
Logic and regular cost functions
Thomas Colcombet

IRIF, CNRS and Université Paris Diderot – Paris 7, France
thomas.colcombet@irif.fr

Abstract—Regular cost functions offer a toolbox for automat-
ically solving problems of existence of bounds, in a way similar
to the theory of regular languages. More precisely, it allows to
test the existence of bounds for quantities that can be defined
in cost monadic second-order logic (a quantitative variant of
monadic second-order logic) with inputs that range over finite
words, infinite words, finite trees, and (sometimes) infinite trees.

Though the initial results date from the works of Hashiguchi
in the early eighties, it is during the last decade that the theory
took its current shape and that many new results and applications
have been established.

In this tutorial, two connections linking logic with the theory
of regular cost functions will be described. The first connection
is a proof of a result of Blumensath, Otto and Weyer stating
that it is decidable whether the fixpoint of a monadic second-
order formula is reached within a bounded number of iterations
over the class of infinite trees. The second connection is how non-
standard models (and more precisely non-standard analysis) give
rise to a unification of the theory of regular cost functions with
the one of regular languages.

OVERVIEW

A very narrow perspective on the theory of regular lan-
guages can be stated as follows:

Regular languages

The theory of regular languages offers a toolbox of notions
and algorithms for answering questions of the form:

Do all inputs satisfy a given property?
in which
inputs may range over words, infinite words, trees, infinite

trees, or graphs of given bounded tree-width or clique-
width, and

properties are expressed in some logical formalism, the
standard being monadic second-order logic (MSO
for short), but other possibilities also exist such as
fixpoint logics (µ-calculus), and so on. In this view,
automata provide simply a convenient syntax for
fragments (with good properties) of these logics.

Indeed, this is a very narrow presentation since most results
in language theory do not directly fall in this description.
Nevertheless, it is a fair description of why regular languages
play a central role in “algorithmic model-theory”, which in
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a broad sense consists of the methods used for deciding the
satisfiability of logic formulae and checking of models.

Taking the same (narrow) point of view, we can present the
theory of regular cost functions in a similar way:

Regular cost functions

The theory of regular cost functions offers a toolbox of
notions and algorithms for answering questions of the
form:

Is some quantity bounded over all inputs?
in which
inputs may range over words, infinite words, trees, infinite

trees, or graphs of given bounded tree- or clique-
width, and

quantities in N ∪ {∞} are described in some logical for-
malism, the standard being cost monadic second-order
logic (cost MSO for short), but other possibilities exist
such as fixpoint logics (cost µ-calculus), and so on.

Usually, describing the theory of regular cost functions in
more detail requires to enter the technicalities of the different
notions of acceptors (B-automata, S-automata, ]-monoids, cost
games, and so on) and the involved constructions relating
them. In this tutorial we deliberately ignore this (essential)
aspect, and instead underline some further connections be-
tween logic and regular cost functions. We will in particular
emphasize on the two following points:

A. we will explain how regular cost functions can be seen
as a form of regular languages thanks to the use of non-
standard analysis [15], and,

B. as an application, we will show how to decide whether the
fixpoint of some MSO formula is reached in a bounded
number of iterations over all (infinite) trees or not [3], a
result due to Blumensath, Otto and Weyer.

We will not touch these aspects in this short abstract, but
rather simply give some high levels ideas of what are regular
cost functions. This begins with some key definitions in the
following section. We then describe some results related to
logic that can be solved using regular cost functions. We
conclude with some historical pointers.

COST MONADIC SECOND-ORDER LOGIC AND REGULAR
COST FUNCTIONS

Let us recall that monadic second-order logic is the ex-
tension of first-order logic with set quantifiers (∃X . . . , in
which set variables are traditionally in capital letters) and a978-1-5090-3018-7/17/$31.00 c©2017 IEEE



membership predicate (y ∈ X) testing whether a first-order
variable belongs to a set variable.

As an example, monadic second-order logic can express the
reachability between vertices in a directed graph. Indeed, there
is a path in a digraph from vertex u to vertex v if and only if

“all sets X that contain u and are closed under the
edge relation (i.e. for all edges such that the source
belongs to X , the target also does) also contain v.”

This can be phrased in plain formulae as follows:

path(u, v) := ∀X (u ∈ X ∧ closed(X))→ v ∈ X ,

closed(X) := ∀x∀y (edge(x, y) ∧ x ∈ X)→ y ∈ X .

