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Abstract

The theorem of factorization forests of Imre Simon shows the existence of nested factor-
izations — à la Ramsey — for finite words. This theorem has important applications in
semigroup theory, and beyond.

We provide two improvements to the standard result. First we improve on all previ-
ously known bounds. Second, we extend it to ‘every linear ordering’.

We use this last variant in a simplified proof of the translation of recognisable lan-
guages over countable scattered linear orderings to languages accepted by automata.
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1. Introduction

Factorization forests were introduced by Simon [32]. The associated theorem— which
we call the theorem of factorization forests below — states that for every semigroup mor-
phism from words to a finite semigroup S, every word has a Ramseyan factorization
tree of height linearly bounded by |S| (see below). An alternative presentation states
that for every semigroup morphism ϕ from A+ to some finite semigroup S, there ex-
ists a regular expression evaluating to A+ in which the Kleene star L∗ is allowed only
when ϕ(L) = {e} for some idempostent e in S; i.e., the Kleene star is allowed only if it
produces a Ramseyan factorization of the word.

The theorem of factorization forests provides a very deep insight on the structure
of finite semigroups, and has therefore many applications. Let us cite some of them.
Distance automata are non-deterministic finite automata mapping words to non-negative
integers. An important question concerning them is the limitedness problem: decide
whether the range of this mapping is bounded or not. It has been shown decidable by
Simon using the theorem of factorization forests [32] (another proof was known before
from Haschigushi [17]). An extension of this proof to a more general form of automata
has been done in [1]. This theorem also allows a constructive proof of Brown’s lemma
on locally finite semigroups [6]. It is also used in the characterization of subfamilies of
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the regular languages, for instance the polynomial closure of varieties in [28] and more
recently the polynomial closure of lattices of regular languages [27]. In the context of
languages of infinite words indexed by ω, it has also been used in a complementation
procedure [5] extending Büchi’s proof [10].

The present paper aims first at advertising the theorem of factorization forest which,
though already used in many papers, is in fact known only to a quite limited community.
The reason for this is that its proofs rely on the use of Green’s relations: Green’s rela-
tions form an important tool in semigroup theory, but are rather technical to work with.
The merit of the factorization forest theorem is that it is usable without any significant
knowledge of semigroup theory, while it encapsulates nontrivial parts of this theory. Fur-
thermore, as briefly mentioned above, this theorem has natural applications in automata
theory.

This paper contains three contributions. First, we provide a new proof of the original
theorem. Our proof improves on previously known bounds in [32] and [12], and yields a
bound comparable to the recent one obtained by Kufleitner independently [19, 20]. Our
result also improves on other works, since it does not apply to finite words only, but also
to words indexed by ordinals. Second, we extend the result to the general case, i.e., to
words that can be infinite, even if not indexed with an ordinal (though we use a different
presentation). However, the bound is not as good in this situation. Third, we use this
last extension in a simplified proof of complement for automata on countable scattered
linear orderings, a result known from Carton and Rispal [11].

The content of the paper is organized as follows. Section 2 is dedicated to definitions.
Section 3 presents the original theorem of factorization forests as well as a variant in terms
of Ramseyan splits. In Section 4, the result is extended to infinite linear orderings. In
Section 5 we apply this last extension to the complementation of automata over countable
scattered linear orderings.

2. Definitions

In this section, we successively present linear orderings, words indexed by them,
semigroups and additive labelings.

2.1. Linear orderings

A linear ordering α = (L,<) is a set L equipped with a total ordering relation <;
i.e., an irreflexive, antisymmetric and transitive relation such that for every distinct
elements x, y in L, either x < y or y < x. Two linear orderings α = (L,<) and β =
(L′, <′) have same order type if there exists a bijection f from L onto L′ such that
for every x, y in L, x < y iff f(x) <′ f(y). We denote by ω,−ω, ζ the order types of
respectively (N, <), (−N, <) and (Z, <). Below, we do not distinguish between a linear
ordering and its order type unless necessary. This is safe since all the constructions we
perform are defined up to similar order type.

A subordering of a linear ordering α = (L,<) is a linear ordering of the form β =
(L′, <′) in which L′ ⊆ L and <′=< ∩(L′)2. We write β ⊆ α. A subset S ⊆ α is convex
if for all x, y ∈ S and x < z < y, z ∈ S. We use the notations [x, y], [x, y[, ]x, y], ]x, y[,
]−∞, y], ]−∞, y[, [x,+∞[ and ]x,+∞[ for denoting the usual intervals. Intervals are
convex, but the converse does not hold in general if α is not complete (see below). Given
two subsets X,Y of a linear ordering, X < Y holds if for all x ∈ X and y ∈ Y , x < y.
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The sum of two linear orderings α1 = (L1, <1) and α2 = (L2, <2) (up to renaming,
assume L1 and L2 disjoint), denoted α1 + α2, is the linear ordering (L1 ∪ L2, <) with <
coinciding with <1 on L1, with <2 on L2 and such that L1 < L2. More generally, given a
linear ordering α = (L,<) and for each x ∈ L a linear ordering βx = (Kx, <x) (theKx are
assumed disjoint), we denote by

∑

x∈α βx the linear ordering (∪x∈LKx, <
′) with x′ <′ y′

if x < y or (x = y and x′ <x y′), where x′ ∈ Kx and y′ ∈ Ky.
A linear ordering α is complete if every nonempty subset of α with an upper bound

has a least upper bound in α, and every nonempty subset of α with a lower bound has
a greatest lower bound in α.

A (Dedekind) cut of a linear ordering α = (L,<) is a couple (E,F ) where {E,F} is a
partition of L, and E < F . Cuts are totally ordered by (E,F ) < (E′, F ′) if E ( E′. This
order has a minimal element ⊥ = (∅, L) and a maximal element ⊤ = (L, ∅). We denote
by α the set of cuts of α. It is classical that (α,<) is a complete linear ordering. We also
abbreviate by α[], α[[, α]], α][ the sets α, α \ {⊤}, α \ {⊥}, α \ {⊥,⊤} respectively. Cuts
can be thought as new elements located between the elements of α: given x ∈ α, x− =
(]−∞, x[, [x,+∞[) represents the cut placed just before x, while x+ = (]−∞, x], ]x,+∞[)
is the cut placed just after x. We say in this case that x+ is the successor of x− through x.

Each element x in a linear ordering α can be of three forms depending on nature of
the interval ]−∞, x[; (a) if it is empty then x is the minimal element of α, (b) if it has a
maximal element, then x is called a successor, and finally (c) if it is nonempty but has
no maximal element, then x is called a limit from the left. Remark that this definition of
a successor is consistent with the one introduced just above in the context of Dedekind
cuts. By symmetry, the same separation into maximal element, predecessors and limits
from the right is used. Below, we will use this in the case of countable linear orderings,
or of the Dedekind cuts of countable orderings. In those two cases, x being a limit from
the left is equivalent to the existence of a sequence x1 < x2 < . . . of order type ω (an
ω-sequence for short) of supremum x. This does not hold in the general case for which
sequences indexed by higher ordinals are necessary.

A linear ordering α is dense if for every x < y in α, there exists z in ]x, y[. A
linear ordering is scattered if it is not dense on any subordering. For instance (Q, <)
and (R, <) are dense, while (N, <) and (Z, <) are scattered. Being scattered is preserved
under taking a subordering. A scattered sum of scattered linear orderings also yields
a scattered linear ordering. Every ordinal is scattered. Furthermore, if α is scattered,
then α is scattered. And if α is countable and scattered, then α is also countable and
scattered.

Additional material on linear orderings can be found in [31].

