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Abstract. This chapter is devoted to the presentation of the factioisdorest theorem, a deep
result due to Simon, which provides advanced Ramsey-liggraents in the context of algebra, au-
tomata, and logic. We present several proofs and seveiahtathe result, as well as applications.

1 Introduction

In automata theory, itis a very common and elementary argtiroeemark that, beyond a 1
certain size, every run of a finite state automaton contaimesepetition of a state. Once
this repetition is withessed, using copy and paste of theepid run between those two
occurrences, one can produce arbitrarily long valid vexsaf this run. This is the content
of the “pumping lemma”, which is nothing but a direct consegee of the pigeonhole
principle. 15

The argument can also be used in the reverse way; whenever ia tao long, it
contains a repetition of states, and it is possible to ddtsepiece of run separating
those two occurrences. In this case, it is used for redutiagize of the input. These
arguments are used in many situations. The first one is tyypiaaed for proving the
impossibility for a finite state automaton to perform somsktesuch as recognising a
given language. The second is used for proving the existehsmall witnesses to the
non-emptiness of a regular language, a small model property in the terminology of
logic. Those arguments are among the mostimportant andluseds in automata theory.
They illustrate in the most basic way the central importasf¢énding repetitions” in this
context. All the content of this chapter is about “finding&éfions” in a more advanced »s
way.



2 T. Colcombet

In some situations, the above argument of “state repetittonot sufficient, and one
is interested in finding the repetition of a “behaviour” oéthutomaton. A behaviour here
is any piece of information of bounded size associated tord watypical behaviour of a
(non-deterministic finite state) automaton over a weid the set of pairgp, ¢) such that
the automaton has a run fropito ¢ while reading the word.. This set of pairs gathers
all the relevant information concerning how the automatam lsehave while reading the
word, whatever is the context in which the word is pluggedieBian input word, one can
associate a behaviour to each factor of the word, and theaheof Ramsey tells us that
every sufficiently big word contains long repetitions ofnitieal behaviours: for each,
every sufficiently long word. can be decomposed into

vULU2 ... Up W,

in which all the wordsu;u; 41 - - - u; for i < j exhibit the same behaviour. Let us empha-
sise the difference with the pumping argument given abaw#eed, a run is a labelling of
the positions in a word, while behaviours label factors efword: the number of labels
in a run is linear, while the number of behaviours is quadratiowever, the theorem of
Ramsey is of similar nature as the pumping lemma as it rehiesmigeonhole principle.

A famous use of this Ramsey argumentin automata theory jzrtt# of closure under
complement of Biichi automata [9]. A Blichi automaton is a deterministic finite state
automaton running over infinite words. It accepts a wordéféhs a run visiting infinitely
many times a certain set of states (the so-called Biichi tiondli Since the input words s
are infinite, there are uncountably many potential runsisfahitomaton over each input,
some of them being accepting, some other not. The problenm @uéomaton for the
complementis to provide a proof (which takes the form of g that none of these many
runs of the original automaton is accepting. Of course rbigpossible to keep separately
track of each run of the original automaton, since there @wariany of them. Itis also
not possible—as one would do for finite word automata—to kel only of the reachable
states at each step, as one would loose the informatiorargléer the Bilchi condition.
The key idea of Bichi is to guess a decomposition of the inpuidwnto an infinite
repetition of the same behaviour. This is possible thankbkéaheorem of Ramsey as
we described above in the finite case. This idea granted ahgtreiction becomes easy: «
the automaton guesses this repetition, checks that it isistemt with the input word
(this involves easy local verifications over finite words)daince the infinitely repeated
behaviour contains sufficient information for assertingetiter the word is accepted or
not, the automaton can deduce from it when no run of the algiatomaton is accepting.
Here, the theorem of Ramsey is used for making explicit thalegity in the behaviours so
of the original automaton. The reader is welcome to proce&hiapter?? for a thorough
presentation of this technique.

The factorisation forest theorem, which is the subject &f thapter, goes even one
step further. It does not only establish the existence ofépetition of some behaviour
(as the theorem of Ramsey does), but it completely fac®eseh word into a structure ss
(a factorisation tree) which exhibits repetitions of bebavs everywhere.