Cost monadic second-order logic extends monadic second-
order logic with a single construct:

|X| ≤ n ,

in which X is a set variable and n is the unique representent
of number variables, and ranges over N. The semantics is as
expected: it means “the cardinality of the set X is at most n”.
The important thing is that this construct is only allowed to
appear positively in a formula, i.e., under an even number of
negations.

A formula of cost monadic second-order logic ϕ naturally
associates to each input structure A the quantity

[[ϕ]](A) = inf{i ∈ N | A, n = i |= ϕ} ∈ N ∪ {∞} ,

in which A, n = i |= ϕ signifies that A is a model of ϕ when
n takes the value i.

Our first example describes the distance between two ver-
tices in a directed graph. Indeed, there is a path of length at
most n from a vertex u to a vertex v if and only if:

“There exists a set of nodes Z of size at most n such
that in the digraph with edges restricted to the ones
ending in Z there is a path from u to v.”

In formulae, we obtain something like:

dist(u, v) := ∃Z |Z| ≤ n
∧ ∀X (u ∈ X ∧ closed(X,Z))→ v ∈ X ,

closed(X,Z) := ∀x∀y
(edge(x, y) ∧ x ∈ X ∧ y ∈ Z)→ y ∈ X .

For a directed graph G, then G, n = i |= dist(u, v) if and
only if there exists a path of length at most n from u to v in G.
This means that [[dist(u, v)]](G) ∈ N ∪ {∞} is the distance
between u and v, or ∞ if there is no path between these two
nodes.

As done classically since the seminal works of Elgot and
Büchi, (finite) words can be identified as (finite) chains, i.e.,
finite relational structure over the signature consisting of a
binary symbol < interpreted as the linear order of positions,
and one monadic predicate for each letter interpreted as the
set of positions that carry this letter. Under this interpretation
it is possible to express in cost monadic second-order logic

functions from words to N ∪ {∞}. For instance, we can con-
sider the function F wich to a word over the alphabet {a, b, c}
associates the least n such as:

“There are at most n occurrences of the letter a, or
there exists a maximal interval of consecutive posi-
tions that does not contain a letter a, that contains
at most n occurrences of the letter b.”

As mentioned, the central motivation of the theory of regular
cost functions is to be able to decide boundedness problems.
For f mapping structures (of suitable signature) to N ∪ {∞}
, deciding the boundedness of f over a class C of structures
is the problem of deciding whether there exists an integer m
such that f(A) ≤ m for all structures A ∈ C.

For instance, in the above example, the function computed
is not bounded since we can use, for instance, the words

un = bn(abn)n , for all n ∈ N,

as witnesses of unboundedness. Indeed, F (un) = n for all n ∈
N.

One essential result in the theory of regular cost functions
can be stated as follows:

Theorem 1: Given a formula of cost monadic second-order
logic ϕ, it is decidable whether [[ϕ]] is bounded

• over finite words [14], [16],
• over words of length ω [34],
• over finite trees [23], and as a consequence over graphs

of bounded tree-width or clique-width,
• over infinite trees for formulae of weak1 cost monadic

second-order logic [8], or weak cost monadic second-order
logic extended with bounded monadic fixpoints [2].
One can see in this list of results the successive generalizations
to regular cost functions of the classical results of Büchi
and Elgot [11], [26], Büchi [12], Thatcher and Wright [44],
Courcelle [25] and partly Rabin [42]. Indeed, what would be
the equivalent of the full result of Rabin is still beyond reach
and is the big open question in this area:

Open problem 1: Decide whether a formula of cost monadic
second-order logic computes a function bounded over infinite
trees.

One may wonder at this stage why we refer to regular cost
functions2 and not simply “regular functions” (appart from the
fact that it would certainly be a very ambiguous terminology).
This comes from the following definitions: consider two
maps f, g from some set E (think words, or trees, ... or more
generally inputs) to N∪ {∞}, then f is equivalent to g if for
all X ⊆ E, f |X is bounded3 if and only if g|X is bounded.
This is denoted f ≈ g. A cost function is an equivalence
relation for this equivalence ≈. A regular cost function is
a cost function that contains a function computed by a cost
monadic second-order formula.