2.2. Words, languages

We use a generalized version of words: words indexed by a linear ordering. Given
a linear ordering α = (L,<) and a finite alphabet A, an α-word u over the alphabet A
is a mapping from L to A. We also say that α is the domain of the word u, or that u
is a word indexed by α. Below, we always consider words up to isomorphism of their
domain (unless a specific presentation of the domain is required). Standard finite words
are simply the words indexed by finite linear orderings. The set of finite words over
an alphabet A is denoted A∗. The set of words indexed by countable scattered linear
orderings is denoted A⋄. Words in A⋄ are also called ⋄-words.
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Given a word u of domain α and β ⊆ α, we denote by u|β the word u restricted to its
positions in β. Given an α-word u and a β-word v, uv represents the (α+β)-word defined
by (uv)(x) is u(x) if x belongs to α and v(x) if x belongs to β. The product is extended
to languages of words in a natural way. The product of words is naturally generalized
to the infinite product

∏

i∈α ui, where α is an order type and each ui for i ∈ α is a
βi-word; the result being a (

∑

i∈α βi)-word. For a language W and a linear ordering α,
one defines Wα to be the language containing all the words

∏

i∈α ui, where ui ∈ W for
all i ∈ α.

2.3. Semigroups and additive labelings

For a thorough introduction to semigroups, we refer the reader to [21, 26]. A semi-
group (S, ·) is a set S equipped with an associative binary operator written multiplica-
tively. Groups and monoids are particular instances of semigroups. The set of nonempty
finite words A+ over an alphabet A is a semigroup – it is the semigroup freely generated
by A. A morphism of semigroups from a semigroup (S, ·) to a semigroup (S′, ·′) is a
mapping ϕ from S to S′ such that for all x, y in S, ϕ(x ·y) = ϕ(x) ·′ϕ(y). An idempotent
in a semigroup is an element e such that e2 = e.

Let α be a linear ordering and (S, ·) be a semigroup. A mapping σ from ordered pairs
(x, y) ∈ α2 with x < y to S is called an additive labeling if for every x < y < z in α,
σ(x, y)σ(y, z) = σ(x, z).

Given a semigroup morphism ϕ from (A⋄, ·) to some semigroup (S, ·) and a word u
in A⋄ of domain α, there is a natural way to construct an additive labeling ϕu from α
to (S, ·): for every two cuts x < y in α, set ϕu(x, y) to be ϕ(ux,y), where ux,y is the
word u restricted to its positions between x and y; i.e., ux,y = u|F∩E′ for x = (E,F )
and y = (E′, F ′).

2.4. Standard results on finite semigroups

In this section, we recall some basic definitions and gather results concerning finite
semigroups. The reader can refer to [21, 26] for more details on the subject.

Given a semigroup S, S1 denotes the monoid S itself if S is a monoid, or the semi-
group S augmented with a new neutral element 1 otherwise, thus making S a monoid.
The Green’s relations are defined by:

a ≤L b if a = cb for some c in S1 a L b if a ≤L b and b ≤L a

a ≤R b if a = bc for some c in S1 a R b if a ≤R b and b ≤R a

a ≤J b if a = cbc′ for some c, c′ in S1 a J b if a ≤J y and b ≤J a

a ≤H b if a ≤L b and a ≤R b a H b if a L b and a R b

Fact 1. Let a, b, c be in S. If a L b then ac L bc. If a R b then ca R cb. For every a, b
in S, a L c R b for some c iff a R c′ L b for some c′.

As a consequence of the last equivalence, one defines the last of Green’s relations:

a D b iff a L c R b for some c in S ,

iff a R c′ L b for some c′ in S .

From now we assume that the semigroup (S, ·) is finite. This assumption is mandatory
for the correctness of what follows.
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Fact 2. D=J .

For this reason, we refer from now on only to D and not J . However, we will use the
preorder ≤J (which is an order over the D-classes).

An element a in S is called regular if asa = a for some s in S. A D-class is regular if
all its elements are regular.

Fact 3. A D-class D is regular, iff it contains an idempotent, iff every L-class in D
contains an idempotent, iff every R-class in D contains an idempotent, iff there exists
a, b in D such that ab ∈ D.

Fact 4. For every a, b in a D-class D such that ab ∈ D, then a R ab L b. Furthermore,
there is an idempotent e in D such that a L e R b.

Fact 5. For all a, b, c in S such that ab, b, and bc belong to the same D-class D, then
abc ∈ D.

Fact 6 (from Green’s lemma). All H-classes in a D-class have the same size.

Fact 7. Let H be an H-class in S. Either for all a, b in H, ab 6∈ H; or for all a, b in H,
ab ∈ H, and furthermore (H, ·) is a group.

3. Simon’s factorization forest theorem: a new proof

In this section, we first give the original statement of the theorem of factorization
forest of Simon (Section 3.1). In Section 3.2, we introduce the notion of a split and use
it in a different presentation of the result yielding better bounds. In Section 3.3, we
establish the result. Some lemmas in the proof are used again in the sequel of the paper.

3.1. Factorization forest theorem

2 1 0 2 3 2 3 0 0 3 2 2 0 0 0 2

Figure 1: A factorization tree

Fix an alphabet A and a semigroup morphism ϕ from A+ to a finite semigroup (S, ·).
A factorization tree is an ordered unranked tree in which each node is either a leaf labeled
by a letter, or an internal node. The value of a node is the word obtained by reading the
leaves below from left to right. A factorization tree of a word u ∈ A+ is a factorization
tree of value u. The height of the tree is defined as usual, with the convention that the
height of a single leaf is 0. A factorization tree is Ramseyan (for ϕ) if every node 1) is a
leaf, or 2) has two children, or, 3) the values of its children are all mapped by ϕ to the
same idempotent of S.
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Example 8. We provide here an example of a semigroup which is in fact a group, though
this case cannot be considered as representative of the problem in its generality. Fix
A = {0, 1, 2, 3, 4}, (S, ·) = (Z/5Z,+) and ϕ to be the only semigroup morphism from A+

to (S, ·) mapping each letter to its value. Figure 1 presents a Ramseyan factorization tree
for the word

u = 2102323003220002 .

In this drawing, internal nodes appear as horizontal lines. Double lines correspond to
case 3 in the definition of Ramseyness.

The theorem of factorization forests is then the following.

Theorem 1 (factorisation forests [32]). For every alphabet A, finite semigroup (S, ·),
semigroup morphism ϕ from A+ to S and word u in A+, u has a Ramseyan factorization
tree of height at most 9|S|.

The original theorem of Simon [32], gives the bound of 9|S|. An improved bound of 7|S|
has been established by Chalopin and Leung [12]. A value of 3|S| is a byproduct of the
present work (see Remark 10 in Section 3.2). Another proof of the 3|S| bound has been
independently obtained by Kufleitner [19]. This line of improvements reaches its end in
a paper of Kufleitner to appear: a new proof of Simon’s result is given with the improved
upper bound of 3|S| − 1, together with a proof of optimality of this bound:

Theorem 2 ([20]). For every alphabet A, finite semigroup (S, ·), semigroup morphism ϕ
from A+ to S and word u in A+, u has a Ramseyan factorization tree of height at
most 3|S| − 1. Furthermore, this bound is tight when (S, ·) is a group; i.e., there exists a
word u such that every Ramseyan factorization tree for u has height at least 3|S| − 1.

Let us finally mention that in this paper the specific case of aperiodic semigroups is
also treated. In this more restricted situation, Ramseyan factorization trees of height at
most 2|S| always exist, and this bound is tight.

3.2. A variant via Ramseyan splits (for ordinals)

The variant of the factorization forest theorem presented here (Theorem 3) uses the
notion of splits. We use this formalism in the sequel of the paper. Our result is slightly
more general than Theorem 1 above since it can be applied not only to finite words, but
more generally to words indexed by ordinals (though the presentation is not given in
terms of words).

The reason for introducing Ramseyan splits in replacement of Ramseyan factorization
trees is that this is an object much easier to manipulate by a word automaton. We
advocate the use of splits in this context. It simplifies also slightly the proof of Simon’s
theorem by avoiding to work with the structure of trees. Finally, the extension to the
general case (in which words are not necessary finite) is natural with splits, while the
original presentation of the result would require more care.

For N a non-negative integer, a split of height N of a linear ordering α is a mapping s
from α to [1, N ] (N can be null, and in this case α has to be empty). Given a split,
two elements x and y in α such that s(x) = s(y) = k are k-neighbors if s(z) ≥ k

6



for all z ∈ [x, y]. k-neighborhood is an equivalence relation over s−1(k). A class of
k-neighborhood is also called a k-class.