The theorem can be understood as a nested variant of thethebRamsey. Consider
some input word. A single use of the theorem of Ramsey sigsword into several
sub-words corresponding to the same behaviour (plus twalsvior the extremities).
However, each of those sub-words can itself also be very, land one could again use «
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the theorem of Ramsey on each of them, thus providing a sabragosition. In fact, one
would like to iterate this process until the word is entirdBcomposed, in the sense that
the remaining words are just isolated letters that we arént@tested in factorising. The
result of this process can be represented as a tree, thefratiah is the initial word,
which has as children the words obtained by the first apjpdioaif Ramsey, etc... This es
tree is aRamsey factorisation tree

In general, there is not much one can say about such an éerdor instance, there
is a priori no upper bound on the number of iterations regluioecompletely decompose
the word. What Simon'’s factorisation forest theorem teaal®is that, under the correct
assumptions, this induction need only be iterated a boundetber of times. Said differ-
ently, there is a bound such that every input word admits adesrfactorisation tree of
height at most this bound.

The required assumption is that the behaviours are equipfibd finite semigroup
structure, and that the labelling of the input word by bebass is consistent with this
structure. This means that the behaviofirare equipped with an associative prodyct
such that ifu has behaviout andv has behavioub, thenuv has behavious - b. For-
mally, it amounts to require that the mapping from words thawéours is a morphism of
semigroups. The factorisation forest theorem can thenésepted as follows:

factorisation forest theorem (Simon [30]For all finite semigroups and
all morphismsy from A* to S, there exists a bounid such that every word 80
in AT has a Ramsey factorisation tree of height at nhost

Though very close in spirit, the factorisation forest theenrand the theorem of Ram-
sey are incomparable. Simon’s theorem is weaker since itinegjan extra hypothesis,
namely that the behaviours be equipped with a semigrouptate; and this is a very
strong assumption. But under this assumption, the faetiiois forest theorem gives a s
much more precise result than the theorem of Ramsey. Tadhnithe two results are
also proved using very different arguments. The theoremash$ty is proved by suc-
cessive extraction processég, an extended pigeon-hole principle, while the proof of
the factorisation forest theorem is based on algebraicnaegis involving the theory of
semigroup ideals (the relations of Green). 90

To conclude, the factorisation forest theorem is to be udeeivarguments based on
the pigeonhole principle and the theorem of Ramsey are fffatisnt anymore. The price
to pay is to provide a semigroup structure for describinggteblem. This is often the
case when problems arise from automata or logic.

The factorisation forest theorem was introduced by Sim@h §3 a generalisation of o
the lemma of Brown [7, 8] about locally finite semigroups. B8imgave several proofs
of this theorem [30, 32]. Other proofs improving on the baaihdve later be proposed
[12, 15, 20]. Section 3 is devoted to several presentatibtisectheorem (Theorems 3.1
and 3.4), to its proof, and to some optimality consideratiofiVe also presents some
extensions of the result. 100

Concerning applications, the factorisation forest theoatiows us to give a very sim-
ple proof of the lemma of Brown. It has also been used by Sirmgmdve the decidability
of the finite closure property in the tropical semiring. Thepical semiring is the set of
non-negative integel§ augmented with infinity and equipped with addition as praduc
and minimum as sum. The finite closure problem is, given aefiggt of square matricesios
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of the same size over the tropical semiring, to determinedirtclosure under product is
finite. Simon proved the decidability of this problem in [28]he finite section problem

is more general, and consists in determining precisely whaies in the matrices can
take arbitrary high values. This problem is equivalent tmatomaton related problem:
the limitedness of distance automata. Distance automatace-deterministic finite state .o
automata with weak counting capabilities. These automaapate functions, and the
problem of limitedness of distance automata consists iardehing whether the func-
tion computed by a given distance automaton is bounded. iglashi established the
decidability of this problem in [19]. Several proofs are Wmoof this result. Leung
proposed a very natural algorithm for solving this probléne proof of correctness of 15
which is rather complex [22, 23]. Simon gave a simplified prafoLeung’s algorithm
using the forest factorisations theorem [31]. Another mapibn of the forest factorisa-
tions theorem is in the characterisation of certain clas$ésnguages. For instance, it
has been used by Pin and Weil for giving an effective charsatg of the polynomial
languages [26]. Polynomials are languages describablératessum of languages of the 1
form Afa1 A% .. .a, A inwhichaq, ..., a, are letters, and,, ..., 4,, are sets of letters.