The constructions performed within the theory of regular
cost functions do not preserve in general the computed func-
tion exactly, but only up to ≈. For instance, the proofs of

1In which set variables do only range over finite sets
2To not confuse with cost register automata.
3meaning by some value from N.



Theorem 1 involve many statements of the form “a formula in
a given family can be translated into an equivalent automaton
of suitable form”. What is meant by “equivalent” in these
statements is that the cost function computed is preserved,
but not necessarily the exact function. This is why the notion
of cost function is the unifying concept in this approach.

SOME LOGIC RELATED QUESTIONS SOLVABLE USING
REGULAR COST FUNCTIONS

As mentioned above, the following result will be presented
during the talk:

Theorem 2 (Blumensath, Otto and Weyer [3]): Given a
formula ϕ(x,X) of monadic second-order logic, positive4

in X , it is decidable whether there exists an integer n such
that over all (infinite) trees t, the least fixpoint of ϕ is reached
within n iterations.

This result is a typical application of regular cost functions.
Let us mention here some other related problems in logics that
can be solved or at least attacked using the theory of regular
cost functions. These three questions have been chosen to be
different in style.
Σ2-separation: A Σ2-formula is a first-order formula such that

no existential quantifier appears below a universal one.
The Σ2-separation problem takes two regular languages
of words K and L, and consists in deciding whether
there exists a Σ2-formula that contains K but does not
intersect L.
This problem has been shown decidable recently [41].
It is in fact very close to the relative inclusion star-
height problem [28], [29], [32], and the use of regular
cost functions offer much simpler proofs.

Quantitative Church synthesis problem: The Church synthe-
sis problem takes as input a regular language L of
words of length ω (i.e., defined by a monadic second-
order formula), and asks whether in a game where two
players I and II alternatively choose letters, player I
can guarantee that the infinite play resulting from the
game belongs to L. In their seminal work, Büchi and
Landweber have shown this problem decidable [13].
Rabinovich and Velner [45] left open a similar question:
in the quantitative Church synthesis problem player I can
furthermore change up to n letters at the end of the
game. The question is whether there exists some n such
that player I can guarantee the play to belong to L. The
answer is positive, and a direct application of regular cost
functions.

Rabin-Mostowski hierarchy problem: the Rabin-Mostowski
index of a property is (essentially) the number of
alternations of least and greatest fixpoints necessary for
describing this property in the µ-calculus [37]. This index
is known to form a strict hierarchy for general µ-calculus
formulae [10], [35], [1], as well as for fragments, and in
particular for the “disjunctive fragment” that corresponds

4A predicate of the form y ∈ X for some first order variable y is only
allowed to appear positively in the formula.

to non-deterministic automata [39], [38]. Computing
this index is known as the Rabin-Mostowski hierarchy
problem, and is open in both cases (only some particular
cases were known to be decidable [39], [40]). However,
in the disjunctive case, it is known to be reducible to
the boundedness question for cost monadic second-order
logic over infinite trees [22], i.e., to Open problem 1.
Though the general problem remains undecidable,
the approach using regular cost functions has helped
showing other cases decidable [24].
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Regular cost functions arose from the seminal works of
Hashiguchi, Leung and Simon [27], [36], [43], initiated by
Hashiguchi for solving the star height problem: the problem
of deciding, given a regular language, whether it can be
represented by a regular expressions of fixed nesting of Kleene
stars [28]. Kirsten gave a simplified proof of this result
[30], [31], introducing essential new forms of automata along
the way. This problem is also known to be decidable over
finite trees [21]. Independently, Bojańcyk introduced the logic
MSO+U5 [4]. For solving more interesting fragments of this
logic, Bojańczyk and Colcombet introduced new forms of
automata (which in some precise sense generalize the ones of
Kirsten) [6] (in the end this logic has been shown undecidable
[7]). The notion of regular cost function is then isolated as
well as the algebraic notion of “]-monoids” and cost monadic
second-order logic in [14], [16]. There, the boundedness (and
more general domination) problem is solved over finite words.
Some automata results were also later simplified in [5], [17].
These results are extended to trees in [23], and to infinite
words in [34]. For infinite trees, only partial results are known
[8], [9], [2]. Efforts were also devoted to the characterization
(in the spirit of Schützenberger) of subclasses of regular cost
functions [19], [33], [20]. Applications to games have been
investigated in [18].
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