Fix an additive labeling σ from α to some finite semigroup S. A split of α is Ramseyan
for σ — we also say a Ramseyan split for (α, σ) — if for every k-class X, there exists an
idempotent e such that σ(x, y) = e for all x < y in X.

Example 9. Let S be Z/5Z equipped with the addition +. Consider the linear ordering
of 17 elements and the additive labeling σ defined by:

| 2 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

Each symbol ‘|’ represents an element, the elements being ordered from left to right.
Between two consecutive elements x and y is represented the value of σ(x, y) ∈ S. In
this situation, the value of σ(x, y) for every x < y is uniquely defined according to the
additivity of σ: it is obtained by summing all the values between x and y modulo 5.

A split s of height 3 is the following, where we have written above each element x the
value of s(x):

1 3 2 2 1 2 1 2 2 2 3 2 1 1 1 1 2
| 2 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

In particular, if you choose x < y such that s(x) = s(y) = 1, then the sum of elements
between them is 0 modulo 5. If you choose x < y such that s(x) = s(y) = 2 but there
is no element z in between with s(z) = 1 — i.e., x and y are 2-neighbors — the sum of
values separating them is also 0 modulo 5. Finally, it is impossible to find two distinct
3-neighbors in our example.

Our variant of Theorem 1 is phrased as follows (this time for every ordinal).

Theorem 3. For every ordinal α, every finite semigroup (S, ·) and additive labeling σ
from α to S, there exists a Ramseyan split for (α, σ) of height at most |S|. Furthermore
this bound is tight for (S, ·) a group and α a finite linear ordering.

The proof of this theorem is the subject of Section 3.3. The link with Ramseyan fac-
torization forests, as well as the optimality of the bound, are considered in the following
remark.

Remark 10. Fix an alphabet A, a semigroup S, a morphism ϕ from A+ to S and a
word u ∈ A+ of finite domain α. The Ramseyan factorization trees and the Ramseyan
splits are linked as follows:

• every Ramseyan factorization tree of height k of u can be turned into a Ramseyan
split of height at most k for (α][, ϕu),

• every Ramseyan split of height k for (α][, ϕu) can be turned into a factorization tree
of height at most 3k of u.

For the first item, we set the value of the split for x ∈ α][, say for x the cut between
letter i and letter i + 1 in u, to be the maximal depth of a node that has the ith and
the (i+ 1)th letter below it. It is not difficult to see that this defines a split of height at
most k, and that it is Ramseyan for (α][, ϕu).
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For the second item, one remarks that the only 1-class (we assume that there is one)
factorizes the word u into u = u0u1 . . . ul in such a way that φ(u1) = · · · = φ(ul−1) is an
idempotent. Hence we construct the prefix of a tree as:

u0 u1 u2 · · · ul−1 ul

and then proceed inductively with the subwords u0, . . . , ul. We get at the end a Ramseyan
factorization tree, and its height is at most 3k.

Using the second item together with Theorem 3, we obtain a bound of 3|S| for Theo-
rem 1.

The optimality part in Theorem 3 is obtained by the same argument. Indeed, assume
the bound of |S|−1 was possible in Theorem 3, this would mean that Ramseyan factoriza-
tion trees of height at most 3(|S| − 1) would be possible. This contradicts the optimality
result of Kufleitner (Theorem 2).

3.3. Proof of the result in the ordinal case

In this section, we establish Theorem 3. Some of the intermediate results are also
used in the proof of Theorem 4.

Hence, let σ denote an additive labeling from some linear ordering α to some finite
semigroup (S, ·). We denote by β a subordering of α. We slightly abuse the notation,
and write (β, σ) for (β, σ|β) in which σ|β is the additive labeling obtained by restricting σ
to β. We also denote by σ(β) the set {σ(x, y) : x < y, x, y ∈ β}.

Aiming at their use in the proof of Theorem 4, the splits constructed by Lemmas 11
and 12 have an extra property of being 1-right. This extra constraint is irrelevant in the
ordinal case. A split s of a linear ordering α is called 1-right if for every x ∈ α, there
exists y ≥ x in α with s(y) = 1. Hence a split is 1-right if either α has a maximal element
and this element has split value 1, or if the elements of split value 1 ‘reach at limit’ the
right side of α. The notion of being 1-left is obtained by symmetry.

The proof works by studying successively different cases according to Green’s rela-
tions. The first one is the case of a single regular H-class.

Lemma 11. Let H be an H-class in S such that (H, ·) is a group, and β be such
that σ(β) ⊆ H. Then there exists a Ramseyan split of height at most |H| of (β, σ).

Furthermore, the split can be chosen to be 1-right.

Proof. Since (H, ·) is a group, it is natural to extend the definition of σ over β in the
following way. For every x in β, let σ(x, x) be 1H , the neutral element of the group (H, ·),
and for every y < x in β, let σ(x, y) be σ(y, x)−1, the inverse of σ(x, y) inH. As expected,
this extended version of σ satisfies for every x, y, z in β, σ(x, z) = σ(x, y)σ(y, z). Let n
be a mapping numbering the elements of H from 1 to |H|. Fix an element x0 in β. Let s
be defined for all x by s(x) = n(σ(x0, x)).

Let us show that s defined this way is indeed a Ramseyan split for σ. Let x <
y be such that s(x) = s(y), then σ(x0, x) = σ(x0, y) since n is a injection from H
onto [1, |H|]. Hence σ(x, y) = σ(x, x0)σ(x0, y) = σ(x0, x)

−1σ(x0, y) = 1H . Hence, given
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x < y and x′ < y′ such that x, y, x′ and z′ are k-neighbors, we have σ(x, y) = 1H =
σ(x′, y′) = 12H .

In order to choose the split to be 1-right, it is sufficient to start from the split described
so far, to select a split value l such that for all x ∈ α, there exists y ≥ x in α with s(y) = 1,
and swap the role of the split values 1 and l (this amounts to number differently the
elements of H). The split obtained this way is still Ramseyan, and it is furthermore
1-right. �

The second case corresponds to a single regular D-class.

Lemma 12. Let D be a regular D-class in S, and β be such that σ(β) ⊆ D. Then there
exists a Ramseyan split of height at most |D| of (β, σ).

Furthermore, the split can be chosen to be 1-right.

Proof. For every x ∈ β nonmaximal, set r(x) to be the R-class of σ(x, z) for some z > x;
this value is independent of the choice of z according to Fact 4. Similarly, for every x
in β nonminimal, set l(x) to be the L-class of σ(y, x) for some y < x. If β has a maximal
element M , choose r(M) to an R-class be such that l(M)∩r(M) is a subgroup of S; this
is possible according to Fact 3. Similarly if β has a minimal element m, choose l(m) to be
an L-class such that l(m)∩r(m) is a subgroup of S. Set for all x in β, h(x) = l(x)∩r(x).

We claim that for every x in β, h(x) is a subgroup of S. Indeed, if x is either the
minimal or the maximal element of β, this follows from the definition of r(M) and l(m)
and Fact 7. Otherwise, there exists y, z such that y < x < z. Let a be σ(y, x) ∈ l(x)
and b be σ(x, z) ∈ r(x). By Fact 4, since ab = σ(y, z) ∈ D, there exists an idempotent e
in D such that a L e and b R e; i.e., e ∈ h(x). And by Fact 7, h(x) is a subgroup of S.
The claim holds.

According to Fact 6, there is a positive integer N such that all H-classes included
in D have size N . Let H0, . . . , Hd−1 be the H-classes included in D which are subgroups
of S. For k = 0, . . . , d− 1, set βk to be the linear ordering {x ∈ β : h(x) = Hk}. By
Fact 4, σ(βk) ⊆ Hk. By Lemma 11, there exists a Ramseyan split sk for (βk, σ) of height
at most |Hk| = N .