It is possible to characterise the syntactic ordered ma@awfithnguages are described by
polynomials. The technique has been used for an extendeltliref5]. Inspired by these
works, a similar technique has also been used for charsicigranother pseudovariety of
regular languages [1]. Section 4 is devoted to presentidganving those applications. 125
In fact, these applications can be simplified if we do notrafdactorization trees. Thatis
why we provide two variant presentations of the forest faz&tion theorem, often easier
to use (Theorems 4.1 and 4.2).

The factorisation forest theorem, in its original form, aamy be used for words.
There exists a variant of this theorem which allows us—in es@pecific situations—to 1z
apply it to trees [13]. We present this result in Section 5¢@diem 5.2).

In Section 6, we present another use of the factorisatioestaheorem, as an accel-
erating structure. This kind of application is very natlyrgderformed on trees, using
the tree-related variant of the theorem from Section 5. Tieciple consists in pre-
computing a factorisation tree over an input, such that gnable to answer specific1ss
queries very efficiently. The first result of this form was toow that every monadic
second-order formula using free first-order variables aaeftectively transformed into
an equivalent (equivalent on trees equipped with the aocesation) first-order (in fact
3») formula using some extra monadic second-order definabkdeyupredicates. This
technique has also been used in database theory to givanbdstay enumeration prob-wo
lem for trees. It consists, given a query, to pre-processiéttebase (a tree), and then to
enumerate all solutions to the query, each of them in timemslirin its size (linear time in
the solution if the solutions consists of sets).
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2 Some definitions

2.1 Semigroups and monoids 145

An alphabetA is a finite set oletters A word over a finite alphabed is a sequence of
lettersu = ay . ..a,. If nisnull, itis called theempty wordand is writtenc. The set of
words overA is A* and the set of non-empty words4s'.

A semigrou = (S, -) is a set equipped with an associative operationA monoid
M is a semigroug, -) that contains aeutral elementy,, i.e., an element such that s
Im -2 =2-1ym = z forallz € M. Note that we do not enforce a semigroup to be
non-empty (while a monoid is). &roupis a monoid such that for every elemanthere
existsz—! such thatr- 2= = x~! .2 = 1. Anidempotenin a semigroup is an element
such thae? = e.

A semigroup morphisrfrom a semigroug8 = (S5, -) to a semigroufl’ = (T,-) iS 155
a functionf from S to T sucht hatf(« - y) = f(z) - f(y) for all z,y in S. A monoid
morphismis a semigroup morphism from a monoid to another monoid wisdrther
required to map the neutral element of the first monoid to thenal element of the second
monoid.

Given a semigrouf® = (S, -), one denotes bygs the unique semigroup morphismeo
from ST to S which coincides with the identity on lettelise., 7g(a) = a andrs(ua) =
ms(u) - a, wherea € S. For simplicity, we often omit th& subscript and simply write.

A semigroupT = (T, ') is asub-semigroupf a semigrou8 = (S,)if T C S
and-’ coincides with- on 7. One usually use the same notaticfor . For monoids,
one also requires that the neutral elements of the monoidtarsdibmonoidcoincide. s
Given a setd C S, (A)s is the least subsemigroup Bfwhich containsA. It is equal
to (r(A™T),-). One uses the same notation for monoids.

For a thorough introduction to semigroups, we refer theeesal[21, 25].

