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Abstract. This chapter is devoted to the presentation of the factorisation forest theorem, a deep
result due to Simon, which provides advanced Ramsey-like arguments in the context of algebra, au-
tomata, and logic. We present several proofs and several variants the result, as well as applications.

1 Introduction

In automata theory, it is a very common and elementary argument to remark that, beyond a 10

certain size, every run of a finite state automaton contains some repetition of a state. Once
this repetition is witnessed, using copy and paste of the piece of run between those two
occurrences, one can produce arbitrarily long valid versions of this run. This is the content
of the “pumping lemma”, which is nothing but a direct consequence of the pigeonhole
principle. 15

The argument can also be used in the reverse way; whenever a run is too long, it
contains a repetition of states, and it is possible to deletethe piece of run separating
those two occurrences. In this case, it is used for reducing the size of the input. These
arguments are used in many situations. The first one is typically used for proving the
impossibility for a finite state automaton to perform some task, such as recognising a 20

given language. The second is used for proving the existenceof small witnesses to the
non-emptiness of a regular language,i.e., a small model property in the terminology of
logic. Those arguments are among the most important and useful ones in automata theory.
They illustrate in the most basic way the central importanceof “finding repetitions” in this
context. All the content of this chapter is about “finding repetitions” in a more advanced 25

way.
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In some situations, the above argument of “state repetition” is not sufficient, and one
is interested in finding the repetition of a “behaviour” of the automaton. A behaviour here
is any piece of information of bounded size associated to a word. A typical behaviour of a
(non-deterministic finite state) automaton over a wordu is the set of pairs(p, q) such that
the automaton has a run fromp to q while reading the wordu. This set of pairs gathers
all the relevant information concerning how the automaton can behave while reading the
word, whatever is the context in which the word is plugged. Given an input word, one can
associate a behaviour to each factor of the word, and the theorem of Ramsey tells us that
every sufficiently big word contains long repetitions of identical behaviours: for eachn,
every sufficiently long wordu can be decomposed into

v u1 u2 . . . unw ,

in which all the wordsuiui+1 · · ·uj for i 6 j exhibit the same behaviour. Let us empha-
sise the difference with the pumping argument given above. Indeed, a run is a labelling of
the positions in a word, while behaviours label factors of the word: the number of labels
in a run is linear, while the number of behaviours is quadratic. However, the theorem of 30

Ramsey is of similar nature as the pumping lemma as it relies on a pigeonhole principle.
A famous use of this Ramsey argument in automata theory is theproof of closure under

complement of Büchi automata [9]. A Büchi automaton is a non-deterministic finite state
automaton running over infinite words. It accepts a word if there is a run visiting infinitely
many times a certain set of states (the so-called Büchi condition). Since the input words 35

are infinite, there are uncountably many potential runs of this automaton over each input,
some of them being accepting, some other not. The problem of an automaton for the
complement is to provide a proof (which takes the form of a run) that none of these many
runs of the original automaton is accepting. Of course, it isnot possible to keep separately
track of each run of the original automaton, since there are too many of them. It is also 40

not possible–as one would do for finite word automata–to keeptrack only of the reachable
states at each step, as one would loose the information relevant for the Büchi condition.
The key idea of Büchi is to guess a decomposition of the input word into an infinite
repetition of the same behaviour. This is possible thanks tothe theorem of Ramsey as
we described above in the finite case. This idea granted, the construction becomes easy: 45

the automaton guesses this repetition, checks that it is consistent with the input word
(this involves easy local verifications over finite words), and since the infinitely repeated
behaviour contains sufficient information for asserting whether the word is accepted or
not, the automaton can deduce from it when no run of the original automaton is accepting.
Here, the theorem of Ramsey is used for making explicit the regularity in the behaviours 50

of the original automaton. The reader is welcome to proceed to Chapter?? for a thorough
presentation of this technique.

The factorisation forest theorem, which is the subject of this chapter, goes even one
step further. It does not only establish the existence of therepetition of some behaviour
(as the theorem of Ramsey does), but it completely factorises each word into a structure 55

(a factorisation tree) which exhibits repetitions of behaviours everywhere.
The theorem can be understood as a nested variant of the theorem of Ramsey. Consider

some input word. A single use of the theorem of Ramsey splits the word into several
sub-words corresponding to the same behaviour (plus two words for the extremities).
However, each of those sub-words can itself also be very long, and one could again use 60
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the theorem of Ramsey on each of them, thus providing a sub-decomposition. In fact, one
would like to iterate this process until the word is entirelydecomposed, in the sense that
the remaining words are just isolated letters that we are notinterested in factorising. The
result of this process can be represented as a tree, the root of which is the initial word,
which has as children the words obtained by the first application of Ramsey, etc... This 65

tree is aRamsey factorisation tree.
In general, there is not much one can say about such an iteration. For instance, there

is a priori no upper bound on the number of iterations required to completely decompose
the word. What Simon’s factorisation forest theorem teaches us is that, under the correct
assumptions, this induction need only be iterated a boundednumber of times. Said differ- 70

ently, there is a bound such that every input word admits a Ramsey factorisation tree of
height at most this bound.

The required assumption is that the behaviours are equippedwith a finite semigroup
structure, and that the labelling of the input word by behaviours is consistent with this
structure. This means that the behavioursS are equipped with an associative product·, 75

such that ifu has behavioura andv has behaviourb, thenuv has behavioura · b. For-
mally, it amounts to require that the mapping from words to behaviours is a morphism of
semigroups. The factorisation forest theorem can then be presented as follows:

factorisation forest theorem (Simon [30]):For all finite semigroupsS and
all morphismsα from A+ to S, there exists a boundk such that every word 80

in A+ has a Ramsey factorisation tree of height at mostk.

Though very close in spirit, the factorisation forest theorem and the theorem of Ram-
sey are incomparable. Simon’s theorem is weaker since it requires an extra hypothesis,
namely that the behaviours be equipped with a semigroup structure, and this is a very
strong assumption. But under this assumption, the factorisation forest theorem gives a 85

much more precise result than the theorem of Ramsey. Technically, the two results are
also proved using very different arguments. The theorem of Ramsey is proved by suc-
cessive extraction processes,i.e. an extended pigeon-hole principle, while the proof of
the factorisation forest theorem is based on algebraic arguments involving the theory of
semigroup ideals (the relations of Green). 90

To conclude, the factorisation forest theorem is to be used when arguments based on
the pigeonhole principle and the theorem of Ramsey are not sufficient anymore. The price
to pay is to provide a semigroup structure for describing theproblem. This is often the
case when problems arise from automata or logic.

The factorisation forest theorem was introduced by Simon [30] as a generalisation of 95

the lemma of Brown [7, 8] about locally finite semigroups. Simon gave several proofs
of this theorem [30, 32]. Other proofs improving on the bounds have later be proposed
[12, 15, 20]. Section 3 is devoted to several presentations of the theorem (Theorems 3.1
and 3.4), to its proof, and to some optimality considerations. We also presents some
extensions of the result. 100

Concerning applications, the factorisation forest theorem allows us to give a very sim-
ple proof of the lemma of Brown. It has also been used by Simon to prove the decidability
of the finite closure property in the tropical semiring. The tropical semiring is the set of
non-negative integersN augmented with infinity and equipped with addition as product,
and minimum as sum. The finite closure problem is, given a finite set of square matrices105
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of the same size over the tropical semiring, to determine if their closure under product is
finite. Simon proved the decidability of this problem in [28]. The finite section problem
is more general, and consists in determining precisely whatentries in the matrices can
take arbitrary high values. This problem is equivalent to anautomaton related problem:
the limitedness of distance automata. Distance automata are non-deterministic finite state 110

automata with weak counting capabilities. These automata compute functions, and the
problem of limitedness of distance automata consists in determining whether the func-
tion computed by a given distance automaton is bounded. Hashiguchi established the
decidability of this problem in [19]. Several proofs are known of this result. Leung
proposed a very natural algorithm for solving this problem,the proof of correctness of 115

which is rather complex [22, 23]. Simon gave a simplified proof of Leung’s algorithm
using the forest factorisations theorem [31]. Another application of the forest factorisa-
tions theorem is in the characterisation of certain classesof languages. For instance, it
has been used by Pin and Weil for giving an effective characterising of the polynomial
languages [26]. Polynomials are languages describable as afinite sum of languages of the 120

formA∗
0a1A

∗
2 . . . anA

∗
n in whicha1, . . . , an are letters, andA1, . . . , An are sets of letters.

It is possible to characterise the syntactic ordered monoids of languages are described by
polynomials. The technique has been used for an extended result in [6]. Inspired by these
works, a similar technique has also been used for characterising another pseudovariety of
regular languages [1]. Section 4 is devoted to presenting and proving those applications. 125

In fact, these applications can be simplified if we do not refer to factorization trees. That is
why we provide two variant presentations of the forest factorization theorem, often easier
to use (Theorems 4.1 and 4.2).

The factorisation forest theorem, in its original form, canonly be used for words.
There exists a variant of this theorem which allows us–in some specific situations–to 130

apply it to trees [13]. We present this result in Section 5 (Theorem 5.2).
In Section 6, we present another use of the factorisation forest theorem, as an accel-

erating structure. This kind of application is very naturally performed on trees, using
the tree-related variant of the theorem from Section 5. The principle consists in pre-
computing a factorisation tree over an input, such that one is able to answer specific 135

queries very efficiently. The first result of this form was to show that every monadic
second-order formula using free first-order variables can be effectively transformed into
an equivalent (equivalent on trees equipped with the ancestor relation) first-order (in fact
Σ2) formula using some extra monadic second-order definable unary predicates. This
technique has also been used in database theory to give constant delay enumeration prob-140

lem for trees. It consists, given a query, to pre-process thedatabase (a tree), and then to
enumerate all solutions to the query, each of them in time linear in its size (linear time in
the solution if the solutions consists of sets).
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2 Some definitions

2.1 Semigroups and monoids 145

An alphabetA is a finite set ofletters. A word over a finite alphabetA is a sequence of
lettersu = a1 . . . an. If n is null, it is called theempty wordand is writtenε. The set of
words overA isA∗ and the set of non-empty words isA+.

A semigroupS = 〈S, ·〉 is a set equippedS with an associative operation·. A monoid
M is a semigroup〈M, ·〉 that contains aneutral element1M, i.e., an element such that 150

1M · x = x · 1M = x for all x ∈ M . Note that we do not enforce a semigroup to be
non-empty (while a monoid is). Agroupis a monoid such that for every elementx, there
existsx−1 such thatx ·x−1 = x−1 ·x = 1. An idempotentin a semigroup is an elemente
such thate2 = e.

A semigroup morphismfrom a semigroupS = 〈S, ·〉 to a semigroupT = 〈T, ·〉 is 155

a functionf from S to T sucht hatf(x · y) = f(x) · f(y) for all x, y in S. A monoid
morphismis a semigroup morphism from a monoid to another monoid whichis further
required to map the neutral element of the first monoid to the neutral element of the second
monoid.

Given a semigroupS = 〈S, ·〉, one denotes byπS the unique semigroup morphism160

from S+ to S which coincides with the identity on letters,i.e., πS(a) = a andπS(ua) =
πS(u) · a, wherea ∈ S. For simplicity, we often omit theS subscript and simply writeπ.

A semigroupT = 〈T, ·′〉 is a sub-semigroupof a semigroupS = 〈S, ·〉 if T ⊆ S
and ·′ coincides with· on T . One usually use the same notation· for ·′. For monoids,
one also requires that the neutral elements of the monoid andits submonoidcoincide. 165

Given a setA ⊆ S, 〈A〉S is the least subsemigroup ofS which containsA. It is equal
to 〈π(A+), ·〉. One uses the same notation for monoids.

For a thorough introduction to semigroups, we refer the reader to [21, 25].

2.2 Linear orderings and multiplicative labellings

A linear orderingis a set equipped with a total order. Appart from Section 3.5,we will 170

only consider finite linear orderings. Typically, given a word u = a1 . . . an, we consider
its domaindom(u) = {1, . . . , n} (we can see a word as a function from its domain to its
alphabet) and its set ofcutscuts(u) = {0, . . . , n}. A cut is a position between letters.
The cuti for i = 1, . . . , n − 1 represents the position between lettersi andi + 1. The
cut0 represents the beginning of the word, and the cutn the end of the word. Cuts among175

1, . . . , n − 1 are calledinner cuts. The set of inner cuts isinner -cuts(u). Given two
cutsi < j, the factor between positionsi andj is ui,j = ai+1ai+2 · · · aj .

Let α be a linear ordering and〈S, ·〉 a semigroup. Amultiplicative labelling1 is a
mappingσ from the set of ordered pairs(x, y) ∈ α2 such thatx < y to S such that:

for all x < y < z in α, σ(x, y) · σ(y, z) = σ(x, z) .

Given a semigroup morphismϕ from A+ to some semigroup〈S, ·〉 and a wordu in A+,
there is a natural way to construct a multiplicative labellingϕu from cuts(u) to 〈S, ·〉 as

1It is called an additive labelling in the context of the composition method [27].
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follows. For every two cutsx < y in cuts(u), set

ϕu(x, y)
def
= ϕ(ux,y) .