We set now for all x in β, s(x) = kN + sk(x) where k is such that x ∈ βk. Let
us establish that s is a Ramseyan split for (β, σ). Let x < y and x′ < y′ be such
that s(x) = s(y) = s(x′) = s(y′). By definition of s, x, y, x′, y′ belong to the same βk.
Furthermore, since s(x) = s(y) = s(x′) = s(y′), we have sk(x) = sk(y) = sk(x

′) = sk(y
′).

Hence, by Ramseyness of sk over (βk, σ), σ(x, y) = σ(x′, y′) = σ(x, y)2. We conclude
that the mapping s is a Ramseyan split for (β, σ), and its height is at most dN ≤ |D|.

In order to construct a 1-right split, it is sufficient to choose the correct enumeration
ofH0, . . . , Hk−1. Indeed, there in anH-classH such that for every x ∈ α, there exists y ≥
x in α with h(x) = H. We apply the construction as above, but choosing to number
the Hi in a way such that H0 = H. Furthermore, we require de split s0 to be 1-right
(this is possible according to Lemma 11). The resulting split is Ramseyan as above. Now
it is also 1-right. �

From now, we assume that β is an ordinal. We say that E ⊆ S is D-closed if x ∈ E
and x D y implies y in E. Given a nonempty ordinal β, one denotes by β̇ the linear
ordering β \ {0β}, where 0β is the minimal element of β. This technique of removing 0β
is a trick for not getting into trouble with non-regular D-classes. Without this precision,
the lemma below would not hold for instance if E is a non-regular D-class of size 1 and β
has size 2.
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Lemma 13. Let E ⊆ S be a D-closed subset of S and β ⊆ α be such that σ(β) ⊆ E.
Then there exists a Ramseyan split of height at most |E| for (β̇, σ).

Proof. The proof is done by induction on the size of E. If E is empty, then β contains
at most one element. Hence β̇ is empty. We can give a split of height 0 over the empty
linear ordering.

Otherwise, let D be a minimal D-class in E (for the ≤J -order). Let γ ⊆ β be the
least set satisfying:

• 0β ∈ γ,

• if x ∈ γ then min{y > x : σ(x, y) ∈ D} ∈ γ.

It is not difficult to check that the following fact holds.

Fact 14. For every x, y in β, if ]x, y]∩γ is empty, then σ(x, y) 6∈ D. If [x, y]∩γ contains
at least two elements, then σ(x, y) ∈ D.

Define∼ to be the least equivalence relation over β such that for all x < y, if ]x, y]∩γ =
∅ then x ∼ y. Let η be an equivalence class for ∼. By Fact 14, σ(η)∩D = ∅. Hence, one
can apply the induction hypothesis and obtain a Ramseyan split sη̇ for (η̇, σ) of height
at most |E| − |D|. Remark that η̇ = η \ γ.

At this point, two cases may happen depending on the cardinal of γ. If γ contains
exactly two elements (the case of γ being a singleton is similar), we define sβ̇ over β̇ by
s(x) = 1 for x ∈ γ, else s(x) = sη̇(x) + 1 for η the equivalence class of x. This split is
Ramseyan since the value 1 is used at most once (in γ̇), and the Ramseyness is inherited
from the induction hypothesis elsewhere. By induction hypothesis, this split has height
at most |E|−|D|+1 ≤ |E|. Remark that in this case, constructing the split for β instead
of β̇ would require to use another split value for 0β ; thus transforming the +1 into a +2.
This would provide an upper bound for the height of the split of 2|E| instead of |E|.

Otherwise, γ contains at least three elements, say x < y < z. Since σ(x, y), σ(y, z)
and σ(x, y)σ(y, z) = σ(x, z) all belong to D, we deduce by Fact 3 that D is regular.
Hence, by Lemma 12, we obtain a Ramseyan split sγ of height at most |D| for (γ, σ).

Then define s over β̇ by s(x) = sγ(x) for x ∈ γ, else s(x) = |D| + sη(x) for η the

equivalence class of x. It follows from the definition that s is a Ramseyan split of (β̇, σ)
of height at most |E| − |D|+ |D| = |E|. �

We can now conclude the proof of Theorem 3. Applying the previous lemma to α
would give us a split for α̇. What remains to be done is to remove the dot.

Proof. Given an ordinal α, and an additive labeling σ from α to S. Fix a value a0
in S, construct the linear ordering α′ = 1 + α, where 1 is a linear ordering containing
the single element 0. Set σ′(x, y) for x < y in α to be σ(x, y), set σ′(0, 0α) = a0, and
propagate accordingly for making σ′ an additive labeling. By Lemma 13, there exists a
Ramseyan split s for (α̇′, σ′) of height at most |S|. By construction of α′ and σ′, s is also
a Ramseyan split for (α, σ). �
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4. Ramseyan splits, the general case

We generalize Theorem 3 to infinite linear orderings as follows1.

Theorem 4. For every linear ordering α, every finite semigroup (S, ·) and additive la-
beling σ from α to S, there exists a Ramseyan split for (α, σ) of height at most 2|S|.

Compared to Theorem 3, we trade the ordinal assumption for a bound of 2|S| which
replaces a bound of |S|. We do not know if this bound is tight.

Proof. The proof is by induction on the size of |S|. Let D be a maximal D-class in S.
A D-set is a subset X ⊆ α such that for all x < y in X, σ(x, y) ∈ D. We are

interested in maximal D-sets : the one maximal for the inclusion. The reason for that is
that our construction of the Ramseyan split heavily relies on the structure of the D-sets,
and the way these sets cover α.

We first start by establishing some results on the D-sets. Those simple facts are
stated in the items below.

1. The convex hull of a D-set is a D-set, and as a consequence, maximal D-sets are
convex. Indeed, let x < y belong to Y . By definition of Y , there exists x′ ≤ x
in X and y′ ≥ y in X. Let us assume that x′ < x and y < y′, the three other
cases being similar. We have σ(x, y) ≥J σ(x′, x)σ(x, y)σ(y, y′) = σ(x′, y′) ∈ D by
definition of ≤J and the assumption that X is a D-set. Thus by maximality of D,
σ(x, y) ∈ D. By consequence, Y is a D-set as claimed.

2. The maximal D-sets can be totally ordered by ≺, where X ≺ Y holds if there exists
x ∈ X with x < y for all y ∈ Y .

3. Every D-set is contained in a maximal D-set. One proof is by a simple use of Zorn’s
lemma. A theoreticaly simpler argument is the following: consider a nonempty D-
set X, and Y,Z defined as follows:

Y = {y : ∃x∈X. y ≤ x and ∀x. (x ∈ X ∧ y < x) → σ(y, x) ∈ D}

and Z = {z : ∃y∈Y. y ≤ z and ∀y. (y ∈ Y ∧ y < z) → σ(y, z) ∈ D} .

By construction and by use of Item 1, it is not difficult to see that Y and Z are
convex D-sets. Remark also that X ⊆ Y ⊆ Z. For the sake of contradiction,
assume now that there exists z 6∈ Z such that Z ∪ {z} is a D-set. Two cases can
happen, either z < Z or z > Z. Let us assume first that z < Z. We have z < X
since X ⊆ Z. We also have that for all x ∈ X, σ(x, z) ∈ D. By consequence,
we should have z ∈ Y ⊆ Z; a contradiction. The same arguments can be used
for z > Z. Hence Z is a maximal D-set containing X.

4. The maximal D-sets cover α. Indeed, every singleton satisfy that for all x < y
in X, σ(x, y) ∈ D, i.e, every singleton is a D-set. Using Item 3, every element
belongs to a maximal D-set.