2.2 Linear orderings and multiplicative labellings

A linear orderingis a set equipped with a total order. Appart from Section @& will 170
only consider finite linear orderings. Typically, given arda = a; ... a,,, We consider
its domaindom(u) = {1,...,n} (we can see a word as a function from its domain to its
alphabet) and its set @uts cuts(u) = {0,...,n}. A cutis a position between letters.
The cuti fori = 1,...,n — 1 represents the position between letteendi + 1. The
cut0 represents the beginning of the word, and thexctliite end of the word. Cuts amongs
1,...,n — 1 are calledinner cuts The set of inner cuts ignner-cuts(u). Given two
cutsi < j, the factor between positiodsindyj is u; ; = a;11a;42 - - - a;.

Let o be a linear ordering an¢S, -) a semigroup. Amultiplicative labelling is a
mappingo from the set of ordered paits;, y) € o? such that: < y to S such that:

forallz <y <zina, o(z,y) o(y,z)=o(zz2).

Given a semigroup morphismfrom A* to some semigroups, -) and a wordu in A,
there is a natural way to construct a multiplicative laloglp,, from cuts(u) to (S, -) as

1itis called an additive labelling in the context of the corsition method [27].
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follows. For every two cuts < y in cuts(u), set

def
Pu(2,y) = @(Usy) -

This mapping is naturally a multiplicative labelling sinfce all z < y < z in cuts(u),
Pu(@,y) - u(y, 2) = p(Uay) - Puy,2) = P(Ua,yty,:) = P(Us,2) = Pu(, 2).

This view of susing linear orderings and multiplicative éflings rather than words s
and morphisms is non-standard. It has several advantagles present context. A first
technical advantage is that some operations are easiestailtie, for instance restricting
a multiplicative labelling to a sub-ordering is straightf@rd (this is used several times
in the main proof in Section 3.2). Another advantage is tsadxtension to infinite linear
orderings is more natural than the use of infinite words (&si&h 3.5). 185

2.3 Standard results on finite semigroups

In this section, we recall some basic definitions and ga#mirlts concerning finite semi-
groups. The reader can refer to [21, 25] for more details erstibject.
Given a semigrougy, S' denotes the monoif itself if S is a monoid, or the semi-
groupS augmented with a new neutral elemérndtherwise, thus making a monoid. 19
The important notions to prove the factorisation foresotken are Green'’s relations.
Those relations give a comprehensive understanding oftthetgre of a (finite) semi-
group. However, in this survey, we need Green'’s relatiorlg for proving the result
of forest factorisation (and its deterministic variant)re@n’s relations are not used in
the various applications of those theorems. In fact, onetaaee the result of factori- 10
sation forests is as a convenient and easy to use result \ghieh access to non-trivial
consequences of the theory of Green’s relations.

The Green'’s relations are defined by:

a<sb if a=cbforsomecinS? alb if a<cbandb<,a
a<gpb if a=bcforsomecinS! aRb if a<gbandb <z a
a<sb if a=cbd forsomec,dinS'  aJb if a<sbandb<ya
a<y b if a<sbanda <z b aHb if aLbandaRb

Fact 2.1. Leta,b,cbeinS. If a £ bthenac L be. If a R bthenca R cb. For everya, b
inS,aLcRbforsomeciff a R ¢ L bforsomec.

As a consequence of the last equivalence, one defines the [@sten’s relations:

aDb iff aLcRbforsomecins,
iff aRc Lbforsomec inS.

The key result being (here the hypothesis of finiteness isfmandatory): 200
Fact2.2.D=J.

For this reason, we refer from now on onlyfand not7. However, we will use the
preorder< 7 (which is an order of th@®-classes).
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An elementz in S is calledregular if asa = a for somes in S. A D-class isregular
if all its elements are regular. 20

Fact 2.3. A D-classD is regular, iff it contains an idempotent, iff evefirclass inD
contains an idempotent, iff evefg-class inD contains an idempotent, iff there exists
a,bin D such thaub € D.

Fact 2.4. For everya, b in D such thatb € D, a R ab andb L ab. Furthermore, there is
an idempotent in D such thats £ e andb R e. 210

Fact 2.5. All H-classes in &-class have the same cardinality.

Fact 2.6. Let H be ant{-class inS. Either for alla,bin H, ab ¢ H; or foralla,bin H,
ab € H, and furthermoréH, .) is a group.