This mapping is naturally a multiplicative labelling sincefor all x < y < z in cuts(u),
ϕu(x, y) · ϕu(y, z) = ϕ(ux,y) · ϕ(uy,z) = ϕ(ux,yuy,z) = ϕ(ux,z) = ϕu(x, z).

This view of susing linear orderings and multiplicative labellings rather than words 180

and morphisms is non-standard. It has several advantages inthe present context. A first
technical advantage is that some operations are easier to describe, for instance restricting
a multiplicative labelling to a sub-ordering is straightforward (this is used several times
in the main proof in Section 3.2). Another advantage is that its extension to infinite linear
orderings is more natural than the use of infinite words (see Section 3.5). 185

2.3 Standard results on finite semigroups

In this section, we recall some basic definitions and gather results concerning finite semi-
groups. The reader can refer to [21, 25] for more details on the subject.

Given a semigroupS, S1 denotes the monoidS itself if S is a monoid, or the semi-
groupS augmented with a new neutral element1 otherwise, thus makingS a monoid. 190

The important notions to prove the factorisation forest theorem are Green’s relations.
Those relations give a comprehensive understanding of the structure of a (finite) semi-
group. However, in this survey, we need Green’s relations only for proving the result
of forest factorisation (and its deterministic variant). Green’s relations are not used in
the various applications of those theorems. In fact, one wayto see the result of factori- 195

sation forests is as a convenient and easy to use result whichgives access to non-trivial
consequences of the theory of Green’s relations.

The Green’s relations are defined by:

a 6L b if a = cb for somec in S1 a L b if a 6L b andb 6L a

a 6R b if a = bc for somec in S1 aR b if a 6R b andb 6R a

a 6J b if a = cbc′ for somec, c′ in S1 a J b if a 6J b andb 6J a

a 6H b if a 6L b anda 6R b aH b if a L b andaR b

Fact 2.1. Let a, b, c be inS. If a L b thenac L bc. If aR b thencaR cb. For everya, b
in S, a L cR b for somec iff aR c′ L b for somec′.

As a consequence of the last equivalence, one defines the lastof Green’s relations:

aD b iff a L cR b for somec in S ,

iff aR c′ L b for somec′ in S .

The key result being (here the hypothesis of finiteness ofS is mandatory): 200

Fact 2.2. D = J .

For this reason, we refer from now on only toD and notJ . However, we will use the
preorder6J (which is an order of theD-classes).
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An elementa in S is calledregular if asa = a for somes in S. A D-class isregular
if all its elements are regular. 205

Fact 2.3. A D-classD is regular, iff it contains an idempotent, iff everyL-class inD
contains an idempotent, iff everyR-class inD contains an idempotent, iff there exists
a, b in D such thatab ∈ D.

Fact 2.4. For everya, b in D such thatab ∈ D, aR ab andb L ab. Furthermore, there is
an idempotente in D such thata L e andbR e. 210

Fact 2.5. All H-classes in aD-class have the same cardinality.

Fact 2.6. LetH be anH-class inS. Either for alla, b in H , ab 6∈ H ; or for all a, b in H ,
ab ∈ H , and furthermore(H, .) is a group.

3 The factorisation forest theorem

In this section, we give various statements for the factorisation forest theorem. We start215

with a formulation via splits. We then give a presentation interms of Ramsey trees, the
original one of Simon. A last presentation, more algebraic,is also given in Section 4.

3.1 A statement via splits

A split of heighth, h being a non-negative integer, over a linear orderα is a mapping
from the positions ofα to {1, . . . , h}. A split s induces an equivalence relation∼s overα
defined by:

x ∼s y if s(x) = s(y) ands(x) > s(z) for all x 6 z 6 y .

A split s of heighth is callednormalisedif s(minα) = h.
In the following drawing, the points of the linear order〈{0, . . . , 13}, <〉 are drawn at 220

different height according to the value of the split, yielding some sort of a landscape of
mountains. The equivalence classes between points are depicted using gray lines. Graph-
ically, two points are equivalent for the split if it is possible to go from one to the other by
flying horizontally without crashing into a mountain.

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
225

A split overα is Ramsey for a multiplicative labellingσ overα if, for every equivalence
classeC of ∼, there exists an idempotente such thatσ(x, y) = e for all x < y in C.

Consider for instance the (semi)groupZ/3Z and the alphabet{0, 1, 2}, with the ob-
vious morphism. Consider now the wordu = 1112022201212 over this alphabet which
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induces a multiplicative labellingσu. The split of the previous example happens to be230

Ramsey for this labelling:

1 1 1 2 0 2 2 2 0 1 2 1 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13

One can verify thatσu(0, 7) = σu(7, 10) = σu(10, 12) = 0 (top most equivalence class),
σu(2, 3) = σu(4, 5) = 0, andσu(8, 9) = 0. All the other classes are singletons. Overall,
the split is Ramsey forσu. 235

The factorisation forest theorem states that there is a bound such that every multiplica-
tive labelling over a finite linear order admits a Ramsey split of height at most this bound.
The statement below provides the boundN(S) (defininition below). In practice, one often
over-approximates this value simply by|S|, though this approximation may be far from
optimal in some cases. 240

Theorem 3.1. For every multiplicative labellingσ of a finite linear ordering by a fi-
nite semigroupS, there exists a normalised splits which is Ramsey forσ, of height at
mostN(S). In the above statement, the valueN(S) is the maximum over all chains
ofD-classes

D1 <J · · · <J Dk

of the sum
∑k

i=1 N(Di), whereN(S) = 1 if D is irregular, andN(D) is the number of
elements inD which areH-equivalent to an idempotent, otherwise.

The proof of this theorem is the subject of the next section.

3.2 Proof of the factorisation forest theorem

This proof follows the scheme used in [14, 15]. Other modern proofs of the factorisation 245

forest theorem such as in [20], [3] or [16] do not use the splitformalism, but involve
essentially the same arguments.

Along this proof,σ denotes a multiplicative labelling from a finite non-empty linear
orderingα to the finite semigroup〈S, ·〉 of Theorem 3.1. We denote byσ(α) the set of
elements of the semigroup occurring inσ, i.e., {σ(x, y) : x, y ∈ α, x < y}. 250

The proof consists of a case distinction according to Green’s relations. In each case, a
different argument is used for constructing the split. The first one is the case of a single
H-class which contains an idempotent,i.e., the case of sub-groups.

Lemma 3.2. LetH ⊆ S be anH-class such that〈H, ·〉 is a group and letσ be a multi-
plicative labelling such thatσ(α) ⊆ H . Then there exists a normalised Ramsey splits of 255

height at most|H | ofα, σ.

Proof. Let a1, . . . , a|H| be an enumeration of the elements inH such thata|H| = 1H
(1H denotes the neutral element of〈H, ·〉). Letx0 beminα. We defines by s(x0) = |H |
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and, for ally ∈ α with y > x0, s(y) = k wherek is the unique number such thatak =
σ(x0, y).

s(y) =

{

|H | if y = x0

k if y > x0 andak = σ(x0, y).

We prove thats is Ramsey forα, σ by showing thatσ(x, y) = 1H for all x < y such
thats(x) = s(y). We distinguish two cases. Ifx = x0, thens(y) = |H |. This means
by construction ofs thatσ(x0, y) = a|H| = 1H . Otherwise, one knows by construction
thatσ(x0, x) = σ(x0, y). Call this valuea. We have

a = σ(x0, y) = σ(x0, x) · σ(x, y) = a · σ(x, y) .

Since〈H, ·〉 is a group, dividing bya, one gets toσ(x, y) = 1H . Consequentlys is
Ramsey. It is also clear thats is normalised by construction.

The second case corresponds to a single regularD-class.

Lemma 3.3. LetD be a regularD-class inS andσ be a multiplicative labeling over a 260

linear orderingα such thatσ(α) ⊆ D. Then there exists a normalised Ramsey split of
height at mostN(D) for α, σ.

Proof. We first associate to each elementx ∈ α anL-classL(x) and anR-classR(x)
as follows. For all non-maximal elementsx ∈ α, we fix somey > x, and setR(x) to
be theR-class ofσ(x, y). According to Fact 2.4 this definition does not depend on the265

choice ofy. Similarly, for all non-minimalx ∈ L, we sety < x and setL(x) to be
theL-class ofσ(y, x). For x maximal, chooseR(x) to be anyR-class included inD
such that〈R(x) ∩ L(x), ·〉 is a group: this is possible according to Fact 2.3. We similarly
chooseL(x) for x minimal such that〈R(x) ∩ L(x), ·〉 is a group.

We claimthat 〈L(x) ∩ R(x), ·〉 is a group for allx ∈ α, . This holds by construc- 270

tion whenx is minimal or maximal. Consider now some non-minimal, non-maximal
elementx ∈ α and somey < x and z > x. By construction,σ(y, x) ∈ L(x),
andσ(x, z) ∈ R(x). Since furthermoreσ(y, x) · σ(x, z) = σ(y, z) ∈ D, using Fact 2.4,
there exists an idempotente ∈ L(x)∩R(x). This means by Fact 2.6 that〈L(x)∩R(x), ·〉
is a group. The claim holds. 275

Let nowH1, . . . , Hk be an enumeration ofH-classes included inD that induce groups.
Without loss of generality, we chooseHk = L(minα) ∩ R(minα). Let n be the size
of H1s (recall that allH-classes inside aD-class have same size according to Fact 2.5,
and hencen is also the size ofH2, . . . , Hk). Note finally thatN(D) = kn.

SetXi to {x : L(x) ∩R(x) = Hi} for all i = 1 . . . k. TheXi’s are disjoint and, ac-
cording to the above claim, their union equalsα. For eachi = 1, . . . , k for whichXi 6= ∅,
Lemma 3.2 provides a normalised splitsi overXi of heightn which is Ramsey forXi, σ.
Define now the splits for all x ∈ α by:

s(x) = si(x) + (i− 1)n , in which i is such thatx ∈ Xi .

Let us prove thats is Ramsey. Consider an equivalence classC for ∼s. By construction 280

of s, there is somei such thatC ⊆ Xi. Hence,C is also an equivalence class for∼si
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in Xi. Sincesi is Ramsey forXi, σ by construction, this means that there exists an
idempotente such thatσ(x, y) = e for all x < y in C. Hences is Ramsey.

Furthermore, the height ofs is nk = N(D), and sinceminα ∈ Xk by choice ofHk,
andσk is normalised, we gets(minα) = nk = N(D), i.e.,s is normalised. 285

We can now for complete the proof of Theorem 3.1.

Proof. For everya ∈ S, let a↑J be{b : a 6J b}, and letM(a) be the sum ofN(D)
for D ranging over theD-classes included ina↑J .

The proof is by induction on the size ofa↑J . The induction hypothesis is that for
every multiplicative labellingσ of a finite linear orderα such thatσ(α) ⊆ a↑J we have: 290

• if a is regular, there exists a normalised Ramsey split of heightat mostM(a)
for α, σ,

• otherwise, there is a Ramsey split of height at mostM(a) for (α \ {minα}), σ.

Let a ∈ S andα be an order such thatσ(α) ⊆ a↑J . We definexi by induction
on i = 0 . . . by:

x0 = minα, and for alli > 1, xi = min{x > xi−1 : σ(xi−1, x)D a} .

(if there is no such elementx, the constructions stops). In the end, a sequencex0 <
x1 < · · · < xm of elements inα is produced. LetX = {x0, . . . , xm}. One also 295

definesY1, . . . , Ym to be the intervals of positions occurring between thexi’s: formally,
Y0, . . . , Ym are defined such that the union ofX,Y0, . . . , Ym is α, andx0 < Y0 < x1 <
Y1 < x2 < · · · < xm < Ym (note that some of the setsY1, . . . , Ym may be empty).
Remark a:For all i, j such that0 6 i < j 6 m, one hasσ(xi, xj) D a by construction.
Said differently,σ(X) ⊆ D(a). 300

Remark b:For all i = 0 . . .m, σ({xi}∪Yi)∩D(a) = ∅. This comes from the minimality
argument in the choice of eachxi.
Case 1:Let us assume first thata is regular. The principle of the construction is to use
Lemma 3.3 overX , and the induction hypothesis over each of theYi’s, and combine those
splits. SetN to N(D(a)), andM to M(a). 305

By Remark a,σ(X) ⊆ D(a). Thus one can apply Lemma 3.3, and get a normalised
Ramsey splits′ of heightN for X, σ. Thanks to Remark b, one can use the induction
hypothesis and get for alli = 0 . . .m a Ramsey splitsi for Yi, σ of height at mostM(a)−
N . We combine the splitss′,s1,. . . into a splits by:

s(x) =

{

s′(x) +M −N if x′ ∈ X ,

si(x) for x ∈ Yi otherwise.

It is clear that, sinces′ is normalised, the same holds fors. Let us show that this split is
Ramsey. Consider an equivalence classC for ∼s. We distinguish two cases.

