branches of tσ are
winning, so this priority is even.

5. The mu-calculus view of quasi-weakness
In this section, we look at quasi-weakness from the point of view of
the µ-calculus. This section is independent of the rest of the paper.
We assume the reader to have some familiarity with the µ-calculus
(see, e.g., [28]).

It is well-known that µ-calculus is equivalent to alternating au-
tomata. The simplicity of the corresponding translations implies
that many properties can be expressed equally well at the automa-
ton level and at the logic level. For instance, the structure of the ac-
ceptance condition of the automaton is tightly related to the nesting
structure of fixed points in µ-calculus formulae: least fixed points
correspond to odd priorities, and greatest fixed points to even prior-
ities. Moreover, the number of priorities in the automaton reflects
the nesting of µ and ν operators in the formula. As a special case
that we are particularly interested in, the alternation free fragment
of µ-calculus (see below) corresponds exactly to weak alternating
automata. We can extend some of these relationships to cost func-
tions.

Let us recall the definition of the µ-calculus. We assume an
infinite set of variablesX,Y, Z, . . . ranging over sets of nodes. The
semantics of a µ-calculus formula with free variables X̄ is given by
a monotonic function from tuples of sets indexed by X̄ to sets. The
following constructs are allowed. There are modal operators that
consist here of constant modalities a, for all letters a, and successor
modalities X(E,F). A modality of the first kind, evaluates to the
set of nodes carrying the letter a, while a modality of the second
kind returns, given sets of nodes E and F , the set of nodes such
that the left child is in E and the right child in F . We also have
boolean operators ∨, ∧, ¬ and fixed point operators. The least fixed

point µX.F (X, V̄) is the least set E such that E = F (E, V̄) and
the greatest fixed point νX.F (X, V̄) is the greatest such set. Every
µ-calculus formula with free variables X̄ evaluates to a mapping
from a tree t and a tuple of sets of nodes indexed by X̄ to a set of
nodes.

The µN -calculus extends µ-calculus in a way similar to CMSO,
meaning that the semantics of a formula is parametrized by some
non-negative integer n. So a µN -calculus formula n-evaluates to a
function. One adds the new construct µNX.ψ(X) which evaluates
to F (n)

n , assuming that ψ n-evaluates to Fn for all n (where F (n)

is defined as in Section 2.3).
Given a µN -calculus formulaψ without free variables, it defines

a function TA → N∞ by

[[ψ]](t) = inf {n : ψ n-evaluates to E with ε ∈ E} ,
where ε is the root of t.

Example 8. Let A := {a, b}. The formula

µNX.(b ∨ (a ∧ X(X,X))

computes the maximum number of consecutive a’s that occur on
some branch starting in the root (the same cost function as Exam-
ple 1). The idea is that we can start evaluating at the root. If the cur-
rent node is a-labelled, then both successors are forced to “loop”
back to X , and continue as before. Because the fixed point oper-
ator corresponding to X is a µN , we count these unfoldings. The
least number of unfoldings that are needed is exactly the maximum
number of consecutive a’s on some branch starting in the root.

Now consider the formula

µNX.νY.[(b ∧ X(Y, Y)) ∨ (a ∧ X(X,X))]

which computes the maximum number of a’s (not necessarily con-
secutive) that occur on some branch. As above, an a-labelled node
forces a loop back on X for both successors, and these unfoldings
are counted. However, when a b-labelled node is encountered the
successors loop back to Y . This fixed point variable Y corresponds
to a ν operator, so these unfoldings are not counted, and indeed can
be taken infinitely many times. Because the ν operator is nested
inside of µN , looping back on Y does not “reset” the count of the
number of unfoldings we have used for X , so this formula com-
putes the desired cost function.

Finally, the formula

µNX.νY.[(b ∧ (X(Y,>) ∨ X(>, Y))) ∨
(a ∧ (X(X,>) ∨ X(>, X)))]

computes the minimal number of a’s that occur on some branch
(> is an abbreviation for νZ.Z). This is similar to the previous
example, except that only a single branch is picked out during the
evaluation of the formula (intuitively, the branch with the minimum
number of a’s).