1In the conference version of this work [14], a weaker variant of the result is announced, in which the
linear ordering is assumed to be complete, and the upper bound on the height is only 3|S|.
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5. Two maximal D-sets having at least two elements in their intersection are equal.
What we prove is that given two convexD-setsX,Y that have at least two elements
in common, then X ∪ Y is also a D-set. Indeed, assume x < y with x, y ∈ X ∩ Y
where X,Y are two distinct convex D-sets. Let x′ < y′ belong to X ∪ Y . If both
x′, y′ belong to either X or Y , then we have σ(x′, y′) ∈ D by assumption on X
or Y . Otherwise, let us assume wlog. that x′ ∈ X \Y and y′ ∈ Y \X. By convexity
of Y , this means that x′ < x, and similarly, y > y′. Using Fact 5 on σ(x′, x), σ(x, y)
and σ(y, y′) we get σ(x′, y′) ∈ D. Hence X ∪ Y is also a D-set.

6. Each element x ∈ α belongs to at most two distinct maximal D-sets. Indeed,
assume that three distinct convex subsets share one element, then at least two
among them must share at least two elements. By Item 5, both can’t be maximal
simultaneously. Hence, if three convex subsets share one element, then one of them
is not maximal.

We now turn ourselves to the construction of the split itself. Let β ⊆ α be maximal
such that for all D-set X, |β∩X| ≤ 1. Such a set exists by Zorn’s lemma. For every x < y
in β, by construction of β, x and y cannot be in the same D-set. Thus σ(x, y) 6∈ D, and
we obtain σ(β) ⊆ S \ D. By induction hypothesis applied to β, we get a Ramseyan
split s′ for (β, σ), of height at most 2(|S| − |D|).

Consider now a maximal (nonempty) convex subset Z ⊆ α which does not intersect β.
We aim at constructing a Ramseyan split sZ for (Z, σ) of height at most 2|D| (in fact
|D| + 1). For this, we would like to use Lemma 12. Unfortunately, Z is not a D-set in
general, and hence Lemma 12 cannot be applied directly. For this reason, we start by
an analysis of the set Z and show that it has to be contained in the union of two convex
D-sets (claim ⋆ below).

Call β− (resp. β+) the linear ordering β restricted to elements smaller than Z (resp.
greater than Z). By Items 1 and 6, there is at most one maximal D-set that intersects
both β− and Z (resp. β+ and Z). Let X+ (resp.X−) be this maximal D-set if it exists,
or else be ∅. We claim that Z ⊆ X− ∪ X+ (⋆). For the sake of contradiction consider
some y ∈ Z \ (X+ ∪X−). Let Y be a maximal D-set containing y (it exists by Item 4).
Assume it intersects β−, then by Item 5, we should have Y = X−: a contradiction
since y ∈ Y \X−. Similarly, it cannot intersect β+. Hence, Y ⊆ Z. We obtain that for
all D-set X, |(β ∪ {y}) ∩X| ≤ 1. This contradicts the maximality of β. This concludes
the proof of Claim ⋆.

If Z contains exactly two elements, say y, z (the case of Z being a singleton is not
different), then sZ defined by sZ(y) = 1 and sZ(z) = 2 is a Ramseyan split for (Z, σ) of
height at most 2 ≤ |D|+ 1.

Otherwise Z contains at least three elements. By Claim ⋆, Z ⊆ X− ∪ X+. Thus
either X− ∩ Z or X+ ∩ Z has size at least 2. Wlog., let us assume this is X−. Since
furthermore X− intersects by construction β− while Z doesn’t, X− has cardinality at
least 3. Let x < y < z be three elements in X−, one has σ(x, y) ∈ D, σ(y, z) ∈ D and
σ(x, y) ·σ(y, z) = σ(x, z) ∈ D. Hence by Fact 3, D is a regular. This menas that one can
use Lemma 12 and obtain a 1-right Ramseyan split s− for (X−, σ) of height at most |D|.
Symetricaly, by Lemma 12, we obtain a 1-left Ramseyan split s+ for (X+ \ X−, σ) of
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height at most |D|. We set sZ to be:

sZ(x) =

{

s−(x) for x in Z ∩X−

s+(x) + 1 for x in Z ∩X+ \X−

By convexity of Z,X−, and X+, and using the fact that s− is 1-right and s+ is 1-left,
we obtain that sZ is a Ramseyan split for (Z, σ) of height at most |D|+ 1.

We can now construct the split s by:

s(x) =











s′(x) if x ∈ β,

sZ(x) + 2(|S| − |D|) otherwise, where Z is the maximal convex

non-intersecting β and containing x.

By construction, this split is Ramseyan, and has height at most 2|S|. �

5. Application to countable scattered linear orderings

The subject of this section is to give a new simplified proof of the equivalence between
the acceptance by automata and the recognizability by finite ⋄-semigroups of languages
of words indexed by countable scattered linear orderings. We first give an overview of
this field.

5.1. Overview of the field

This line of research pursue the sequence of works establishing the equivalence for a
language of finite words L between the following items:

1. L is described by a regular expression,

2. L is accepted by a deterministic automaton,

3. L is recognized by a morphism of monoid/semigroup,

4. L is accepted by a non-deterministic automaton,

5. L is definable in monadic second-order logic.

Those equivalences are well known in formal language theory. The equivalence between
Item 1 and 2 is the famous theorem of Kleene [18]. Myhill has established the equivalence
between Items 2 and 3 (more precisely, Rabin and Scott give credit to Myhill for that).
Rabin and Scott have introduced in their seminal paper the notion of non-deterministic
automaton and presented the modern view on the equivalences of all items up to 4 [30].

The languages satisfying the condition above are called regular. From either Item 1
or Item 4, one easily gets that regular languages are closed under union, intersection and
projection (i.e., image under a letter to letter morphism). From either Item 2 or 3, one
obtains easily the closure under union, intersection and complement.

The monadic second-order logic (MSO for short) is the extension of first-order logic
with set-quantification. Each formula in this logic describes the set of words that satisfies
it. Item 5 states the equivalence between this form of description and regular languages.
One direction can be established using the closure properties of regular languages under
union, intersection, complement and projection. The other direction consists in encoding
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the semantic of automata in MSO, and is natural. This equivalence was used by Büchi
in his proof of the decidability of the satisfaction problem for MSO over finite words [9].

Those equivalences have been extended to various other settings. We are interested
here only in the extension to transfinite words: languages of words that are indexed by
possibly infinite linear orderings.

The starting point in this direction is the work of Büchi [10]. In this work, Büchi
extends non-deterministic automata to words of length ω. A new acceptance condition
is required: a run is accepting if it visits infinitely often some fixed set of states (the so-
called Büchi acceptance condition). The languages accepted by such automata happen
to be closed under union, intersection, projection, and complement (the difficult part).
This is sufficient for establishing the link with MSO, i.e., the implication from Item 4
to Item 5 (the other direction of the implication being once more simple). The equiva-
lence with a suitable form of regular expression is also natural, yielding an equivalence
between Item 1 and Item 4. Automata using the Büchi acceptance condition cannot be
determinized in general. Müller introduced independently a more expressive form of ac-
ceptance conditions [23] (a Müller condition consists of a set of sets of states F , and a run
is accepting if the set of states visited infinitely often belongs to F ). McNaughton showed
that automata using a Büchi acceptance condition can be transformed into determinis-
tic automata using a Müller acceptance condition [22], thus establishing the equivalence
between Items 2 and 4. The corresponding algebraic notions are Wilke algebras [33] and
ω-semigroups [24]. Those two objects are of different nature: Wilke algebras provide a
finite model for defining regular sets of infinite words, while ω-semigroups more precisely
reflect the algebraic structure of words of length ω (the set of infinite words of length ω is
the free ω-semigroup, while the free Wilke algebra is smaller and contains only ultimately
periodic infinite words). The link between those two notions is that every ω-semigroup
induces a Wilke algebra, while every finite Wilke algebra can be uniquely prolongated into
an ω-semigroup. Those works complete the task of extending the equivalences above to
words of length ω. The interested reader can refer to [25] for more detailed information.