3 The factorisation forest theorem

In this section, we give various statements for the facitios forest theorem. We startas
with a formulation via splits. We then give a presentatiomeinms of Ramsey trees, the
original one of Simon. A last presentation, more algebiiaialso given in Section 4.

3.1 A statement via splits

A split of heighth, h being a non-negative integer, over a linear ordés a mapping
from the positions ofvto {1, ..., h}. A split s induces an equivalence relatieny overa
defined by:

T~y if s(x) = s(y)ands(x) > s(z)forallz < z<y.

A split s of heighth is callednormalisedf s(min a) = h.

In the following drawing, the points of the linear ordgn, ..., 13}, <) are drawn at 2o
different height according to the value of the split, yielglisome sort of a landscape of
mountains. The equivalence classes between points aretelgpising gray lines. Graph-
ically, two points are equivalent for the split if it is polsk to go from one to the other by
flying horizontally without crashing into a mountain.

3
2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 225

A split over« is Ramsey for a multiplicative labelling over« if, for every equivalence

classeC of ~, there exists an idempotensuch that(z,y) = eforallz < y in C.
Consider for instance the (semi)groZp3Z and the alphabefto, 1, 2}, with the ob-

vious morphism. Consider now the word= 1112022201212 over this alphabet which
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induces a multiplicative labelling,,. The split of the previous example happens to be
Ramsey for this labelling:

1 1 1 2 0 _ 2 2 2 0 1 2 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

One can verify thatr,, (0, 7) = 0,(7,10) = 0,,(10, 12) = 0 (top most equivalence class),
0.(2,3) = 0,(4,5) =0, ando,(8,9) = 0. All the other classes are singletons. Overall,
the split is Ramsey fos,. 235
The factorisation forest theorem states that there is adsuch that every multiplica-
tive labelling over a finite linear order admits a Ramseytgflheight at most this bound.
The statement below provides the bouv@S) (defininition below). In practice, one often
over-approximates this value simply by|, though this approximation may be far from
optimal in some cases. 240

Theorem 3.1. For every multiplicative labellings of a finite linear ordering by a fi-
nite semigrou, there exists a normalised splitwhich is Ramsey fos, of height at
mostN (S). In the above statement, the valD&S) is the maximum over all chains
of D-classes

Dy <g---<g Dy

of the sume:1 N(D;), whereN(S) = 1if D is irregular, and N (D) is the number of
elements inD which are#-equivalent to an idempotent, otherwise.

The proof of this theorem is the subject of the next section.

3.2 Proof of the factorisation forest theorem

This proof follows the scheme used in [14, 15]. Other modeoofs of the factorisation 2
forest theorem such as in [20], [3] or [16] do not use the dplimalism, but involve
essentially the same arguments.

Along this proof,o denotes a multiplicative labelling from a finite non-empghehbr
orderinga to the finite semigrougs, -) of Theorem 3.1. We denote lay(«) the set of
elements of the semigroup occurringdni.e., {o(z,y) : x,y € a, x < y}. 250

The proof consists of a case distinction according to Geeatations. In each case, a
different argument is used for constructing the split. Th&t fine is the case of a single
‘H-class which contains an idempoteir, , the case of sub-groups.

Lemma 3.2. Let H C S be an?-class such that, -) is a group and let be a multi-
plicative labelling such that (o)) C H. Then there exists a normalised Ramsey sphit 255
height at mostH | of o, 0.

Proof. Letay, ..., ajz be an enumeration of the elementsfinsuch thata| ;| = 15
(1 denotes the neutral element(d, -)). Letxzy bemin a. We defines by s(z¢) = |H|
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and, for ally € a with y > x¢, s(y) = k wherek is the unique number such that =

O'(.CC(),y).
S =
Y7k ity > 20 anday, = o(z0, y).

We prove that is Ramsey fory, o by showing that(z,y) = 1y forall z < y such
thats(z) = s(y). We distinguish two cases. if = x¢, thens(y) = |H|. This means
by construction of thato(zo,y) = ajg = 1. Otherwise, one knows by construction
thato(xo, x) = o(xo,y). Call this valuex. We have

a=o(zo,y) =o(xg,x) o(x,y) =a-o(z,y).