So far, we have described µN -calculus in its most general form,
which is equivalent to B-parity automata. However, we are inter-
ested in the quasi-weak form of such automata. The nice thing
about µ-calculus is that, again, quasi-weakness has a natural inter-
pretation. Renaming bound variables, we may ensure that no vari-
able is used in two distinct fixed points (µ, ν or µN) in a formula.
Then the scope of the variable is the set of nodes of the formula
(seen as a tree) that are below the fixed-point operator binding the
variable, and above some use of the variable. If the variable is in-
troduced with a µ (resp. ν or µN), we call it a µ-scope (resp. a
ν-scope or a µN -scope). A µN -calculus formula is

weak if no ν-scope intersects a µ-scope, and no µN -scope simul-
taneously intersects a µ-scope and a ν-scope,

quasi-weak if no ν-scope intersects a µ-scope.

Note that for µ-calculus formulae without µN operators, the two
definitions coincide. The classical equivalence between automata
and µ-calculus formulae carries over without surprise to cost func-
tions (the proofs are essentially the same).

Theorem 9. In terms of recognizing cost functions,

• B-parity automata are effectively equivalent to µN -formulae,
• B-weak automata are effectively equivalent to weak µN -

formulae,
• B-quasi-weak automata are effectively equivalent to quasi-

weak µN -formulae.

What is interesting about these notions is that the definition of
quasi-weakness is significantly simpler than the one of weakness.
Moreover, the definition for a quasi-weak µN -formula is the stan-
dard definition of the alternation-free fragment of the µ-calculus.
This supports the fact that, in the cost setting, quasi-weakness is
the correct counterpart to the notion of weakness from the classical
setting.

6. Conclusion
We have described some natural logics that correspond to the class
of quasi-weak cost functions over infinite trees, a robust and natu-
ral class of cost functions. Along the way, we have developed some
technical tools, like summary-dependent strategies and the conver-
sion of 2-way cost automata to 1-way cost automata.

Overall, the hope is that these results and tools may eventually
prove useful for solving full cost monadic logic over infinite trees,
and for solving challenging boundedness questions like the parity
index problem and weak definability problem.

References
[28] A. Arnold and D. Niwiński. Rudiments of µ-Calculus, volume 146 of

Studies in Logic and The Foundations of Computer Science. North-
Holland, 2001.

[7] M. Benedikt, G. Puppis, and C. Riveros. Regular repair of specifica-
tions. In LICS, pages 335–344. IEEE Computer Society, 2011. ISBN
978-0-7695-4412-0.

[6] A. Blumensath, M. Otto, and M. Weyer. Decidability Results for the
Boundedness Problem. Logical Methods in Computer Science. to
appear.

[5] A. Blumensath, M. Otto, and M. Weyer. Boundedness of Monadic
Second-Order Formulae over Finite Words. In Proc. 36th Int. Col-
loquium on Automata, Languages and Programming, ICALP, Part II,
LNCS 5556, pages 67–78, 2009.

[22] M. Bojańczyk. A bounding quantifier. In J. Marcinkowski and A. Tar-
lecki, editors, CSL, volume 3210 of LNCS, pages 41–55. Springer,
2004. ISBN 3-540-23024-6.

[23] M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In LICS,
pages 285–296. IEEE Computer Society, 2006.

[11] J. R. Büchi. Weak second-order arithmetic and finite automata.
Z. Math. Logik Grundlagen Math., 6:66–92, 1960.

[24] T. Colcombet. Regular cost functions over words, 2009. Manuscript
at http://www.liafa.jussieu.fr/~colcombe/.

[9] T. Colcombet. The theory of stabilisation monoids and regular cost
functions. In ICALP (2), volume 5556 of LNCS, pages 139–150.
Springer, 2009. ISBN 978-3-642-02929-5.