The next step consists in extending the model to ordinals beyond ω. The first work
in this direction is also due to Büchi who introduced the notion of deterministic au-
tomata running on words of countable ordinal length [8]. Those automata used, apart
from standard transitions of finite word automata of the form Q × A → Q (in which
Q is the set of states and A the alphabet), limit transitions of the form P(Q) → Q.
Those transitions are fired when encountering a limit ordinal, based on the set of states
that appears infinitely close to the limit (i.e., the set of states reached cofinaly in the
past). Büchi establishes that the languages accepted by such automata are closed under
union, intersection, complement and projection, and thus are at least as expressive as
MSO (more precisely, the two formalisms are equi-expressive). Since a non-deterministic
automaton can be seen as accepting the projection of the language of its accepting runs
(which is accepted by a deterministic automaton), this work establishes in fact the link
between Item 2 and 4. From the closure properties we get the implication from Item 5
to Item 2. The corresponding regular expressions have been studied by Wojciechowski
[34] who established their equivalence with automata. The algebraic view of regularity
over countable ordinals was first studied in [3] through the use of ωn-semigroups, which
recognize languages of words indexed by ordinals less than ωn+1. Those correspond to
the expressive power of Choueka automata [13]. Finally, the algebraic structure of ω1-
semigroups introduced by Bedon and Carton gives a notion of recognizability suitable
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for languages of words indexed by countable ordinals, and is equivalent to the automata
introduced by Büchi for ordinals [4].

Though automata running over uncountable ordinals have been considered – e.g. by
Büchi –, the properties of such automata are not as good: the closure under complement
is lost, and as a consequence the equivalence with MSO does not remain either.

Beyond ordinals are scattered linear orderings: linear orderings that are nowhere
dense. Bruyère and Carton introduced regular expressions for words indexed by countable
scattered linear orderings [7], which happen to be equivalent to a natural extension of non-
deterministic ordinal automata by limit transitions from the right. Hence the equivalence
holds between 1 and 4. In the context of scattered linear orderings, it is not clear what a
deterministic automaton does mean. For this reason, we do not consider the equivalence
with item 2. The algebraic variant is due to Carton and Rispal and goes through the
use of ⋄-semigroups [11]. From those equivalences, every language definable in MSO over
countable scattered linear orderings is accepted by an automaton. The converse also
holds [2], and is more involved than in the finite case.

Automata running over words indexed by linear orderings beyond countable scattered
ones have been studied. For instance, the equivalence between Items 1 and 4 has been
extended to all linear orderings in [2]. However, the family of automata/expressions
described in the corresponding models are not closed under complement, i.e., this defines
classes of languages for which there is no hope to have an equivalence with Items 3 and 5.

From the equivalence with Item 5 over countable scattered linear orderings, we get
the decidability of the satisfiability of MSO over countable scattered linear orderings.
However, there is another way to obtain this decidability result, namely by an elementary
reduction to MSO over the rationals. Indeed every countable linear ordering is isomorphic
to a subset of (Q, <). Furthermore, among those subsets, the one that are scattered are
definable in MSO. Hence every satisfaction problem for MSO over countable scattered
linear orderings is reducible to the question whether (Q, <) models some MSO formula.
This latter problem is known to be decidable from the famous theorem of Rabin [29], and
also using the compositional method developed by Gurevich and Shelah in this context
[15, 16].

For this reason the interest of this study is not the decidability of the MSO theory of
countable scattered linear orderings itself, but rather the development of an automata-
theoretic comprehension of it. In particular the proof using the theorem of Rabin makes
use of tree automata, which is a much more involved object. Using automata running
directly over linear orderings is thus interesting by itself.

The contribution of this section is a new simplified proof of the translation from ⋄-
semigroups to automata over countable scattered linear orderings. Our new proof relies
on the use of Theorem 4. Le us remark that our result is in fact slightly stronger than
the one in [11]. The difference is that our model of automata is a priori weaker than
the automaton used in the original proof. In [11], the limit transitions follow a Müller
acceptance condition, i.e., limit transitions are fired based on the set of states appearing
infinitely close to the limit. In the present work, priority conditions are used: each state
has a priority, i.e., a nonnegative integer, and limit transitions are fired based on the
highest priority appearing infinitely close to the limit. This makes it more ressemblant
to the parity condition used in games and tree automata.

The remaining of this section is organized as follows. We first introduce automata
over countable scattered linear orderings (Section 5.2), then we present ⋄-semigroups
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(Section 5.3). In Section 5.4 we present a useful lemma concerning scattered linear
orderings. We finally establish the equivalence between automata and ⋄-semigroups in
Section 5.5.

5.2. Automata over countable scattered linear orderings

In this section, we define priority automata and show how they accept words indexed
by countable scattered linear orderings. Similar automata were introduced in [7], but
with a different definition for limit transitions. While the automata in [7] use limit
transitions that resemble the Müller acceptance condition, our model uses transitions
that are similar to the parity accepting condition. The notion of priority automaton
defined just below is new to this respect.

Definition 15. A priority automaton A = (Q,A, I, F, p, δ) consists of a finite set of
states Q, a finite alphabet A, a set of initial states I, a set of final states F , a priority
mapping p : Q 7→ [1, N ] (N being a nonnegative integer) and a transition relation δ ⊆
(Q×A×Q) ∪ ([1, N ]×Q) ∪ (Q× [1, N ]).

A run of the automaton A over an α-word u is a mapping ρ from α to Q such that
for all cuts c, c′:

• if c′ is the successor of c through x, then (ρ(c), u(x), ρ(c′)) ∈ δ,

• if c is a limit from the left, then (k, ρ(c)) ∈ δ for k = max
⋂

c′<c

p(ρ(]c′, c[)),

• if c is a limit from the right, then (ρ(c), k) ∈ δ for k = max
⋂

c′>c

p(ρ(]c, c′[)).

The first case corresponds to standard automata on finite words: a transition links one
state to another while reading a single letter in the word. The second case checks that
the highest priority appearing infinitely close to the left of c is allowed by the transition
relation. The third case is symmetric. An α-word u is accepted by A if there is a run ρ
of A over u such that ρ(⊥) ∈ I and ρ(⊤) ∈ F .

Example 16. Consider the priority automaton with states q, r, both of priority 0, alpha-
bet {a}, initial states {q, r}, final state q, and transitions {(q, a, q), (q, a, r), (0, q), (r, 0)}.
It accepts those words in {a}⋄ which have a complete domain. For this, note that a linear
ordering is complete iff no cut is a limit simultaneously from the left and from the right.

Consider a word u ∈ {a}⋄ which has a complete domain α. For c ∈ α, set ρ(c) to be q
if c is ⊤ or if c has a successor, else ρ(c) is r. Under the hypothesis of completeness, it is
simple to verify that ρ is a run witnessing the acceptance of the word. Conversely, assume
that there is a run ρ over the α-word u with α not complete. There is a cut c ∈ α which
is both a limit from the left and from the right. If ρ(c) is r, then, as c is a limit from the
left and there is no corresponding transition from its left, there is a contradiction; else
ρ(c) is q, and the same argument can be applied from the right of c. In both cases there
is a contradiction.

It is easy to prove that the languages of ⋄-words accepted by priority automata are
closed under union, and projection. The closure under intersection is simple in the model
used in [11], while it is not easy in our model. It is also easy to establish the decidability
of the emptiness problem. Below, after introducing the notion of ⋄-semigroup, we show
the more difficult closure under complement.
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5.3. On ⋄-semigroups

We present in this section ⋄-semigroups and the corresponding recognizable languages.
Formally, a ⋄-semigroup (S, π) is a set S equipped with an operator π mapping S⋄

to S, and which satisfies:

• for all s ∈ S, π(s) = s, and,

• for all countable scattered linear orderings α and families (ui)i∈α of words in S⋄,

π

(

∏

i∈α

π(ui)

)

= π

(

∏

i∈α

ui

)

.