Since(H, ) is a group, dividing bya, one gets tar(x,y) = 1y. Consequently is
Ramesey. It is also clear thatis normalised by construction. O

The second case corresponds to a single regielass.

Lemma 3.3. Let D be a regularD-class inS and o be a multiplicative labeling over a 2o
linear orderinga such thato(a) € D. Then there exists a normalised Ramsey split of
height at mosiV (D) for a, o.

Proof. We first associate to each element « an £-classL(z) and anR-classR(x)

as follows. For all non-maximal elementse «, we fix somey > z, and setR(x) to

be theR-class ofo(z,y). According to Fact 2.4 this definition does not depend on the
choice ofy. Similarly, for all non-minimalz € L, we sety < z and setL(x) to be

the £-class ofo(y, z). Forxz maximal, choose?(z) to be anyR-class included inD
such that R(z) N L(z), ) is a group: this is possible according to Fact 2.3. We sityilar
chooseL(z) for z minimal such that R(x) N L(z), -) is a group.

We claimthat (L(x) N R(z),-) is a group for allz € «, . This holds by construc- zno
tion whenz is minimal or maximal. Consider now some non-minimal, noaximal
elementz € « and somey < z andz > z. By construction,o(y,xz) € L(x),
ando(z,z) € R(x). Since furthermore (y, z) - o(x, z) = o(y, z) € D, using Fact 2.4,
there exists an idempotent L(z) N R(x). This means by Fact 2.6 that(z) N R(x), -)
is a group. The claim holds. 275

LetnowHq, ..., H; be an enumeration ¢i-classes included i that induce groups.
Without loss of generality, we choogé, = L(mina) N R(min«). Letn be the size
of H;s (recall that allH-classes inside &-class have same size according to Fact 2.5,
and hence is also the size offs, . .., Hy). Note finally thatV (D) = kn.

SetX;to{z : L(zx)NR(x) = H;}foralli=1...k TheX,’s are disjoint and, ac-
cording to the above claim, their union equalsFor each = 1, ..., k for which X; # 0,
Lemma 3.2 provides a normalised sglitover X; of heightn which is Ramsey foX;, o.
Define now the split for all z € a by:

s(z) = si(x) + (i — )n, in whichi is such thatr € X .

Let us prove that is Ramsey. Consider an equivalence claser ~,. By construction 2o
of s, there is some such thatC' C X;. Hence,C is also an equivalence class for,
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in X;. Sinces; is Ramsey forX;, o by construction, this means that there exists an
idempotent such that(x,y) = e forall z < y in C. Hences is Ramsey.

Furthermore, the height afis nk = N (D), and sincenin « € X, by choice ofH,
andoy, is normalised, we get(min o) = nk = N(D), i.e., s is normalised. O 2

We can now for complete the proof of Theorem 3.1.

Proof. For everya € S, letat; be{b : a <z b}, and letM (a) be the sum ofV(D)
for D ranging over théD-classes included it ;.

The proof is by induction on the size aft ;. The induction hypothesis is that for
every multiplicative labellingr of a finite linear ordery such thavr(a) C at, we have: 20

e if a is regular, there exists a normalised Ramsey split of heagtrhost M (a)
for o, o,
e otherwise, there is a Ramsey split of height at mdst) for (o \ {mina}),o.
Leta € S anda be an order such that(o) C at ;. We definex; by induction
oni=0... by:

To = min a, andforalli > 1, z; =min{z >ax;,—1 : o(z;-1,2) Da}.

(if there is no such element, the constructions stops). In the end, a sequence:

x; < -+ < a, of elements ina is produced. LetX = {zg,...,z,}. One also s

definesYs, ..., Y,, to be the intervals of positions occurring between:thie: formally,

Yy, ..., Y,, are defined such that the union&f Yy, ...,Y,, is«, andzy < Yy < 27 <

Y1 <ay < <z <Yy, (note that some of the sel§, . . ., Y, may be empty).