If s(x) > M − N for somex ∈ C, this means that the first case in the definition
of s(x) is used for all elementsx ∈ C. Hence,C ⊆ X , andC is an equivalence class
for s′. Sinces′ is Ramsey, there exists an idempotente such thatσ(x, y) = e for all x < y 310

in C.
Otherwise,s(x) 6 M −N for one/allx ∈ C. Sinces(x) > M −N for all x ∈ X , it

is not possible thatC contains two elements which are separated by an element fromX .
We deduce thatC ⊆ Yi for somei. Furthermore, sinces ands′ coincide overYi,C is also
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an equivalence class of∼s′ . As si is Ramsey, this means that there exists an idempotente 315

such thatσ(x, y) = e for all x < y in C.
Overall,s′ is Ramsey forσ, α. This completes the proof of the first case of the induc-

tion hypothesis.
Case 2:It remains the case wherea is irregular. We claim first that|X | 6 2. Indeed

assume that there existsx < y < z in X . Then we haveσ(x, y), σ(y, z) andσ(x, z) = 320

σ(x, y)·σ(y, z) all belong toD(a). By Fact 2.3, this means thatD(a) is a regularD-class,
contradicting the irregularity ofa. This establishes the claim.

We can now define the splits for all x ∈ α \ {minα} of heightM by:

s(x) =

{

M if x′ ∈ X \ {minα} ,

si(x) for x ∈ Yi otherwise.

Let us show that this split is Ramsey. Consider an equivalence classC for ∼s. Again we
distinguish two cases. Ifs(x) > M for somex ∈ C, this means thatC ⊆ X \ {minα}.
Sinceminα ∈ X and|X | 6 2, |C| = 1. Hence this class is homogeneous. Otherwise325

s(x) 6 M − 1 for somex ∈ C. The same argument as in the first case of the induction
hypothesis can be used. Overall,s is Ramsey forσ, α \ {minα}.

Thus the induction hypothesis holds for all elementsa. We can use it to establish
Theorem 3.1. Leta be some element in the minimalJ -class ofS. This meansS = a↑J .
Let α be a finite linear ordering, andσ a multiplicative labelling ofα by S. SinceS = 330

a↑J , anda is regular, one can apply the first case of the induction hypothesis onα, σ:
there exists a normalised Ramsey split forα, σ.

Let us now turn to the original statement as proposed by Simon.

3.3 The original statement using factorisation trees

Theorem 3.1 is stated in terms of splits as in [15]. The original statement of Simon [30] 335

uses a different presentation that we describe in this section.
Fix an alphabetA and a semigroup morphismϕ fromA+ to a finite semigroup〈S, ·〉.

A factorisation treeis an unranked ordered tree in which each node is either a leaflabeled
by a letter, or an internal node. Thevalueof a node is the word obtained by reading the
leaves below from left to right. Afactorisation treeof a wordu ∈ A+ is a factorisation 340

tree with valueu. Theheightof the tree is defined as usual, with the convention that the
height of a single leaf is0. A factorisation tree isRamsey(for ϕ) if every node either

(1) is a leaf, or
(2) has two children, or
(3) the values of its children are all mapped byϕ to the same idempotent ofS. 345

Figure 1 presents a Ramsey factorisation tree for the word1112022201212 over the
alphabet{0, 1, 2}, with respect to the natural morphism toZ/3Z. Each non-leaf node
of the tree is depicted as an horizontal line. The only node which satisfies property 3 is
highlighted in a grey surrounding. One can check that indeed, the image by the morphism
of the value of each child of this node is0. 350

The factorisation forest theorem reads as follows, in whichN(S) is the value intro-
duced in Theorem 3.1:
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1 1 1 2 0 2 2 2 0 1 2 1 2

Figure 1. A Ramsey factorisation tree inZ/3Z

Theorem 3.4(Factorisation Forest [30]).For all alphabetsA, all semigroup morphismsϕ
fromA+ to a finite semigroupS, and all wordsu ∈ A+, there exists a Ramsey factorisa-
tion tree foru, ϕ of height at mostk = 3N(S)− 1. 355

The various references given for this result differ in the value of the boundk. In the
original proof of Simon [30], the bound isk = 9|S|. Simon gave then a simplified proof
[32] yielding a worse bound of2|S|+1 − 2 (this proof relies on the deep Krohn-Rhodes
decomposition theorem). A bound ofk = 7|S| is achieved by Chalopin and Leung [12].
A bound of3|S| is given in [14, 15]. The optimal bound is3|S| − 1 [20], see also [16]2. 360

SinceN(S) 6 |S| the present result improves on the bound of3|S| − 1 to 3N(S) − 1.
This better bound is essentially obtained by a more careful analysis of the construction.

Lemma 3.5 describes the relationship between Ramsey splitsand Ramsey factorisa-
tions. Using it, Theorem 3.4 immediately follows from Theorem 3.1 (recall the definitions
from Section 2.2). 365

Lemma 3.5. LetA be an alphabet, a morphismϕ fromA+ to a finite semigroupS and a
wordu ∈ A+.

(a) Every Ramsey factorisation tree of heightk of u induces a Ramsey split of height at
mostk for inner -cuts(u), ϕu.

(b) Every Ramsey split of heightk for cuts(u), ϕu indeuces a factorisation tree of 370

height at most3k of u; of height3k − 1 if the split is furthermore normalised.

Proof. For (a), we set the value of the split forx ∈ inner -cuts(u), say forx the cut
between letteri and letteri + 1 in u, to be the maximal depth of a node that has theith
and the(i + 1)th letter below it. It is not difficult to see that this defines a split of height
at mostk, and that it is Ramseyan forinner -cuts(u), ϕu. 375

For (b), note that the only class of value1 according to the split (we assume that there is
one) factorises the wordu intou = u0u1 . . . ul in such a way thatφ(u1) = · · · = φ(ul−1)
is an idempotent. Hence we construct the prefix of a tree as:

u0 u1 u2 · · · ul−1 ul

and then proceed inductively with the subwordsu0, . . . , ul. We get at the end a Ram-380

seyan factorisation tree, and its height is at most3k. Furthermore note that, if the split

2Unlike stated in [16], the bound is due to Kufleitner.
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is normalised, there is no need to use the root node of the above gadget for the highest
∼-class.

3.4 Optimality of the bound

We have seen a bound ofN(S) in Theorem 3.1, and a bound of3N(S) − 1 for Theo- 385

rem 3.4. The question we are addressing in this section is whether this bound is optimal.
This question has been the source of some investigations [12, 20]. Indeed, in some ap-
plications, this parameter may have a significant complexity impact (see the applications
in Sections 4 and 6). It is also natural that a better understanding of this parameter re-
quires a better understanding of the structure of semigroups. This remark itself justifies 390

the interest in this question.
Chalopin and Leung [12] and Kufleitner [20] derived lower bounds. The following

result of Kufleitner shows that the bound of3|S|−1 of Theorem 3.4 is optimal for groups
(in the case of groups,N(S) = |S|).

Theorem 3.6([20]). For all non-trivial finite groupsG there exists a wordw ∈ G+ such 395

that every factorisation tree ofw,ϕ has height at least3|G| − 1, whereϕ : G+ → G is
the evaluation morphism.

One can also deduce from it the optimality of Theorem 3.1.

Corollary 3.7. For all non-trivial finite groupsG there exists a multiplicative labellingσ
from a finite linear ordering toG such that every Ramsey split ofσ has height at least 400

|G|.

Proof. Consider the wordw from Theorem 3.6 and the corresponding multiplicative la-
bellingσ = ϕw. For the sake of a contradiction, assume that there is a Ramsey split of
height|S| − 1 for σ. By Lemma 3.5 this means that there exist a Ramsey factorisation
tree of height at most3(|S| − 1) for w,ϕ, contradicting Theorem 3.6. 405

In this chapter, we have given an optimised result, with a bound ofN(S) in terms of
splits (Theorem 3.1), and3N(S) − 1 in terms of factorisation forest (Theorem 3.4). In
some casesN(S) = |S|, this is the case for instance whenS is a group, but not only
(consider for instance the semigroup〈{1, . . . , n},max〉). However, it can also happen
that the gap betweenN(S) and|S| can be arbitrarily high: consider for instance for each410

positive integern the semigroupSn with elements{a1, . . . , an, 0} for which the product
is defined by0 · x = x · 0 for all x, andai · aj is ai if j = i, and0 otherwise. This
semigroup has sizen+1, butN(Sn) = 2 for all n. This shows that a careful analysis can
drastically improve on the original upper bound of|S|.

However, one can still wonder whether the boundN(S) is optimal. More precisely, 415

given a semigroupS, does there exist always a multiplicative labelling such that no split
Ramsey for it has height less thanN(S)?

The answer to this question is negative. Consider for instance the semigroupSn =
〈{1, 2, . . . , n−1,∞},+〉 (in which the sum is defined in the natural way). ThenN(S) =
|S| = n. However, for every multiplicative labelling from a (finite) linear ordering toSn 420
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there exists a Ramsey split of height at most⌈log2 n⌉+ 2. We give a proof using factori-
sation trees (this extend to splits using Lemma 3.5). Note that (a) that in this semigroup,
every word of length greater thann has value∞. Note that (b) that in any semigroup,
every word of size at mostk admits a factorisation tree of height at most⌈log2 k⌉ (using
a balanced binary factorisation tree of logarithmic height). Combining these remarks, we425

can construct a factorisation for every wordu as follows. One factorisesu into u1 . . . ulv
in which |u1| = · · · = |ul| = n, and|v| < n. By remark (b), all wordsu1, . . . , ul, v
admit Ramsey factorisation treest1, . . . , tl, t′ of height at most⌈log2 n⌉. Futhermore,
by Remark (b) all wordsu1, . . . , ul have same value∞ (which is an idempotent). This
means that one can construct a Ramsey factorisation tree of height⌈log2 n⌉+2 for it: the 430

root is binary, the right child being the root oft′, and the left child being an idempotent
node withn chidren, which are the roots of respectivelyt1, . . . , tl. It is clear that this tree
is a Ramsey factorisation foru, and also that it has height at most⌈log2 n⌉+ 2.

Thus, the question of characterising the optimal bound for the factorisation forest
theorem is still open. 435

Kufleitner gives a finer analysis of the bound for aperiodic semigroups using factorisa-
tion trees. Indeed, the result is optimal for groups. What about group-trivial semigroups?
The answer is that it is possible to obtain a better upper bound in this case:

Theorem 3.8([18],[20]). For every aperiodic (i.e., group-trivial) semigroupS, and every
morphism fromA+ toS, every wordu ∈ A+ admits a Ramsey factorisation tree of height440

at most2|S|. Furthermore, for eachn, there exists an aperiodic semigroup of sizen such
that this bound is optimal.

3.5 Infinitary variants

So far, we have seen the factorisation forest theorem for finite linear orderings/finite
words. In fact, the finiteness assumption is not so relevant for the result. For the pre- 445

sentation of presenting of infinitary variants, the machinery of splits is easier to use than
factorisation trees. We only consider splits in this section.

From what we have seen so far, we can already deduce a first infinitary variant of the
result. Consider the linear ordering〈N, <〉, and a multiplicative labellingσ from it to
some finite semigroupS. By Theorem 3.1, for everyn, there exists a Ramsey splitsn 450

of σ, {0, . . . , n} of heightN(S). By compactness (of the Cantor space, see Chapter??)
there exists a split of〈N, <〉 of height at mostN(S) such that for everyi, s coincides with
somesn over{0, . . . , i}. It is not difficult to see that, since all thesn splits are Ramsey,
the same holds fors.

In fact, the result goes beyond〈N, <〉, but for that one needs a new proof. 455

Theorem 3.9([15]). For all finite semigroupsS and all multiplicative labelingsσ of a
(possibly infinite) linear orderingα to S, there exists a split ofα that is Ramsey forσ, α,
and has height at most2|S|. The split has height at most|S| for ordinals.

Here, we just state the bound in terms of|S|, though it is likely that in the case of
ordinals, the bound ofN(S) still holds, and that a similar improved bound can be given460
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in the general case. However, this would require to reprove the results of [15], and this
goes beyond the subject of this survey.

But, what is the interest of having an infinitary variant of the factorisation forest theo-
rem? An application is given in [15], namely for the complementation of automata over
scattered countable linear orderings (a linear ordering isscattered if it does not contain a465

dense linear subordering). This result is known from [11]. Theorem 3.9 allows us to give
a much simpler proof of this result. Although outside the scope of this survey, it is still
possible to explain why the factorisation forest theorem (in its infinitary variant) helps.

Recall from the introduction and Chapter??, that a very classical use of the theorem
of Ramsey is to prove the complementation of Büchi automata over words indexed byω. 470

The idea is to construct an automaton which guesses a good Ramsey decomposition of the
word. This decomposition splits the word into finite sub-words over which one can use
standard finite word automata. In the case of an infinite linear ordering, a use of the the-
orem of Ramsey can decompose the word into infinitely many words, which themselves
are infinite. The next step would be to sub-factorise those subwords, etc... But there is 475

no reason that these nested factorisations terminates. Thefactorisation forest theorem is
perfectly suited for this kind of applications. It providesa bound of2|S| such that this
induction is guaranteed to terminate within this bound.