[13] T. Colcombet. Regular cost functions, part i: Logic and algebra over
words. Logical Methods in Computer Science, 9(3), 2013.

[4] T. Colcombet and C. Löding. The nesting-depth of disjunctive mu-
calculus. In CSL, volume 5213 of LNCS, pages 416–430. Springer,
2008. ISBN 978-3-540-87530-7.

[16] T. Colcombet and C. Löding. The non-deterministic Mostowski hier-
archy and distance-parity automata. In L. Aceto, I. Damgard, L. A.

Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,
editors, ICALP (2), volume 5126 of LNCS, pages 398–409. Springer,
2008. ISBN 978-3-540-70582-6.

[15] T. Colcombet and C. Löding. Regular cost functions
over finite trees. In LICS, pages 70–79. IEEE Com-
puter Society, 2010. ISBN 978-0-7695-4114-3. Online at
http://www.liafa.jussieu.fr/~colcombe/.

[19] T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom. De-
ciding the weak definability of büchi definable tree languages. In
S. R. D. Rocca, editor, CSL, volume 23 of LIPIcs, pages 215–230.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. ISBN 978-
3-939897-60-6.

[1] K. Hashiguchi. Limitedness theorem on finite automata with distance
functions. J. Comput. Syst. Sci., 24(2):233–244, 1982.

[2] K. Hashiguchi. Relative star height, star height and finite automata
with distance functions. In J.-É. Pin, editor, Formal Properties of
Finite Automata and Applications, volume 386 of LNCS, pages 74–
88. Springer, 1988. ISBN 3-540-51631-X.

[3] D. Kirsten. Distance desert automata and the star height problem. ITA,
39(3):455–509, 2005.

[18] D. Kuperberg and M. Vanden Boom. Quasi-weak cost automata: a
new variant of weakness. In S. Chakraborty and A. Kumar, edi-
tors, FSTTCS, volume 13 of LIPIcs, pages 66–77. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2011. ISBN 978-3-939897-34-7.
Online at http://www.liafa.jussieu.fr/~dkuperbe/.

[14] D. Kuperberg and M. Vanden Boom. On the expressive power of cost
logics over infinite words. In A. Czumaj, K. Mehlhorn, A. M. Pitts, and
R. Wattenhofer, editors, ICALP (2), volume 7392 of Lecture Notes in
Computer Science, pages 287–298. Springer, 2012. ISBN 978-3-642-
31584-8.

[8] M. Lang. Resource-bounded reachability on pushdown systems. Mas-
ter’s thesis, RWTH Aachen University, 2011.

[21] H. Leung. On the topological structure of a finitely generated semi-
group of matrices. Semigroup Forum, 37:273–287, 1988.

[25] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata. The
weak monadic theory of the tree, and its complexity. In L. Kott, editor,
ICALP, volume 226 of LNCS, pages 275–283. Springer, 1986. ISBN
3-540-16761-7.

[12] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969. ISSN 0002-
9947.

[10] M. O. Rabin and D. Scott. Finite automata and their decision prob-
lems. IBM J. Res. Dev., 3(2):114–125, Apr. 1959. ISSN 0018-8646. .
URL http://dx.doi.org/10.1147/rd.32.0114.

[20] I. Simon. Limited subsets of a free monoid. In FOCS, pages 143–150.
IEEE, 1978.

[27] W. Thomas. Languages, automata, and logic. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 389–455. Springer, 1997.

[17] M. Vanden Boom. Weak cost monadic logic over infinite trees. In
F. Murlak and P. Sankowski, editors, MFCS, volume 6907 of LNCS,
pages 580–591. Springer, 2011. ISBN 978-3-642-22992-3.

[26] M. Y. Vardi. Reasoning about the past with two-way automata. In
K. G. Larsen, S. Skyum, and G. Winskel, editors, ICALP, volume 1443
of Lecture Notes in Computer Science, pages 628–641. Springer, 1998.
ISBN 3-540-64781-3.