Remark a:For all 4, j such thad < i < j < m, one hasr(z;,x;) D a by construction.

Said differentlys(X) C D(a). 300

Remark b:iForalli =0...m, o({z;} UY;)ND(a) = (. This comes from the minimality

argument in the choice of eaah.

Case 1:Let us assume first thatis regular. The principle of the construction is to use

Lemma 3.3 oveX, and the induction hypothesis over each oftkis, and combine those

splits. SetV to N(D(a)), andM to M (a). 305
By Remark ag(X) C D(a). Thus one can apply Lemma 3.3, and get a normalised

Ramsey splits’ of height NV for X, o. Thanks to Remark b, one can use the induction

hypothesis and get for all= 0. .. m a Ramsey spli¢; for Y;, o of height at mosf\/ (a) —

N. We combine the splits’,s;,. .. into a splits by:

s(z) = sxy+M—-N ifz'eX,
] si() for z € Y; otherwise

It is clear that, since’ is normalised, the same holds farLet us show that this split is
Ramsey. Consider an equivalence cl@s®r ~. We distinguish two cases.

If s(z) > M — N for somez € C, this means that the first case in the definition
of s(z) is used for all elements € C. Hence,C' C X, andC is an equivalence class
for s’. Sinces’ is Ramsey, there exists an idempotestich that (x,y) = eforallz <y a0
inC.

Otherwises(z) < M — N forone/allz € C. Sinces(z) > M — N forallz € X, it
is not possible that’ contains two elements which are separated by an elementXrom
We deduce tha®' C Y; for somei. Furthermore, sinceands’ coincide ovel;, C is also
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an equivalence class 6f,/. Ass; is Ramsey, this means that there exists an idempetents
such that(z,y) = eforallz < yin C.

Overall,s" is Ramsey for, a. This completes the proof of the first case of the induc-
tion hypothesis.

Case 2:It remains the case whetels irregular. We claim first thatX'| < 2. Indeed
assume that there exists< y < z in X. Then we have (x,y), o(y,z) ando(z,z) = =2
o(x,y)-o(y, z) all belong tdD(a). By Fact 2.3, this means th&Xa) is a regulaD-class,
contradicting the irregularity af. This establishes the claim.

We can now define the spktfor all z € o\ {min«a} of heightM by:

( M if 2/ € X\ {mina},
S\r) =
si(z) forz €Y; otherwise

Let us show that this split is Ramsey. Consider an equivalelass for ~,. Again we
distinguish two cases. H(x) > M for somex € C, this means that’ C X \ {mina}.
Sincemina € X and|X| < 2, |C| = 1. Hence this class is homogeneous. Otherwise
s(z) < M — 1for somex € C. The same argument as in the first case of the induction
hypothesis can be used. Overalls Ramsey for, a \ {min a}.

Thus the induction hypothesis holds for all elememntsWe can use it to establish
Theorem 3.1. Let. be some element in the minimdl-class ofS. This meansS = at ;.
Let « be a finite linear ordering, and a multiplicative labelling ofx by S. SinceS =
at 7, anda is regular, one can apply the first case of the induction Hyggis ono, o
there exists a normalised Ramsey splitdor. O

Let us now turn to the original statement as proposed by Simon

3.3 The original statement using factorisation trees

Theorem 3.1 is stated in terms of splits as in [15]. The oabgtatement of Simon [30] 3
uses a different presentation that we describe in this@ecti
Fix an alphabet! and a semigroup morphismfrom A+ to a finite semigrougs, -).
A factorisation treds an unranked ordered tree in which each node is either talealied
by a letter, or an internal node. Thalueof a node is the word obtained by reading the
leaves below from left to right. Aactorisation treeof a wordu € A™ is a factorisation s«
tree with valueu. Theheightof the tree is defined as usual, with the convention that the
height of a single leaf i8. A factorisation tree iRamseyfor ¢) if every node either
(1) is aleaf, or
(2) has two children, or
(3) the values of its children are all mappedbyo the same idempotent 6f. a5
Figure 1 presents a Ramsey factorisation tree for the Wo1d022201212 over the
alphabet{0, 1, 2}, with respect to the natural morphismZ)'3Z. Each non-leaf node
of the tree is depicted as an horizontal line. The only nodiehvkatisfies property 3 is
highlighted in a grey surrounding. One can check that ingdedmage by the morphism
of the value of each child of this node(s 350
The factorisation forest theorem reads as follows, in whitf$) is the value intro-
duced in Theorem 3.1:
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Figure 1. A Ramsey factorisation tree /37