This technique has been pushed even further in [10] for proving that a language of
words of countable length is recognised (using a suitable form of algebra) if and only if it 480

is definable in monadic second-order logic.
In the next section, we will see several other applications of the factorisation forest the-

orem over finite words/finite linear orderings. The extension of some of these applications
(e.g., the limitedness of distance automata) to the infinitecontext is possible. Theorem 3.9
is a good starting point if one is interested in pushing further in this direction. 485

4 Algebraic applications

The purpose of this section is to give algebraic consequences to the factorisation forest
theorem. In those applications, we deliberately chose to use another presentation of the
result, which is at the same time weaker (we lose the information concerning the bound),
but much more easy to apply (no more trees). 490

4.1 An algebraic presentation

In this section, we give two other equivalent presentationsof the factorization forest the-
orem. Depending on the context, the various presentation may prove easier to use. In
particular, the two presentations avoid use of trees or splits.

The first presentation below is particularly interesting wen one is interested in ef- 495

fectively computing a presentation for the semigroup generated by a given subset of a
monoid. We do not present in this survey any examples of this kind of applications.

Theorem 4.1. Let S be a semigroup,ϕ be a semigroup morphism fromS to a finite
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semigroupT, andX ⊆ S, then〈X〉 = X3N(T)−1 whereXn is defined by

X0 = X and Xn+1 = Xn ∪Xn ·Xn ∪
⋃

e·e=e

〈Xn ∩ ϕ−1(e)〉S for all n > 0.

Proof. It is clear, by induction onn, thatXn ⊆ 〈X〉. Quite naturally, the proof of the
converse inclusion is by induction on the height of factorization trees. For alln > 0, set

Yn = {π(u) : u ∈ X+, u has a Ramsey factorization tree of height at mostn} ,

where the Ramsey factorization is with respect to the morphism ϕ ◦ π. Let us show
by induction onn that Yn ⊆ Xn. Assuming this, Theorem 3.4, implies that〈X〉 ⊆
X3N(T)−1, and the results follows. The induction remains to be established. Clearly, for 500

n = 0, X0 = X = Y0.
Consider now somen > 0, and leta ∈ Yn+1. One aims ata ∈ Xn+1. By definition,

there exists a Ramsey factorizationT of height at mostn + 1 for someu ∈ X+ with
π(u) = a. There are three cases. IfT has height at mostn, thenu is also a witness that
a ∈ Yn ⊆ Xn, andXn ⊆ Xn+1 by definition ofXn+1. Thusa ∈ Xn+1. Otherwise, 505

assume the root ofT is a binary node. Thenu can be decomposed asvw, such that
π(v) ∈ Xn andπ(w) ∈ Xn. It follows, by induction hypothesis and definition ofXn+1

thata = π(u) = π(v) · π(w) ∈ Tn · Tn ⊆ Xn ·Xn ⊆ Xn+1. Finally, assume the root
of T is an idempotent node. This means thatu can be decomposed asv1 . . . vk such that
there exists an idempotente with ϕ(π(vi)) = e for all i, andπ(vi) ∈ Tn for all i. Hence, 510

by induction hypothesis,π(vi) ∈ Xn for all i and thusπ(vi) ∈ Xn ∩ ϕ−1(e). Thus
a = π(u) = π(v1) · · ·π(vk) ∈ 〈Xn ∩ ϕ−1(e)〉 ⊆ Xn+1 by definition ofXn+1.

In fact, a closer inspection reveals that the above theorem is equivalent to the forest
factorisation theorem. Indeed, a similar inductive proof estabblishes thatTn = Xn for all
n (whereTn is as in the above proof). Thus, if one applies Theorem 4.1 toS = A∗, one 515

directly deduces Theorem 3.4.
Our second variant can be understood as follows. Theorem 4.1can be seen as an

iteration reaching a least fix-point. Theorem 4.2 formalizes differently this view of the
result.

Theorem 4.2. Let S be a semigroup,ϕ be a semigroup morphism fromS to a finite 520

semigroupT, andX ⊆ S. Then every familyP ⊆ P(S) such that

(1) for all a ∈ T, {x ∈ X : ϕ(x) = a} ∈ P ;
(2) for all A,B ∈ P , A ∪B ∈ P ;
(3) for all A,B ∈ P , A · B ∈ P ; and,
(4) for all A ∈ P with f(A) = {e} for some idempotente ∈ T, 〈A〉S ∈ P , 525

satisfies〈X〉 ∈ P .

Remark 4.3. In practice, instead of (1), we will frequently use the following slightly
stronger conditions:

(1’) for all A ⊆ B ∈ P , A ∈ P ;
(1”) X ∈ P . 530

It is clear that (1’) and (1”) together imply (1).
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Proof. Let us assume first thatP is minimal such that it satisfies conditions (1), (2), (3)
and (4).

One claims first that everyA ∈ P has therestriction property, i.e., for all c ∈ T, then
A ∩ ϕ−1(c) ∈ P ∪ {∅}. It is sufficient forus to prove that having the restriction property
is preserved under the rules (1) to (4). Indeed, ifA = {x ∈ X : ϕ(x) = a} ∈ P , then
clearly,A ∩ ϕ−1(c) equalsA if c = a, or ∅. This settles the case (1). Consider now the
caseA ∪B. It is clear that if bothA andB have the restriction property, thenA ∪B also
has the property since(A ∪B) ∩ ϕ−1(c) = (A ∩ ϕ−1(c)) ∩ (B ∩ ϕ−1(c)) ∈ P (by (2)).
This proves the case (2). Consider now the caseA ·B. We have

(A · B) ∩ ϕ−1(c) =
⋃

a·b=c

(A ∩ ϕ−1(a)) · (B ∩ ϕ−1(b)) .

Thus, assuming thatA,B have the restriction property, using (3),A · B also has the
restriction property. This establishes the case of (3). Finally, assumeA ∈ P andϕ(A) = 535

{e} for some idempotente. Then clearly, ifc 6= e, then〈A〉 ∩ ϕ−1(c) = ∅. Otherwise
whenc = e, this implies〈A〉∩ϕ−1(c) = 〈A〉 ∈ P . Hence〈A〉 has the restriction property,
which is the case (4). It follows that everyA ∈ P (using the minimality assumption) has
the restriction property. The claim is established.

Let now theXn’s be as in Theorem 4.1 In this case, let us prove by induction on n 540

thatXn ∈ P . Forn = 0, from (1) and (2),X0 = X ∈ P . Otherwise, assumeXn ∈ P ,
then clearly, using the properties (1) to (4) and the above claim,Xn+1 ∈ P (the claim
is mandatory for proving that ifXn ∈ P , thenXn ∩ ϕ−1(e) ∈ P ). It follows, using
Theorem 4.1, that〈X〉 = X3N(T)−1 ∈ P .

Consider now someP ′ that satisfies conditions (1) to (4) (without any minimality545

assumption). This meansP ⊆ P ′ (whereP ′ is minimal). One has〈X〉 ∈ P ⊆ P ′. This
establishes the general case.

Once more, it is easy to show that this result is equivalent tothe forest factorization
theorem, as far as the precise bound of3N(S)− 1 is not concerned.

4.2 Brown’s lemma 550

In this section we show how to derive Brown’s lemma from the above result. Extending
Brown’s lemma was one of the motivations of Simon when introducing the factorisation
forest theorem.

A semigroupS is locally finiteif every finite subsetX ⊆ S generates a finite subsemi-
group〈X〉S. Brown’s theorem is stated as follows: 555

Lemma 4.4([8]). Letf : S → T be a semigroup morphism. IfT is locally finite and for
every idempotente ∈ T, f−1(e) is locally finite, thenS is locally finite.

Proof. Let f,S andT be as in the statement of the theorem. LetX ⊆ S be finite. We
want to show thatS′ = 〈X〉S is finite. LetT ′ = f(S′). Sincef(X) is finite andT is
locally finite, we get thatT ′ = f(S′) = f(〈X〉S) = 〈f(X)〉T is finite. LetP be the set 560

of finite subsets ofS′. Clearly,P satisfies conditions (1’), (1”), (2) and (3) of Theorem 4.2
and Remark 4.3. Let us establish the missing (4). ConsiderA ∈ P such thatf(A) = {e}.
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This meansA ⊆ f−1(e). Since by hypothesisf−1(e) is locally finite andA is finite, it
follows that〈A〉S is finite, i.e.,〈A〉S ∈ P . Using Theorem 4.2 we obtainS′ ∈ P , i.e.,S′

is finite. Since this holds for allX , S is locally finite. 565

4.3 The finite closure property in the tropical semiring

In this section, we show how to use Brown’s lemma for decidingthe finite closure problem
in the tropical semiring. In the next section, we will extendthose techniques to solve a
more general result, this time using the factorisation forest theorem. This theory is nicely
surveyed in [29]. 570

We consider here thetropical semiringT = (N∪{∞},min,+), (also called theMin-
Plus-semiring). We use standard notation for matrices over this semiring.Matrices over
a semiring form themselves a semiring when equipped with theusual multiplication and
sum. In this section, we consider the multiplicative group of this matrix semiring.

Thefinite closure problemis the following: 575

Input: A positive integern and matricesA1, . . . , Ak ∈ T
n×n.

Output: “Yes”, if the set〈A1, . . . , Ak〉Tn×n is finite; “no” otherwise.

We prove below that this problem is decidable. On the way we show that the cor-
responding Burnside problem admits a positive answer. Moreprecisely, one says that a
semigroupS is torsion if for every elementx ∈ S, 〈x〉S is finite. It is clear that every 580

finite semigroup is both finitely generated and torsion. TheBurnside problemconsists in
determining for which semigroups the converse holds. The proof of Simon shows that the
Burnside problem admits a positive answer for semigroups ofmatrices over the tropical
semiring, i.e., a subsemigroup ofT

n×n is finite iff it is both finitely generated and torsion.
Phrased differently: 585

Theorem 4.5([28]). Every torsion subsemigroup ofTn×n is locally finite.

The corresponding decidability result is established at the same time:

Theorem 4.6([28]). The finite closure property is decidable insideT
n×n.

The problem for the decidability proof is that the tropical semiring is infinite, which
prevents exploring entirely. For this reason, the essential argument in the proof consists in590

translating the question to a question concerning a finite algebraic object. Formally, one
constructs a morphism from the tropical semiring to a finite semiring which forgets the
exact values of the matrix entries.

Let us consider thereduced semiringT1 = ({0, 1,∞},min,+) (in which all opera-
tions are natural, and1 + 1 equals1). Given an elementa ∈ T, denote bya its reduced 595

version defined by0 = 0, ∞ = ∞ anda = 1 in all other cases. I.e., one approximates
every positive integer by1. The function is a morphism of semirings. This is the reason
it extends in the usual way to matrices, yielding once more a morphism of semirings: the
morphism which replaces every positive integer entry in a matrix by 1.

Call a matrixA in T
n×n idempotentif its image under is an idempotent (ofTn×n

1 ). 600

Conversely, given an elementa ∈ {0, 1,∞}, and a positive integerk, we denote byk× a
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the elementa if a ∈ {0,∞}, andk otherwise. We also extend this operation to matrices.
Given a matrixA, denote by||A|| the maximal positive integer entry it contains (or1 if
there is no such entry).

An idempotent matrixA overT is calledstableif the set〈A〉Tn×n is finite. 605

Lemma 4.7. For every idempotent matrixA ∈ T
n×n, the following statements are equiv-

alent:
(1) A is stable,
(2) for all i, j such thatAi,j 6= ∞, there existsk such thatAi,k 6= ∞, Ak,k = 0

andAk,j 6= ∞, 610

(3) ||Ap|| 6 2||A|| for all p > 1.

Proof. (1)⇒ (2) Assume thatA is stable, and consideri, j such thatAi,j 6= ∞. SinceA
is idempotent,Ap

i,j 6= ∞ for all p > 1. Since furthermoreA is stable,Ap
i,j can take

only finitely many values whenp ranges. Letm be the highest such value, i.e.,Ap
i,j 6 m

for all p > 1. In particular, forp = (m + 1)|Q| + 2, this is witnessed by the existence615

of i0, i1, . . . , ip such thati0 = i, ip = j, andAi0,i1 + Ai1,i2 + · · · + Aip−1,ip 6 m .
Sincep = (m+1)|Q|+2, there exist1 6 l < s < p such thatAil,il+1

+· · ·+Ais−1,is = 0,
andil = is. Using the idempotency ofA, we get fork = il thatAi,k 6= ∞, Ak,k = 0,
andAi,k 6= ∞.

(2) ⇒ (3) Assume (2) holds. Forp = 1, (3) is obvious. Consider somep > 2. Let 1 6 620

i, j 6 n. If Ai,j = 0, then by idempotency ofA, Ap
i,j = 0. The same holds forAi,j = ∞.