Those properties express the fact that π is a generalized product operator: more precisely,
the rules correspond to a generalized form of associativity. For instance, for every u, v, w
in S, π(uπ(vw)) = π(uvw) = π(π(uv)w). In this sense, every ⋄-semigroup can be seen as
a semigroup with the product defined by u · v = π(uv). The free ⋄-semigroup generated
from a finite alphabet A is (A⋄,

∏

).
Given two ⋄-semigroups (S, π) and (S′, π′), a mapping ϕ from S to S′ is a mor-

phism of ⋄-semigroups if for every scattered linear ordering α, and every (xi)i∈α in S,
ϕ(π(

∏

l∈α xl)) = π′(
∏

l∈α ϕ(xl)). A language K ⊆ A⋄ is ⋄-recognizable if there exists
a morphism of ⋄-semigroups from A⋄ to a finite ⋄-semigroup saturating K; i.e., such
that ϕ−1(ϕ(K)) = K. As usual with recognizability, ⋄-recognizable languages are closed
under union, intersection and complement.

From now, we denote π(uv) simply by uv. More generally, given a word u in S⋄, we
do not distinguish between u and π(u). Similarly, we abbreviate π(

∏

i∈(N,<) u) by uω

and π(
∏

i∈(−N,<) u) by u−ω. We also denote by uζ the value u−ωuω.
The following theorem establishes that a finite ⋄-semigroup is entirely described by the

semigroup it induces together with the exponent ω and −ω. This result was announced
by Zoltán Ézik during his invited talk at Dlt 02. The proof is due to Carton and
Rispal [11].

Theorem 5 (Theorem 10 in [11]). Given a finite semigroup (S, ·), and mappings r :
S → S, and l : S → S satisfying for all a, b ∈ S and positive integer n:

r(a · b) = a · r(b · a) , l(a · b) = l(b · a) · b ,

r(an) = r(a) , and l(an) = l(a) ,

there exists a unique ⋄-semigroup (S, π) which coincides with S, · as a semigroup, and
such that sω = r(s) and s−ω = l(s) for all s ∈ S.

The proof of this result is technical and tedious since both the existence and the unique-
ness of the ⋄-semigroup have to be established. This theorem is in fact an extension to
the case of scattered linear orderings of Wilke’s result sating that every Wilke algebra
can be uniquely extended into an ω-semigroup.
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Example 17. Consider the set S = ({0, 1}×{0, 1})∪{⊥}. Define the product . and the
exponent mappings ω and −ω by, for every x in S and a, b, a′, b′ in {0, 1},

⊥x = x⊥ = ⊥ (a, b)(a′, b′) =

{

⊥ if b = a′ = 1

(a, b′) otherwise

⊥ω = (1, 1)ω = ⊥ (a, b)ω =

{

⊥ if a = b = 1

(a, 1) otherwise

⊥−ω = (1, 1)−ω = ⊥ (a, b)−ω =

{

⊥ if a = b = 1

(1, b) otherwise.

By Theorem 5, this (S, ·) together with the mappings ω and −ω defines uniquely a ⋄-
semigroup (S, π).

Let u be in {a}⋄ of domain α. Set ϕ(u) to be ⊥ if α is not complete. If α is complete,
set ϕ(u) to be (a, b) where a = 0 if α has a minimal element, else a = 1, and b = 0
if α has a maximal element, else b = 1. This ϕ is a morphism from ({a}⋄,

∏

) to (S, π).
It follows that the set of words in {a}⋄ of complete domain is ⋄-recognizable: it is equal
to ϕ−1({0, 1} × {0, 1}).

5.4. A lemma for scattered linear orderings

The subject of this section is to establish Lemma 18 which is a convenient way to
prove results on scattered linear orderings.

Let X,Y be two nonempty subsets of a linear ordering α with X < Y ; one says
that X and Y are contiguous if there is no z such that X < z < Y . The following lemma
is used for proving the correctness of the construction in Section 5.

Lemma 18. Given a scattered linear ordering α and an equivalence relation R over α
satisfying:

for all X < Y contiguous subsets of α,

X2 ⊆ R and Y 2 ⊆ R implies (X ∪ Y )2 ⊆ R;

Then R = α2.

Proof. Consider the set S of equivalence relations included in R such that every equiv-
alence class is convex. It is nonempty since the equality relation over α belongs to S.
Order S by inclusion. Given a chain in S, the union of all relations in the chain is it-
self an element of S: the chain has an upper bound in S. Then, according to Zorn’s
lemma, there is a maximal element ∼ in S. Since α is scattered and ∼∈ S, α/∼ is itself
a scattered linear ordering. Assume that it has at least two distinct equivalence classes.
Since α/∼ is scattered, there exist two contiguous equivalence classes X < Y . Applying
the hypothesis leads to (X ∪ Y )2 ⊆ R, and consequently ∼( (∼ ∪(X ∪ Y )2) ∈ S. It
contradicts the maximality of ∼. �
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5.5. Equivalence between automata and recognizability

We now aim at:

Theorem 6 ([11]). A language of ⋄-words is ⋄-recognizable iff it is accepted by a priority
automaton.

Let us remark once more that the proof here is a bit more general since our automata
are parity-like, while the original proof uses Müller-like automata. Since recognizability
entails directly closure under complement, we obtain as a corollary.

Corollary 19. The languages of ⋄-words accepted by priority automata are closed under
complement.

The proof from right to left of Theorem 6 is standard (see [11]), we do not establish
it here. Let us establish the other direction. We fix ourselves a ⋄-semigroup (S, π), a
morphism of ⋄-semigroups ϕ from (A⋄,

∏

) to (S, π) and a language L = ϕ−1(ϕ(L)).
Let k be a non-negative integer, a be in S, and ι be among [], [[, ]], ][, set S ι

k(a) to be the
set of ⋄-words u such that ϕ(u) = a and (αι, ϕu) admits a Ramseyan split of height k

(by convention, ε does not belong to S
][
k (a)). We claim the following.

Claim: For every non-negative integer k, a in S and ι = [], [[, ]], ][, S ι
k(a) is accepted

by a priority automaton.

Assuming the claim, since by Theorem 4, ϕ−1(a) = S
[]
2|S|(a), we deduce that ϕ

−1(a) is

accepted by a priority automaton. Since furthermore L is a finite union of such languages
and priority automata are closed under union, this concludes the proof.

The claim itself is obtained by an induction on k. For the base case k = 0 one remarks

that the following languages are accepted by priority automata (recall that S
][
0 (a) does

not contain ε by convention):

S
][
0 (a) = ϕ−1(a) ∩A , S

[[
0 (a) = S

]]
0 (a) = ϕ−1(a) ∩ {ε} , and S

[]
0 (a) = ∅ .

Let now k ≥ 1. Given an idempotent e in S, set Ce,k to be the set of ⋄-words u of
domain α such that ϕ(u) = e, and there exists a Ramseyan split s of height k of α such
that s(⊥) = s(⊤) = 1.

Our first step is to show how to construct an automaton accepting Ce,k+1 from au-
tomata accepting the languages S ι

k(a). For this, consider the following languages:

Me,k = S
][
k (e) , M←e,k =

∑

ae−ω=e

S
]]
k (a),

M→e,k =
∑

eωa=e

S
[[
k (a), and M→←e,k =

∑

eωae−ω=e

S
[]
k (a).

By induction hypothesis, those languages are accepted by priority automata, namely
Me,k,M

←
e,k,M

→
e,k and M→←

e,k . Wlog., we choose them to use distinct priorities, and we
set n − 1 to be the maximal priority involved in those automata. We use them in the
construction of the automaton Ae,k+1 depicted Fig. 2.

This construction makes use of ε-transitions. Those transitions are here just for clar-
ifying the presentation, and can be removed using standard techniques. The automaton
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p : n r : n

q : n

M→
e,k M←

e,k

Me,k

M→←
e,k

ε ε

ε ε

ε ε

ε ε

n n

Figure 2: The automaton Ae,k+1

itself is made of disjoint copies of the automata accepting Me,k,M
→←
e,k ,M→

e,k, and M←
e,k,

together with three new states p, q, r. Each ε-transition entering one of the subautomata
represents in fact all possible ε-transitions with as destination an initial state of this
automaton; similarly, every ε-transition exiting a subautomaton represents all possible
ε-transitions with as origin any of the final states of the automaton. The priority of the
new state q is n, a priority unused elsewhere by construction. One chooses also p and r
to have priority n (this is not of real importance since it is impossible to see infinitely
often p or r in a run without seeing infinitely often q: the priority of q only matters).
The two dashed arrows represent the two limit transitions (n, p) and (r, n).