Now if Ai,j ∈ N
+, then, by hypothesis, there existsk such thatAi,k 6= ∞, Ak,k = 0

andAk,j 6= ∞. This means that the termAi,k +Ak,k + · · ·+Ak,k +Ak,j is involved in
the minimum defining the value ofAp

i,j . It follows thatAp
i,j 6 2||A||. Overall, we obtain

thatAp
i,j 6 2||A||. Since this holds for alli, j, Ap 6 (2||A||)×A. 625

(3) ⇒ (1) Assume (3) holds. Each matrixB ∈ 〈A〉 is such that bothB = A (by idem-
potency) and||B|| 6 2||A|| (by Item 3). There are only finitely many such matrices
satisfying these properties. Hence〈A〉 is finite, which means thatA is stable.

Corollary 4.8. LetA,B in T
n×n with A = B, A is stable iffB is stable. Furthermore,

the stability of a matrix is decidable. 630

Thanks to the above corollary, it is meaningful to say that a matrixA overT1 is stable
if there exist one matrixB ∈ T

n×n such thatB = A is stable, or equivalently if this holds
for every matricB such thatB = A.

The core of the proof is embedded in the following lemma.

Lemma 4.9. Given matricesA1, . . . , Ak ∈ T
n×n, 〈A1, . . . , Ak〉Tn×n is finite iff every 635

idempotent matrix in〈A1, . . . , Ak〉Tn×n
1

is stable.

Proof. SetC = 〈A1, . . . , Ak〉Tn×n . ThenC = 〈A1, . . . , Ak〉Tn×n
1

.

If there is an unstable matrix inC, this means that there exists an unstable matrix
in A ∈ C. By definition of stability, this means that〈A〉Tn×n is infinite, and henceC is
infinite. 640
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Conversely, assume that every idempotent matrix inC is stable. We apply Brown’s
lemma to the morphism which sendsC to C. SinceC ⊆ T

n×n
1 , it is finite, and as a

consequence also locally finite. Consider now some idempotent matrixA ∈ T
n×n
1 , let us

show that{B : B = A} is locally finite. For this, consider some finite setX ⊆ T
n×n

such thatX = {A}. Letm = maxB∈X(||B||), and consider someB1, . . . , Bn ∈ X , we
have:

||B1 · · ·Bn|| 6 ||(m×A) · · · (m×A)|| 6 2m .

(the last inequality is from (3) of Lemma 4.7). Since there are only finitely manyB’s such
thatB = A and||B|| 6 2m, it follows that〈X〉Tn×n is finite, and hence{B : B = A}
is locally finite.

Hence by Brown’s lemma, we directly get thatC is locally finite. SinceC is generated
by finitely many matrices (namelyA1, . . . Ak), this means thatC is finite. 645

From the above lemma, one immediately obtains Theorem 4.5: consider a torsion sub-
semigroupS of Tn×n. Then every idempotent matrix inS is stable. Hence ifX is a finite
subset ofS, then〈X〉 does only contain stable idempotents. By Lemma 4.9, this means
that〈X〉 is finite. We conclude thatS is locally finite.

The lemma also yields a decision procedure: compute the closure of{A1, . . . , Ak}, 650

and check whether there is an unstable matrix in this set. We obtain Theorem 4.6.
Technically, in this application, we did not use directly the factorisation forest theo-

rem, but rather Brown’s lemma which is one of its consequences. In the next section,
we study a generalisation of the above problem, and this time, Brown’s lemma is not
sufficient anymore. 655

4.4 The bounded section in the tropical semiring

We have seen in the above section how to decide whether the closure under product of
a set of matrices over the tropical semiring is finite. The bounded section problem is a
generalisation of this problem, which requires a more subtle analysis. The problem now
is not to check whether infinitely many matrices are generated, but more precisely to 660

determine what are the entries in the matrices which can get unbounded.
Formally, thebounded section problemis the following:

Input: A positive integern, a finite set of matricesX ⊆ T
n×n, and twon-tuplesI, F ∈

{0,∞}n.
Output: “Yes”, if there ism such that for allA ∈ 〈X〉Tn×n , ItAF 6 m. “No” other- 665

wise.

Before presenting a decision procedure for this problem (Theorem 4.10 below), we
introduce a related problem, the limitedness problem for distance automata. Distance
automata are non-deterministic finite automata in which each transition is labelled by
a cost among0, 1. The cost of a run of such an automaton is the sum of the costs of670

its transitions. The cost of a word is the minimum cost over all possible runs of the
automaton over this input. This value can be∞ if there are no such runs, otherwise it is a
non-negative integer. For instance, the following automaton computes the minimal size of
a maximal segment of consecutivea’s (i.e., mapsan1ban2 . . . bank tomax (n1, . . . nk)):
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p q r

a, b : 0

b : 0

a : 1

b : 0

a, b : 0

675

It does this by guessing the position of the maximal segment of consecutivea’s of shortest
size and using stateq along this segment, statep before, and the stater after. The cor-
responding run computes the length of this segment by using cost1 for eacha-transition
betweenq-states.

Theboundedness problemis the following: 680

Input: A distance automatonA.
Output: “Yes”, if the function it computes is bounded. “No”, otherwise.

This problem is very close to the originallimitedness problemstudied by Hashiguchi
which asks whether the function is bounded over its domain,i.e., over the words that
are mapped to an integer by the automaton (a closer inspection shows simple mutual 685

reductions between the two problems; we do not develop it here).
The bounded section problem and the boundedness problem arein fact the same prob-

lem. The proof of this equivalence uses the classical argument that weighted automata
can be represented by matrices (see Chapter??). Indeed, given a distance automaton, it is
possible to associate with each lettera a transition matrixA over{0, 1,∞} whose rows 690

and columns are indexed byQ in the following way. The entry with indexp, q of the
matrix is0 if in the automaton there is a transition fromp to q reading lettera with cost0
in the automaton, it is1 a transition of cost1 (but none of cost0), and finally it is∞ if
there are no transitions of the automaton at all fromp to q while reading lettera. Using
this translation, each finite word overa1 . . . al can be transformed into a sequence of ma-695

tricesA1, . . . , Al ∈ T
n×n. One can prove (by induction) that the entryp, q in the product

matrixA1 · · ·Al has valuem if and only if there is a run of the automaton overa1 . . . al
starting in statep, ending in stateq, andm is the least cost among all such runs. The entry
is∞ if there is no such run. The sets of initial states and final states can be translated into
vectorsI andF over{0,∞} by I(p) = 0 if p is initial,∞ otherwise, andF (p) = 0 if p is 700

final,∞ otherwise. It is then easy to see thatItA1 · · ·AlF is exactly the value computed
by the automaton while reading the worda1 . . . al. Hence the existence of a bound on
the function computed by the automaton has been reduced to the bounded section prob-
lem. The converse reduction is similar: there is a straightforward translation from a set
of matricesA1, . . . , Ak to a distance automaton over an alphabet of sizek (note here that 705

a distance automaton does only use the costs0 and1. Therefore the reduction replaces
every positive integer by1. This approximation is valid since we are only interested in
boundedness questions.)

Theorem 4.10([19]). The bounded section problem is decidable.

We present a proof based on the algorithm of Leung [23] and thetheorem of factori- 710

sation forest for establishing its correctness. Simon later gave another proof for Theo-
rem 4.10 using the factorisation forest theorem [31], but the complexity is not as good as
the one obtained by Leung (which is optimal).
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The principal idea of this algorithm is similar to the one forthe finite closure prob-
lem: one “approximates” the matrices inTn×n by matrices inTn×n

1 . However, checking 715

whether there exist unstable matrices in〈X〉Tn×n is now no longer sufficient: indeed,
the stability property ensures that no entry in the matrix gets unbounded. Here, we are
interested in determining which entries get unbounded. Forthis, we use thestabilisation
operation♯ introduced by Leung. Given any idempotent matrixM in T

n×n
1 , it transforms

it into a stable matrixM ♯. 720

Indeed, when an idempotent matrixA in T
n×n is not stable, iterating it yields an

infinite set of matrices. Thus, some of its entries get to havearbitrary high values when

the matrix is iterated. We defineA
♯
, thestabilisationof the matrixA, to be obtained from

the matrixA by setting those entries to∞ whose values are unbounded when the matrix
is iterated. This matrix happens to be stable, and it essentially represents the result of 725

iterating the matrixA “many times”.
For instance, consider the following idempotent matrixA and its iterations:

A =

(
0 1
∞ 1

)

, A2 =

(
0 1
∞ 2

)

, . . . An =

(
0 1
∞ n

)

, . . .

The right bottom entry is the only non-infinity one which tends toward infinity in this se-
quence. The stabilisation reflects this fact in that the corresponding entry is set to infinity:

A =

(
0 1
∞ 1

)

is stabilised into A
♯
=

(
0 1
∞ ∞

)

.

Formally, given an idempotentM ∈ T
n×n
1 , the matrixM ♯ ∈ T

n×n
1 is defined by:

M ♯
i,j =







0 if Mi,j = 0

1 if Mi,j = 1 and for somek, Mi,k 6= ∞,Mk,k = 0 andMk,j 6= ∞

∞ otherwise.

Keeping Lemma 4.7 in mind, one clearly sees thenM ♯ = M iff M is stable. It is also
easy to verify thatM ♯ is always idempotent and stable.

GivenZ ⊆ T
n×n
1 , define〈Z〉♯ ⊆ T

n×n
1 to be the closure ofZ under product and

stabilisation of idempotents. In the remainder of the section we shall prove that: 730

Lemma 4.11. For every finite setX ⊆ T
n×n and allI, F ∈ T

n, the following statements
are equivalent:

(1) there existsM ∈ 〈X〉♯ such thatI
t
MF = ∞,

(2) for all k, there exists someA ∈ 〈X〉 such thatItAF > k.

Since the second statement exactly corresponds to the case of a negative answer to 735

the bounded section problem, we obtain a decision procedurefor the boundedness prob-
lem by taking the set of input matricesX , closing it under product and stabilisation of
idempotents, and verifying thatI

t
BF 6= ∞ for all the resulting matrices. This completes

the proof of Theorem 4.10. This procedure is exponential, but a closer inspection of the
structure of〈X〉♯ reveals in fact that the algorithm can be performed in PSPACE[23]. 740

This also matches the known lower bound from [24].
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The remainder of this section is devoted to the proof of Lemma4.11. This requires
to introduce some notations. Givena ∈ T and somek > 1 let ak ∈ T1 be0 if a = 0,
1 if 1 6 a 6 k, and∞ otherwise. The intention is that1 ∈ T1 represents a “small”
value, while∞ ∈ T1 represents a “big” value (not necessarily infinity). Seen like this, 745

the mapping which toa associatesak tells us whether the valuea should be considered
as small or big, wherek denotes the threshold between “small” and “big”. One easily

checks thatab
2k

6 akb
k
6 ab

k
. Since this operation is non-decreasing, this inequality

extends to matrices in a natural way: ifA,B are matrices over the tropical semiring,

thenAB
2k

6 A
k
B

k
6 AB

k
where k is extended to matrices componentwise. More750

generally,A1 · · ·Am
mk

6 A1
k
· · ·Am

k
6 A1 · · ·Am

k
.

Given matricesA1, . . . , Am ∈ T
n×n (we also use the same definition for matrices

in T
n×n
1 ), a path fromi0 to il in A1 . . . Am is a sequencep = i0, . . . , im of elements

among1 . . . n such thati = i0 andim = j. Its valuev(p) is the sum(A1)i0,i1 + · · · +
(Am)im−1,im . This definition is related to the product of matrices in the following way: 755

(A1 · · ·Am)i,j is the minimum value over all paths fromi to j in A1, . . . , Am.

Lemma 4.12. For all M ∈ 〈X〉♯ and allk > 1, there existsA ∈ 〈X〉 such thatM 6 A
k
.

Proof. The proof is by induction on the number of multiplications needed to produce the
matrix M from matrices inX . Fix k. If M ∈ X, thenM = A for someA ∈ X .
HenceM = A 6 A

k
(whateverk is). If the induction hypothesis holds forM,N , 760

i.e., there areA,B ∈ 〈X〉 such thatM 6 A
k

andN 6 B
k
, then it holds forMN

sinceAB ∈ 〈X〉 andMN 6 A
k
B

k
6 AB

k
.

Finally, the interesting case is when the induction hypothesis holds for an idempotent

matrixE. Assume there existsB ∈ 〈X〉 such thatE 6 B
k
, and considerK sufficiently

big (for instanceK = kn+3). We claim thatE♯ 6 A
k

whereA = BK (which belongs to
〈X〉). Consideri, j = 1 . . . n, and a pathp = i0, . . . , iK from i to j in BK with valuev.

We have to prove thatE♯
i,j 6 vk. Since we already know thatE = EK 6 A

k
· · ·A

k
6

AK
k
, the only interesting case is for entries for whichE andE♯ differ, i.e., whenEi,j = 1

andE♯
i,j = ∞. By definition of stabilisation, this implies that for alll = 1 . . . n,

either Ei,l = ∞, or El,j = ∞, or El,l > 1 . (⋆)

Since we have chosenK sufficiently large, there is some statel which appears at
leastk+1 times amongi1, . . . , iK−1. This induces a decomposition ofp intop0, . . . , pk+1,
in which eachpm is a path in someBKm . The pathp0 is from i to l, p1,. . . ,pk are froml
to l, andpk+1 is from l to j. We distinguish three cases depending on⋆. If Ei,l = ∞,
then:

∞ = Ei,l = (EK0)i,l 6
(

A
k
)K0

i,l
6 AK0

k

i,l 6 v(p0)
k
6 v(p)

k
,

from which we deduce thatv(p) > k. The same holds ifEj,l = ∞. The third case is

whenEl,l = 1. Then, the same chain of inequalities yieldsv(pm)
k
> 1 for all m =

1 . . . k. Hencev(pm) > 1. As a consequence, we have once morev(p) > k. 765
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Corollary 4.13. Statement (1) of Lemma 4.11 implies Statement (2).

Proof. Assume thatI
t
MF = ∞, and fixk. By Lemma 4.12, there exists a matrixA ∈

〈X〉 such thatM 6 A
k
. Hence∞ = I

t
MF 6 I

t
A

k
F 6 ItAF

k
, i.e., ItAF > k.

The second implication is the more involved one. It amounts to proving the following
lemma. 770

Lemma 4.14. There existsk such that for allA ∈ 〈X〉, A
k
6 M for someM ∈ 〈X〉♯.

Corollary 4.15. Statement (2) of Lemma 4.11 implies Statement (1).

Proof. Assume (2), and letk be the positive integer obtained from Lemma 4.14. Then

there is someA ∈ 〈X〉 such thatItAF > k, i.e., ItAF
k

= ∞. Furthermore, by

Lemma 4.11,A
k
6 M for someM ∈ 〈X〉♯. We obtain∞ = ItAF

k
= I

t
A

k
F 6 775

I
t
MF . This establishes (1).

It remains to prove Lemma 4.14. For the rest of this section, let us say that a set
Y ⊆ T

n×n
1 coversa setX ∈ T

n×n if there existsk > 1 such that, for allA ∈ X ,

there existsM ∈ Y such thatA
k
6 M . In this case,k is called thewitness. Using

this terminology, Lemma 4.14 can be rephrased simply as ‘〈X〉♯ covers〈X〉’. Call two 780

matrices overTn×n 0-equivalentif they coincide on their0 entries. Call a matrix0-
idempotentif it is 0-equivalent to its square.

Lemma 4.16. If Y coversX , and all matrices inX are 0-equivalent and all are0-
idempotents, then〈Y 〉♯ covers〈X〉.

Proof. Let A1, . . . , An ∈ X , and setA = A1 · · ·An. We have to prove that there is785

someM ∈ 〈Y 〉♯ such thatA
k
6 M , in which k must be constructed independently

fromA1, . . . , An (and in particular independently fromn).

We first claim that for allk and all idempotentE ∈ 〈Y 〉♯, if A1
k
6 E andAn

k
6 E

thenA
2k

6 E♯ (note that we do not make here any assumptions onA2, . . . , An−1).

Indeed, consideri, j = 1 . . . n. If E♯
i,j = ∞, we of course haveA

2k
6 ∞ = E♯

i,j . 790

If E♯
i,j = 0, this means thatEi,j = 0 and, as a consequence, there is a path fromi to j

in En with value0. Since all the0-entries inE are also0-entries in eachAm, the same
path can be used inA1, . . . , An. The last case isE♯

i,j = 1. By definition of stabilisation,
this implies that there is somel such thatEi,l 6 1, El,l = 0 andEl,j 6 1. Consider the

pathp = i, l, . . . , l, j in A1, . . . , An. SinceA1
k
6 E andEi,l 6 1, we have(A1)i,l 6 k. 795

In the same way(An)l,j 6 k. Furthermore, sinceEl,l = 0 and using the0-equivalence
assumption, we obtain(Am)l,l = 0 for all m. Hence the value ofp is at most2k. This
concludes the claim.

Consider now the general case. Letk be the witness thatY coversX anf fixM1, . . . ,Mn ∈

Y such thatAi
k
6 Mi for eachi. 800

We choose a sufficiently largeK. Given an elementN ∈ 〈Y 〉♯, we say thatN appears
in M1, . . . ,Mn between positionsm,m′ if N = Mm · · ·Mm′ andm′ −m < K.
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The proof is by induction on the number of idempotents appearing in M1, . . . ,Mn.
More precisely, we prove that for eachi there exist a constantki such that, if at mosti

distinct idempotents appear inM1, . . . ,Mn, thenA1 . . . An
ki

6 M for someM ∈ 〈X〉♯. 805

For i = 0, no idempotents appear inM1, . . . ,Mn. This means thatn is small, i.e.,
n < K (indeed, by the theorem of Ramsey or the factorisation forest theorem, every
sufficiently long product has to contain an idempotent). We have:

A1 · · ·An
Kk

6 A1 · · ·An
nk

6 A1
k
· · ·An

k
6 M1 · · ·Mn ∈ 〈X〉♯ .

Suppose now thati > 1 idempotents appear inM1, . . . ,Mn. LetE be one of them.
We first treat the case whereE appears both at the beginning and the end ofM1, . . . ,Mn,
i.e., both between positions1,m, and between positionm′, n. There are two cases. Ifm+
1 > m′, the two appearances ofE overlap or are contiguous. In this case, by definition

of appearance,n 6 2K and, as in the casei = 0, we obtain thatA1 · · ·An
2Kk

6 N for

someN ∈ 〈X〉♯. Otherwise, we know thatA1 · · ·Am
Kk

6 E, andAm′ · · ·An
Kk

6 E.
Hence we can use our first claim on the following sequence of matrices:

(A1 · · ·Am), Am+1, . . . , Am′−1, (Am′ · · ·An) ,

and we obtainA1 · · ·An
2Kk

6 E♯.
The general case is now easy. Consider a sequenceA1, . . . , An. It can be decomposed

into three sequences

U = (A1, . . . , Am−1), V = (Am, . . . , Am′−1), W = (Am′ , . . . , An) ,

such thatE does not appear inU nor W , but both at the beginning and the end ofV .
According to the induction hypothesis onU andW , there existsM,M ′ ∈ 〈X〉♯ such

thatA1 · · ·Am−1
ki−1

6 M andAm′ · · ·An
ki−1

6 M ′. Using the previous case withE

appearing at the beginning and the end ofV , we also haveAm · · ·Am′−1
2Kk

6 N for
someN ∈ 〈X〉♯. Overall,

A1 · · ·Am
2Kk+2ki−1

6 A1 · · ·Am−1
ki−1

Am · · ·Am′−1
2Kk

Am′ · · ·An)
ki−1

6 MNM ′ ∈ 〈X〉♯ ,

This establishes the induction hypothesis withki = 2Kk + 2ki−1.

We can now conclude the proof of Lemma 4.11 using the factorisation forest theorem.

Proof of Lemma 4.11.Let P be the set of all subsetsY ⊆ 〈X〉 that are covered by〈X〉♯.
We also say that a set covered by〈X〉 has porpertyP . Consider the morphismf mapping 810

each element of〈X〉 to its 0-equivalence class.
Let us show that one can apply Theorem 4.2 to〈X〉, which is generated byX , the

morphism beingf and the familyP :

(1’) If Y is covered by〈X〉♯, it is clear that the same holds for every subset ofY .

(1”) Let k be the maximum over||A|| for all A ∈ X . Then, we haveA
k
6 A ∈ X for 815

all A ∈ X . HenceX is covered byX.
(2) If Y, Z are covered by〈X〉♯ with respective witnesseskY andkZ , thenY ∪ Z is

covered by〈X〉♯, taking as witnessmax(kY , kZ).
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(3) If Y, Z are covered by〈X〉♯, witnessed bykY andkZ , thenAB
kA+kB

6 A
kA

B
kB .

HencekA + kB is a witness that(Y · Z) is covered by〈X〉♯. 820

(4) Finally, suppose thatY is covered by〈X〉♯ and thatf(Y ) = {E} an idempotentE.
SinceY is covered by〈X〉♯, Lemma 4.14 implies that〈Y 〉 is covered by〈〈X〉♯〉♯,
i.e., by 〈X〉♯.

Overall, by Theorem 4.2, we conclude that〈X〉♯ covers〈X〉. This concludes the proof of
Lemma 4.14, and hence of Theorem 4.10. 825

4.5 Polynomial closure

Our last algebraic application of the factorisation foresttheorem concerns the problem of
finding characterisations of families of regular languages. In Chapters?? and?? of this
handbook, this topic is treated much more deeply.

The factorisation forest theorem is used in this context to obtain characterisations 830

(possibly non-effective) of the polynomial closure of a class of languages. Given a class of
languagesL, a languageK belongs to its polynomial closure Pol(L) if it is a finite union
of languages of the formL0a1L1 . . . anLn, where eachLi belongs toL and theai’s are
letters. In general, the idea is to transform a characterisation ofL (by profinite equations,
identities, . . . ) into another one for Pol(L). The first use of this technique appear in Pin835

and Weil [26] for positive varieties, and the most general and recent such result treats the
case of the polynomial closure of any lattice of regular languages [6]. A similar technique
is used for characterising another pseudovariety of regular languages. We present here
the simplest among the results of this kind: the characterisation of polynomial languages.
This corresponds to the case whenL contains the languages of the formB∗ whereB 840

is any set of letters. The interest of this particular case isthat the family of languages
obtained in this way coincide with the ones definable inΣ2, i.e., the fragment of first-
order logic consisting of formulas which take the form of a block of existential quantifiers,
followed by a block of universal quantifiers, followed by a quantifier-free formula.

A monomial languageis a language of the formA∗
0a1A

∗
1 . . . anA

∗
n in whicha1, . . . , an 845

are letters, andA0, . . . , An are sets of letters. For instance{ε} is the monomial language
defined by∅∗, and{a} is defined as∅∗a∅∗. A polynomial languageis a finite union of
monomial languages.

Theorem 4.17([26]). A language is a polynomial langauge if and only if its syntactic
ordered monoid satisfiese > e〈{s : e 6J s}〉e for all idempotente. 850

The exact content of the inequalitye > e〈{s : e 6J s}〉e may be at first sight uneasy
to grasp. To give some more intuition, let us make the following remark before entering
the proof.

Remark 4.18. At first glance the constrainte > e〈{s : e 6J s}〉e is quite unintuitive.
Let us denote byalph(u) the set of letters occurring in a wordu ∈ A∗. Then

〈{s : a 6J s}〉 = {f(u) : alph(u) ⊆ alph(f−1(a))}

for all a ∈ M , i.e., this set represents the possible values of all words that consists of
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letters that could appear in a word evaluating toa. Hence, the conditione > e〈{s : e 6J 855

s}〉e tests the occurring letters in an idempotent context.
Consider now the particularly simple monomial langaugeB∗ for someB ⊆ A. Then

clearly, the membership to this language has only to do with the occurring letters; more
precisely, ifalph(u) ⊆ alph(v) andv ∈ B∗, thenu ∈ B∗. The above propertye >

e〈{s : e 6J s}〉e is a form of generalisation of this remark to polynomial languages: 860

in particular it implies that wheneveru is an idempotent word, ifxuy is in the language,
xuvuy is also in the language for allv such hatalph(v) ⊆ alph(u).

Proof. From left to right.Assume thatL is a polynomial language and letk be the max-
imal degree of a monomial it contains. Consider now an idempotent wordu and as-
sumexuy ∈ L for some wordsx, y, thenxuk+1y ∈ L (by idempotency ofu). This word 865

belongs to one of the monomials ofL, sayK = A∗
0a1 . . . alA

∗
l , with l 6 k. Since there

arek + 1 occurrences of the wordu in v, at least one is contained in one of theA∗
i . This

means thatxus ∈ A∗
0a1 . . . aiA

∗
i , u ∈ A∗

i , anduk−s ∈ A∗
i ai+1 . . . alA

∗
l . Let noww

be any word such thatalph(w) ⊆ alph(u). From the above decomposition, we have
thatxusuwuuk−sy also belong toK and hence toL. Using the idempotency ofu, this is 870

also the case forxuwuy.

From right to left.This direction uses the factorisation forest theorem.
We denote byP ⊆ P(A∗) the set

{X ⊆ A∗ : for everya ∈ M, there exists a polynomial languageKa

such thatX ∩ f−1(a↓) ⊆ Ka ⊆ f−1(a↓)}

We will apply Theorem 4.2 to the familyP to show thatA∗ ∈ P . By definitions ofP ,
this means that, for everya ∈ M there exists a polynomialKa such thatKa = f−1(a↓).
Since polynomial languages are closed under finite union of polynomials, it follows that, 875

for every idealI ⊆ M , f−1(I) is a polynomial language. This concludes this direction
of the proof. What needs

to be proved
concerning
ordered
monoids?

It remains to show that Theorem 4.2 can indeed be applied toP . It is clear thatA ∈ P
since every finite language is a polynomial language. It is also clear from the definition
thatP is closed under taking subsets, and under unions (since polynomial languages are
closed under unions). Consider nowA,B in P . Let us show thatA·B ∈ P . Let(Kx)x∈M

(resp. (K ′
x)x∈M ) be the polynomial languages witnessing the fact thatA ∈ P (resp.