Let Le,k+1[q1, q2] be the language accepted by this automaton with initial state q1
and final state q2 for q1, q2 among p, q, r.

The core of the proof is embedded in the following lemma.

Lemma 20. For every idempotent e, Le,k+1[q, q] = Ce,k+1.

Proof. We first prove Le,k+1[q, q] ⊆ Ce,k+1.

Let u be in Le,k+1[q, q], we have to construct a Ramseyan split s of height k+1 of ϕ
[]
u

with s(⊥) = s(⊤) = 1. Since u ∈ Le,k+1[q, q], there exists a corresponding run ρ of the
automaton Ae,k+1 from state q to state q. Let I be the set of cuts c such that ρ(c) = q.

Set s(c) = 1 for all c in I. Let now J ⊆ α be a maximal interval not intersecting I.
We aim at defining s over J . Let

x = sup{z < J : z ∈ I} and, y = inf{z > J : z ∈ I} .

Then J is either [x, y], [x, y[, ]x, y] or ]x, y[. We only treat the case J = [x, y[ which is
representative of the other cases. In this case, since y 6∈ J , y ∈ I and hence ρ(y) = q.
Furthermore, since x ∈ J , there exists an infinite sequence x1 < x2 < . . . of length ω and
limit x in I. As the priority of ρ(xi) = q is the maximal one, namely n, the only possible
state for ρ(x) compatible with limit transitions is p. Furthermore the state q is never
visited by ρ in [x, y[ (by definition of J). By inspecting the automaton, we conclude that
the only possibility is that ρ restricted to [x, y] is in fact a run of the subautomaton M→

e,k.

By induction hypothesis, since M→e,k is a union of languages S
[[
k , this means that there

exists a split sJ of height k of J , Ramseyan for σ. We set s(z) = sJ(z) + 1 for all
z ∈ J . For the other possibilities for J , runs of the automata M→

e,k, M
←
e,k and M→←

e,k

are involved in a similar way.

We claim now: For every x < y in I, ϕu(x, y) = e.
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Let R be the equivalence relation over I defined by xRy if x = y or x < y and σ(x, y) =
e or y < x and σ(y, x) = e. Let X < Y be nonempty contiguous subsets of I with X2 ⊆ R
and Y 2 ⊆ R. Let J be

⋂

x ∈ X
y ∈ Y

]x, y[ .

By construction, J is an interval. Furthermore, sinceX and Y are contiguous in I, J does
not intersect I. It is also very easy to show that J is a maximal interval nonintersecting I.
Let

x = sup{z < J : z ∈ I} and, y = inf{z > J : z ∈ I} .

We perform a case distinction on whether J is [x, y], [x, y[, ]x, y] or ]x, y[. Let us treat
the case J = [x, y[. As mentioned in the construction of s, this means that there is an
accepting run of M→

e,k over [x, y]. Hence, ϕu(x, y) = a is such that eωa = e (definition
of M→e,k). Let x′ ∈ X. By definition of J , y ∈ Y . Let us show ϕu(x

′, y) = e. For this,
remark that there exists an infinite sequence x′ = x0 < x1 < . . . in X of length ω and
limit x. Since all the xi’s belong to X, ϕu(xi, xi+1) = e for all i ∈ ω. We conclude
that ϕu(x

′, x) = eω. Hence

ϕu(x
′, y) = ϕu(x

′, x)ϕu(x, y) = eωa = e .

Let now y′ be in Y . If y′ = y then ϕu(x
′, y′) = ϕu(x

′, y) = e. Otherwise, y′ > y, and
ϕu(y, y

′) = e since y, y′ ∈ Y . And we have ϕu(x
′, y′) = ϕu(x

′, y)ϕu(y, y
′) = ee = e. We

conclude that XRY . The same argument is used for the other possibilities for J .
Hence the hypothesis of Lemma 18 holds, and by application of the lemma, we deduce

that R = I2. This concludes the proof of the claim.

Let us prove that s is Ramseyan. Let x < y and x′ < y′ lie all four in the same
class of n-neighborhood. If n ≥ 2, according to the n-neighborhood relation, x, y, x′

and y′ lie in a common interval J nonintersecting I. Wlog., let us choose J maximal.
According to the definition of s, s equals sJ + 1 over J . This means that x, y, x′, y′ were
(n−1)-neighbors in J . Hence, ϕu(x, y) = ϕu(x

′, y′) = ϕu(x, y)
2 since sJ is Ramseyan

for (J, ϕu). If n = 1, all x, y, x′, y′ lie in I. In this case ϕu(x, y) = ϕu(x
′, y′) = e = e2

according to the claim above.
Overall, Le,k+1[q, q] ⊆ Ce,k+1

Let us turn ourselves to the other inclusion: Ce,k+1 ⊆ Le,k+1[q, q]. Let u be a ⋄-word
indexed by α in Ce,k+1. By definition of Ce,k+1, there exists a Ramseyan split s of α of
height k + 1 such that s(⊥) = s(⊤) = 1. Let I be s−1(1).

We construct a run ρ ∈ Qα in the following way (Q is the set of states of Ae,k+1).
Set ρ(x) = q for all x in I. We define ρ elsewhere by copying runs of the automata Me,k,
M←

e,k, M
→
e,k and M→←

e,k . More precisely, consider a maximal interval J ⊆ α noninter-
secting I. Let us define ρ over J and let

x = sup{z < J : z ∈ I} and, y = inf{z > J : z ∈ I} .

Four cases happen depending on whether J is [x, y], [x, y[, ]x, y] or ]x, y[. We treat the
case of [x, y[, the others being similar.
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If J = [x, y[, this means that x 6∈ I, but y ∈ I. As a consequence, there is a sequence
x1 < x2 < . . . in I of length ω and limit x. Since s is Ramseyan, ϕu(xi, xi+1) = e for
all i. This means that ϕu(x1, x) = eω. Furthermore, still by Ramseyness, ϕu(x1, y) = e.
We deduce that e = ϕu(x1, y) = ϕu(x1, x)ϕu(x, y) = eωϕu(x, y). By definition of M→e,k
we obtain that u|x,y is accepted by M→

e,k. We define ρ to replicate the corresponding run
over J using the instance of M→

e,k it contains. We have to prove that this choice indeed
produces a run. Over ]x, y[ this is a correct run since the original run was itself correct.
It remains to show the correctness of the run to the left of x. But, we already know that
the maximal priority reaching x from the left is n since the sequence of the xi’s tends
to x and by construction correspond to a priority n which is maximal. We conclude that
there is a corresponding transition in Ae,k+1. �

We can derive from the last lemma the following.

Corollary 21. Le,k+1[q, p] = Cω
e,k+1, Le,k+1[r, q] = C−ωe,k+1, and Le,k+1[r, p] = C ζ

e,k+1.

Finally, for ξ, ξ′ ∈ {[, ]} and a ∈ S, S ξξ′

k+1(a) is proved accepted by a priority automaton
using the following equation:

S ξξ′

k+1(a) = S ξξ′

k +
∑

bc=a

S
ξ[
k (b)S

]ξ′

k (c)

+
∑

bec = a

e2 = e

S
ξ[
k (b)Ce,k+1 S

]ξ′

k (c) +
∑

beωc = a

e2 = e

S
ξ[
k (b)Cω

e,k+1 S
[ξ′

k (c)

+
∑

be−ωc = a

e2 = e

S
ξ]
k (b)C−ωe,k+1 S

]ξ′

k (c) +
∑

beζc = a

e2 = e

S
ξ]
k (b)C ζ

e,k+1 S
[ξ′

k (c)

This equation is obtained by a case analysis on the split s witnessing u ∈ S ξξ′

k+1(a). The
first case is when s−1(1) is empty, the second when it is a singleton. The following are
when s−1(1) contains at least two elements; the four cases corresponding to the four
possibilities of presence or absence of a minimal and/or a maximal element in s−1(1).
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