B ∈ P ). Consider now the polynomial language:

K =
∑

x·y6a

KxK
′
y

By construction,f(u) 6 a for every wordu ∈ K. HenceK ⊆ f−1(a↓). Consider
now u ∈ (A · B) ∩ f−1(a↓). Sinceu ∈ A · B, u can be decomposed asu = vw
with v ∈ A, w ∈ B. By hypothesis,v ∈ A, and hencev ∈ Kf(v). Similarlyw ∈ K ′

f(w). 880

We getu = vw ∈ Kf(v)K
′
f(w). Since furthermoreu ∈ f−1(a↓), we havef(v) · f(w) =

f(u) 6 a and, as a consequence,Kf(v)K
′
f(w) ⊆ K. Overallu ∈ K.

It remains to check the last condition. AssumeA ∈ P andf(A) = {e} for some
idempotente. Let Kx for x ∈ M be the polynomial languages witnessing thatA ∈ P .
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Consider the following polynomial:

K ′ = Ke +Kealph(f
−1(e))∗Ke .

By the above remark, we know thatf(K ′) ⊆ f−1(e↓). Conversely, assume thatu ∈ A+.
Thenu can be written asu1 . . . un with ui ∈ A for all i. Clearly, ifn = 1, thenu ∈ Ke ⊆
K ′. Otherwise, sinceu2, . . . , un−1 belong toalph(f−1(e)), u ∈ K ′. Hence

A+ ⊆ K ′ ⊆ f−1(e↓) .

Let us prove thatA+ ∈ P using the above inequalities. Consider somea ∈ M . If e 6∈
f−1(a↓), setKa = ∅ sincef(A+) = {e} we haveA+∩f−1(a↓) = ∅ ⊆ Ka ⊆ f−1(a↓).
Otherwise, setKa = K ′, and we have by the above inqualities

A+ ∩ f−1(a↓) ⊆ K ′ = Ka ⊆ f−1(e↓) ⊆ f−1(a↓) .

HenceA+ ∈ A, and Theorem 4.2 can indeed be applied toP .

5 A deterministic variant of the factorisation forest
theorem 885

The factorisation forest theorem states the existence of a factorisation (of bounded depth)
for each word. A natural question to ask is whether a similar result holds for trees. We
do not fully resolve this question, the exact formal statement of which is even unclear.
Nevertheless, we present a variant of the factorisation forest theorem which has several
interesting consequences over trees. 890

Given a tree, each of its branches can be seen as a word, on which one can apply
the factorisation forest theorem. For each branch, this provides a Ramsey split (or fac-
torisation). However, there is no reason, a priori, that twobranches sharing a common
prefix have a common split on this prefix. This property is desirable in several applica-
tions. In particular, it implies that a single split over thetree induces a Ramsey split over895

each branch. One can already have some feeling about the difference between the word
approach and the tree approach by looking at the memory needed for storing the infor-
mation. A single split for the tree is an object of size linearin the size of the tree, since
it amounts to providing some finite quantity of information on every node. However,
storing a different split for each branch requires a quadratic memory, since there can be900

linearly many branches of linear length (an extremal case consists in a string shaped tree
of heightn− 1, the deepest node of which hasn children which are leaves: this results in
n branches of heightn, i.e., memory of sizen2 for a tree of size2n). Hence, constructing
a single split for the tree means to have a significantly more compact representation.

The theorem described in this section provides a result which, given a tree, provides 905

a single split (of bounded depth) such that on every branch itbehaves (almost) like a
Ramsey split. The proof is obtained by describing a (finite state) transducer, which reads
the input and deterministically outputs the split. We will see below some applications of
this result.

To obtain the result we have to slightly weaken the conclusion of the theorem. Instead 910
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of constructing Ramsey splits, we construct the weaker formof “forward Ramsey” splits.
A split s over a labellingσ is forward Ramseyif, for all x, y, x′, y′ equivalent for∼s

and such thatx < y andx′ < y′, we haveσ(x, y) · σ(x′, y′) = σ(x, y). This is a
weakening of the notion of Ramsey split, as described by the following remark.

Remark 5.1. Every Ramsey split is forward Ramsey. Indeed, for every∼s-equivalence 915

classC of a Ramsey split, there is an idempotente such thatσ(x, y) = e for all x < y
in C. In particular, ifx < y andx′ < y′ belong toC, thenσ(x, y) · σ(x′, y′) = e · e =
e = σ(x, y). Hence, the split is forward Ramsey.

However, in general, not every forward Ramsey split is Ramsey. Consider for instance
the two element semigroup over{a, b} defined bya · a = a · b = a andb · a = b · b = b. 920

Then for every two elementsx, y, x · y = x. This implies that every split is forward
Ramsey for this semigroup, but not every split is Ramsey.

In some situations, the two notions coincide. For instance,in the case of groups, being
Ramsey and being forward Ramsey are equivalent notions. More generally, the notions
coincide if and only ifR = D. 925

The way the notion of a forward Ramsey split is often used is bysaying that for
all x < y < z with x ∼s y ∼s z, we haveσ(x, y) = σ(x, z). Indeed, we have
σ(x, z) = σ(x, y) · σ(y, z) = σ(x, y).

Theorem 5.2(improvement of [13]).For all finite semigroupsS = 〈S, · 〉, alphabetsA
and morphismϕ from A+ to S, there exists a deterministic and complete automatonA 930

with at most|S||S| states and a numbering of its states by{1, . . . , |S|} such that, on every
input wordu ∈ A∗, the numbering of the states along the unique run of the automaton
overu defines a forward Ramsey split forϕu.

Without loss of generality, we assume in the sequel thatA = S andϕ is simply the
evaluation morphism. 935

Our proof consists in giving a direct construction of the automaton equipped with a
numbering of its states. This automaton has the property that, when reading a word, the
sequence of numbers assumed by the states form a forward Ramsey split for the word. In
fact, the arguments involved in the proof are very close to the proof given above for the
standard factorisation forest theorem, however, this direct construction makes it different, 940

and likely easier to implement.
A configurationis a non-empty sequence〈a1, . . . , an〉 of elements ofS. A configura-

tion is calledvalid if furthermore:
(1) ai · ai+1 · · · aj J ai for all i 6 j in 1 . . . n,
(2) ai <J aj for all i < j in 1 . . . n. 945

We construct the deterministic automatonA as follows:
• the states are the valid configurations,
• the initial state can be chosen arbitrarily,
• the transition functionδ is defined for all configuration〈a1, . . . , an〉 and allb by:

δ(〈a1, . . . , an〉, b) = 〈a1, . . . , ak, (ak+1 · · ·an · ϕ(b))〉

wherek is maximal such that〈a1, . . . , ak, (ak+1 · · · an ·b)〉 is a valid configuration,
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• each valid configuration is numbered byh(a1 . . . an) = h0(an) whereh0 is any 950

injective mapping fromS to {1, . . . , |S|} such thata <J b impliesh0(a) > h0(b).

Given two statesp, q and a wordu, let us writep
u:k
→ q to denote the fact that the

automatonA can go from statep to stateq, andk is the maximal value it outputs on the

way. Formally, ifδ(p, a) = q thenp
a:h(q)
→ q, and ifp

u:k
→ q andq

u:l
→ r thenp

uv:max(k,l)
→ r.

Let us give an example of this construction on a particularlysimple example: the
syntactic semigroup which recognises over the alphabetA = {a, b} the language of words
which contains a repetition of a letter,i.e., L = A∗aaA∗ + A∗bbA∗. This semigroup
contains five elements: the element0 represents the words which contain a repetition of
a letter, and the four classes of respectively the wordsa, b, ab, andba. The multiplication
table is defined by the equationsaa = bb = 0 = 0a = a0 = b0 = 0b = 0, aba = a
andbab = b. In terms ofJ -classes,0 <J a J b J ab J ba. To entirely define the
automaton of the construction, we also need to define the injectionh. We seth0(a) = 1,
h0(b) = 2, h0(ab) = 3, h0(ba) = 4 andh0(0) = 5. This results in the following set of
configurations–written in vertical boxes and indexed with the corresponding value ofh–:

{

0
5,

a
1,

b
2,

ab
3,

ba
4,

a
0

1,

b
0

2,

ab
0

3,

ba
0

4

}

.

Let us see how the resulting automaton would process the wordbabbbabaastarting from
configuration〈a〉:

a
1

b
→ ab

3
a
→ a

1
b
→ ab

3
b
→ 0

5
b
→

b
0

2
a
→

ba
0

4
b
→

b
0

2
a
→

ba
0

4
a
→ 0

5

The objective of the construction is to produce a forward Ramsey split,i.e., for all 955

elementsx < y andx′ < y′ of the same class,σ(x, y) · σ(x′, y′) = σ(x, y). For
b = σ(x, y) andc = σ(x′, y′), this meansb · c = b. The following lemma contains the
argument we use to obtain such an equality from the construction:

Lemma 5.3. Leta, b, c ∈ S be such thata · b = a · c = a anda J b, thenb · c = b.

Proof. By Fact 2.4,bJ a · b impliesbL a · b = a. Henceb = d · a for somed. It follows 960

thatb · c = (d · a) · c = d · (a · c) = d · a = b.

The next lemma is an analysis of what happens when two positions are in the same
class (one can recognise some of the premises of Lemma 5.3 forb = ϕ(u)).

Lemma 5.4. If 〈v, a〉
u:h(a)
→ 〈w, a〉 for some non-empty wordu thena · ϕ(u) = a and

a J ϕ(u). 965

Proof. We prove by induction on the length ofu (possibly empty) the stronger property

that whenever〈v, a〉
u:k
→ 〈w〉 with k 6 h(a), then:

(1) 〈w〉 = 〈v, a1, . . . , am〉 for somea1, . . . , an ∈ S, with
(2) a1 J a,
(3) a1 · · ·am = a · ϕ(u), 970
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(4) if m > 1, there is a suffixu′ of u such thatϕ(u′) = a2 · · · am, and,
(5) if u 6= ε, andm = 1, thena J ϕ(u).

This clearly yields the lemma, by (3) and (5).
One easily checks that the statement holds foru = ε. Assume now that (1),. . . ,(5)

holds for someu such that〈v, a〉
u:k
→ 〈v, a1, . . . , am〉 with k 6 h(a). Let c be a letter such 975

that 〈v, a1, . . . , am〉
c:k′

→ 〈w〉 for somek′ 6 h(a). We aim at establishing the claim for
the worduc.

Assume thatv = d1, . . . , ds is not a prefix ofw. Then by definition of the transition
function there is somel 6 s such thatw = d1, . . . , dl−1, d with d = dl · · · ds · a1 · · · am ·
ϕ(c). In particular, this means thatd 6J dl. Furthermoredl <J a since〈d1, . . . , ds, a1, . . . am〉980

is a valid configuration in whicha1 J a by (2) of the induction hypothesis. It follows
thatk′ = h(d) > h(a), by choice ofh. This contradictsk′ > h(a). Hence (1) holds.

At this point, we know that for someb1, . . . , bn,

〈v, a1, . . . , am〉
c:k′′

→ 〈w〉 = 〈v, b1, . . . , bn〉 .

According to the definition of the transition functionδ, two cases can happen. Ei-
thern > 1 and by definition of the transition functionb1 = a1. Sincea1 J a by (2) of the
induction hypothesis, we haveb1J a. Otherwise ifn = 1, we haveb1 = a1 · · · am ·ϕ(c). 985

This implies b1 6J a1 J a. Conversely, assume thatb1 <J a. This would im-
ply k′ = h(〈w〉) = h(b1) > h(a). This contradicts the assumption thatk′ > h(a).
Overall, (2) holds.

By (3) of the induction hypothesis,ϕ(u) = a1 · · ·am. By definition of δ we ob-
tain b1 · · · bn = a1 · · · am · ϕ(c) andb1 · · · bn = ϕ(u) · ϕ(c) = ϕ(uc). Hence (3) holds. 990

Assumen > 1. Two cases can happen. Ifm = 1, this means thatn = 2, b1 = a1,
andb2 = ϕ(c). It follows thatc is a suffix ofuc, i.e., a witness for (4). Otherwisem > 1.
Let u′ be the witness of (4) obtained by induction hypothesis foru. Using the definition
of the transition function we obtainϕ(u′c) = ϕ(u′) ·ϕ(c) = a2 · · ·am ·ϕ(c) = b2 · · · bn.
Therefore,u′c is a witness for (4). 995

Finally, assumen = 1. Thenb1 = a1 ·d with d = a2 · · · am ·ϕ(c). By definition of the
transition function this means that〈v, a1, d〉 is not a valid configuration while〈v, a1 ·d〉 is
valid. One knows further from (2) thata1J aJ a1 ·d. This last point impliesd >J aJ a1.
The only possible reason for〈v, a1, d〉 not to be valid is thatd 6>J a1. Henced J a.
Setu′ to ε if m = 1, otherwiseu′ is the suffix ofu obtained by (4) of the induction1000

hypothesis. In both case, we haveϕ(u′c) = d J a. This means thatϕ(uc) 6J a. Since
furthermoreϕ(uc) >J a by (3), we haveϕ(uc) J a, i.e., (5).

Overall, we obtain the following statement:

Lemma 5.5. Let q0, . . . , qn be the states successively assumed byA while reading a
wordu, thens(0) = h(q0), . . . , s(n) = h(qn) is a forward Ramsey split forϕu. 1005

Proof. Let s be the split defined bys(i) = h(qi) for i = 0 . . . n. Let x < y, andx′ < y′

be∼s-equivalent elements among1, . . . ,m.
Sincex, y, x′, andy′ are∼s-equivalent,h(qx) = h(qy) = h(qx′) = h(qy′). Let k

be this value. Sinceh is injective onS, there exists a singlea such thath(a) = k. By
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definition of h on configurations,qx = 〈v, a〉, qy = 〈w, a〉, qx′ = 〈v′, a〉 andqy′ = 1010

〈w′, a〉 for somev, w, v′, w′.
Sincex ∼s y, by Lemma 5.4,a · ϕ(ux,y) = a andϕ(ux,y) J a. The same holds

for x′, y′. In particular,a · ϕ(ux′,y′) = a. Applying Lemma 5.3 tob = ϕ(ux,y) andc =
ϕ(ux′,y′), we obtainϕ(ux,y) · ϕ(ux′,y′) = b · c = b = ϕ(ux,y). Hence,s is forward-
Ramsey. 1015

6 Applications as an accelerating structure

In this last section, we provide applications of the factorisation forest theorem of a differ-
ent kind. The principle of these applications is that, once computed, a (forward) Ramsey
split (or a factorisation tree) can be used as a data structure which allows us to perform
some computations in an efficient way. We refer to this use as factorisations as anaccel- 1020

eration structure.

6.1 Fast infix evaluation

The canonical example of such an application is a solution tothe following question:

Given a regular languageL and a wordu, is it possible to efficitently compute
a data structure (meaning here in time linear inu, possibly more complex in 1025

the presentation ofL) such that every request of the formui,j ∈ L can be
answered very efficiently (meaning here in time independentfromu, i, j, i.e.,
dependent only on the presentation ofL)?

Since we are not interested in the exact complexity in terms of L (which depends on the
way the language is described, and would require a long and careful analysis), we consider1030

L to be fixed. This means that every parameter depending only onL is considered as a
constant. With this convention, the statement boils down tocomputing a data structure
in time linear inu, and answering every request in constant time. In what follows,ϕ is
assumed to be some morphism which recognisesL, andS = 〈S, · 〉 is the corresponding
semigroup. The goal is to efficiently computeϕ(ui,j). 1035

There are two straightforward approaches to this problem. The first consists in not
performing any pre-computation. In this case, the pre-processing time in constant, how-
ever, answering to each request of the formui,j ∈ L requires a time inO(j− i), which in
the worth case isO(|u|). Another solution would be to pre-compute the answer to every
request, and store it in a table. This requires quadratic time (and space), but reaches the1040

constant time objective for query evaluation. These two solutions have the advantage of
making weak assumptions onL, namely that it is computable in linear time, for ensuring
the bounds given above. None of those solutions does providea solution to our problem.

A third attempt would be a simple divide and conquer algorithm. The data structure
consists of a binary tree, the leaves of which yield the inputword when read from left to
right. Furthermore, one enriches each node of this tree withthe valueϕ(v) in which v
is the word obtained by reading the leaves below the node fromleft to right. Fori a leaf
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below a noden, we definesuff(i, n) to beϕ(v) wherev is the node obtained by reading
the leaves belown from left to right, starting from leafi. This function can be computed
using the following formula:

suff(i, n) =







ϕ(i) if n = i

suff(i,m) if i appears below the right childm of n,

suff(i,m) · ϕ(m′) if i appears below the left childm of n,

andm′ is the right child ofn.

The correctness of this equation follows from the definition. Using this equation we can
computesuff(i, n) in at mosth recursion steps, whereh is the height of the tree. The1045

same argument gives an algorithm for computingpref(j,m) which computes the image
underϕ of the word belowm up to letterj. Giveni < j, one computes the valueϕ(ui,j)
assuff(i,m) · pref(j, n) wherem,n are two sibling nodes such thati appears belowm
andj belown. Overall, we obtain an algorithm which is linear inh. Since it is clear that
we can use an almost balanced tree as data structure, this means that computingui,j is 1050

logarithmic in the length of the word. It is also easy to verify that the tree can be computed
in linear time.

If one uses a Ramsey factorisation tree as data structure instead of a binary tree, then
one obtains a similar result, but this time the height of the tree being bounded by3|S|−1,
answering a single query becomes constant time. Note that, for this to work, we have to 1055

be able to compute a factorisation tree in linear time, and this is possible. We then reach
the following theorem:

Theorem 6.1. There exists an algorithm which, given a language of finite wordsL, and
a wordu,

• pre-processesu in time linear in|u|, and then; 1060

• is able to answer each query of the form “does the factor ofu between positioni
and positionj belong toL?” in constant time (constant wrt.|u|, but notL).

When replacing the binary tree of the above algorithm by a Ramsey factorisation
tree we have to explain how to computesuff(i, n) whenn is a node of arity at least3,
i.e, a node such thatϕ(n) = e is an idempotent, andϕ(n1) = · · · = ϕ(nk) = e
wheren1, . . . , nk are the children ofn read from left to right. In this case, we evalu-
atesuff(i, n) using:

suff(i, n) =

{

suff(i, nk) if i is belownk ,

suff(i, nl) · e if i is belownl for somel < k.

Indeed, ifi appears belownl for somel < k, then

suff(i, n) = suff(i, nl) · ϕ(nl+1) · · ·ϕ(nk) = suff(i, nl) · e · · · e = suff(i, n) · e .

In fact, forward Ramsey splits are as good as Ramsey splits for this kind of applica-
tions, and, in this case, it is obvious how to construct the structure in linear time: simply
by evaluating the deterministic transducer of Theorem 5.2.This is clearly linear in the 1065

length of the word.
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This use of Ramsey factorisations has been employed in several papers of Bojanczyk
and Parys [3, 5, 4], improving on the complexity in terms of the input language, and using
the technique for solving XPath queries.

6.2 Acceleration in monadic second-order logic 1070

TODO: Is there a reference to MSO in another chapter?
Let us recall here thatΠ1 is the fragment of first-order logic consisting of formulas

which, do only contain universal quantifiers (no existential ones) when transformed into
prenex normal form. The fragmentΣ2 consists of formulas for which no existential quan-
tifier is in the scope of a universal one. In general, and even on words,Σ2 is strictly less 1075

expressive than full first-order logic, which is itself strictly less expressive than MSO.
The following result was the first use of Ramsey factorisations as an acceleration struc-

ture:

Theorem 6.2(Theorem 2 in [13]3). Given an MSO formulaΨ(x1, . . . , xn) with free first-
order variables, there effectively exists aΣ2-formulaΨ∗(x1, . . . , xn) which uses MSO- 1080

definable unary predicates, such thatΨ andΨ∗ are equivalent over trees equipped with
the ancestor relation⊑ and unary predicates.

This result shows that, in some sense, the gab in expressive power between MSO and
Σ2, which is a weak fragment of first-order logic, can be collapsed by simply adding some
extra local (i.e., unary) information. 1085

Below, we give a high level presentation of this proof. It is decomposed into two
steps. For simplicity, we assume a fixed tree for the explanations, though of course, the
construction is uniform,i.e., the same construction works for all trees.

During the first step, we establishe the result for a binary formulaΨ(x, y) such that
Ψ(x, y) impliesx ⊑ y. In this case, using the standard relationship between MSO and 1090

recognizable languages, we can construct a semigroupM = 〈M, ·〉 (this semigroup de-
pends on the formula, but not on the tree), and an additive labelling σ over the tree, such
that it is sufficient to knowσ(x, y) to determine whetherΨ(x, y) holds. Furthermore,
this additive labelling is MSO-definable in the sense that for eacha ∈ M, there is an
MSO-formulaΦa(x, y) which holds if and only ifx ⊑ y andσ(x, y) = a. This can be 1095

established either using tree automata, or directly using the composition method ([27]).
Both approaches would go beyond the scope of this chapter.

Our goal is to enhance the tree with suitable MSO-definable unary predicates such
that σ(x, y) can be reconstructed based on those extra predicates. This would clearly
complete the first step. The main extra information we use is aforward Ramsey splits 1100

for σ obtained from Theorem 5.2. According to Theorem 5.2, this forward Ramsey split
can be computed by a transducer. This means in the present case that the unary predicates
“s(x) = k” for each fixedk = 1, . . . , |M | are definable in MSO, using this time the
standard translation from automata to logic. Let us define for eachk = 1 . . . |M | and
each nodey, parentk(y) to be, if it exists, the (unique) ancestorx of y such thats(x) = k, 1105

ands(z) < k for all z such thatx < z < y. We label for eachk = 1 . . . |M | and eacha ∈

3The statement in [13] does only mention first-order rather thanΣ2. The proof is the same.
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M , the tree with the MSO-definable unary predicate “σk(x) = a” which expresses that
parentk(x) exists andσ(parentk(x), x) = a.

What remains to be done is to prove that, using only the new predicates “s(x) = k”
and “σk(z) = a”, as well as the ancestor relation, it is possible to reconstruct the value 1110

of σ(x, y) for anyx ⊑ y. More formally, we need to provide for eacha ∈ M a Σ2-
formulaφa(x, y) which can use the above predicates, and such thatφa(x, y) holds if and
only if σ(x, y) = a.

Note at this point that givenx andy, we can express inΠ1 whetherx ∼s y, simply by
implementing the definition of∼s (⋆). In the same way, we can express inΠ1 whetherx = 1115

parentk(y) (⋆⋆). It is also very easy, given somex ⊑ y such thatx ∼s y, to check using
aΣ2-formula the value ofσ(x, y) (⋆⋆⋆). Indeed, eitherx = y, and the result is1 (the unit
of the monoidM). Or there existk andz such thats(z) = k andparentk(z) = x, and in
this case the value is simplyσk(z), and we have introduced the suitable unary predicate
for testing this. 1120

To conclude the argument, it is sufficient to note that given any two nodesx ⊑ y,
there exists a sequencex = z1 ⊑ · · · ⊑ zn = y of length at most4|M| such that for
all i = 1 . . . n− 1, eitherzi = parentk(zi+1) for somek, or zi ∼s zi+1 (♮).

Consider now the followingΣ2-formula:
∨

a1·a2···an−1=a, n64|M|

∃z1 . . . zn.
∧

i=1...n−1



zi ∼s zi+1
︸ ︷︷ ︸

in Π1 by (⋆)

∧ σ(zi, zi+1) = ai
︸ ︷︷ ︸

in Σ2 by (⋆ ⋆ ⋆) sincezi ∼s zi+1




∨






∨

k

parentk(zi, zi+1)
︸ ︷︷ ︸

in Π1 by (⋆⋆)

∧ σk(zi+1) = a
︸ ︷︷ ︸

new unary predicate






This formulas holds if and only ifσ(x, y) = a. Indeed, by construction, whenever
this formula holds,σ(x, y) = a. For the converse, assumeσ(x, y) = a. Then the formula 1125

holds for the choice ofz1, . . . , zn obtained from remark (♮).

The goal of the second step is to generalise the first step to any formulaΨ(x1, . . . , xn).
We do not develop this part further. It consists in separating the cases depending on the
relationship betweenxi’s with respect to⊑. For instance, ifn = 2, andx1 andx2 are
incomparable, one choosesy to be the least common ancestor ofx1 andx2, andy1 (resp 1130

y2) to be the child ofy ancestor ofx1 (resp.x2). This yields the following picture.

y

y1 y2

x1 x2

Using syntactic transformations of the formula, e.g., using once more the composition
method, it follows that whetherΨ(x1, x2) holds depends solely on some local information
concerningy, y1 andy2, and some formulas involving eithery1, x1 or y2, x2. Those two 1135

last cases can be treated using the first step sincey1 ⊑ x1, andy2 ⊑ x2. Since furthermore
x, y1, y2 are definable inΣ2 from x1 andy2, one can construct aΣ2-formula equivalent
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toΨ(x1, x2).
A consequence in graph theory.The analysis of the structure of graphs is also related

to definability questions. There exists a parameter for graphs (and more generally struc-1140

tures) called the clique-width [17] – which we do not develophere – such that a lot of
graph problems admit solutions with better complexities when this parameter is bounded
(more precisely when the decomposition witnessing the bounded clique-width is known).
In this paper, the following fact concerning clique-width is sufficient:

Fact 6.3. A family of graphs has bounded clique-width if and only if it is MSO-definable 1145

in a family of trees.

In other words, graphs of bounded-clique width consist in some sense of a tree skele-
ton on which the graph can be reconstructed, using solely MSO-definable relations. Since
our result applies to trees we directly obtain the corollary:

Corollary 6.4. A family of graphs/structure is of bounded clique width if and only if it is 1150

Σ2-definable in a family of trees.

We redirect the reader to [2] for more pointers in this direction.
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