Theorem 3.4(Factorisation Forest [30]For all alphabetsA, all semigroup morphisms
from A7 to a finite semigrou$, and all wordsu € AT, there exists a Ramsey factorisa-
tion tree foru, ¢ of height at most = 3N(S) — 1. ass

The various references given for this result differ in thiugaof the bound:. In the
original proof of Simon [30], the bound s = 9|S|. Simon gave then a simplified proof
[32] yielding a worse bound df®I+1 — 2 (this proof relies on the deep Krohn-Rhodes
decomposition theorem). A bound bf= 7|S5] is achieved by Chalopin and Leung [12].
A bound of3|S| is given in [14, 15]. The optimal bound &S| — 1 [20], see also [16] s
SinceN(S) < | S| the present result improves on the bound&f| — 1 to 3N(S) — 1.
This better bound is essentially obtained by a more carefallyais of the construction.

Lemma 3.5 describes the relationship between Ramsey aplitfRamsey factorisa-
tions. Using it, Theorem 3.4 immediately follows from Thewr3.1 (recall the definitions
from Section 2.2). 35

Lemma 3.5. Let A be an alphabet, a morphisgfrom A* to a finite semigrou$ and a
wordu € AT,
(a) Every Ramsey factorisation tree of heighdf u induces a Ramsey split of height at
mostk for inner-cuts(u), @y.
(b) Every Ramsey split of heightfor cuts(u), ¢, indeuces a factorisation tree ofasrno
height at mos8k of u; of height3k — 1 if the split is furthermore normalised.

Proof. For (a), we set the value of the split for € inner-cuts(u), say forz the cut
between lettei and letteri + 1 in u, to be the maximal depth of a node that hasithe
and the(i + 1)¢h letter below it. It is not difficult to see that this defines ditspf height

at mostk, and that it is Ramseyan fenner-cuts(u), @. ars
For (b), note that the only class of valuaccording to the split (we assume that there is
one) factorises the wordinto v = wous . .. w; in such away thab(ui) = -+ = ¢(ui—1)

is an idempotent. Hence we construct the prefix of a tree as:

Uup Ul U2 see o U1 W

and then proceed inductively with the subwords. .., u;. We get at the end a Ram-as
seyan factorisation tree, and its height is at n8#st Furthermore note that, if the split

2Unlike stated in [16], the bound is due to Kufleitner.
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is normalised, there is no need to use the root node of theeatpmdget for the highest
~-class. O

3.4 Optimality of the bound

We have seen a bound &f(S) in Theorem 3.1, and a bound 8V (S) — 1 for Theo- s
rem 3.4. The question we are addressing in this section ishehthis bound is optimal.
This question has been the source of some investigation2{2 Indeed, in some ap-
plications, this parameter may have a significant complexipact (see the applications
in Sections 4 and 6). It is also natural that a better undedstg of this parameter re-
quires a better understanding of the structure of semigrotipis remark itself justifies ss
the interest in this question.

Chalopin and Leung [12] and Kufleitner [20] derived lower hds. The following
result of Kufleitner shows that the bound3)f| — 1 of Theorem 3.4 is optimal for groups
(in the case of groupsy (S) = |5]).

Theorem 3.6([20]). For all non-trivial finite groupsG there exists a wordh € G* such  zes
that every factorisation tree af, » has height at leas}|G| — 1, wherep : G — G is
the evaluation morphism.

One can also deduce from it the optimality of Theorem 3.1.

Corollary 3.7. For all non-trivial finite groupsG there exists a multiplicative labelling
from a finite linear ordering taG such that every Ramsey split@thas height at least 40
G

Proof. Consider the wordv from Theorem 3.6 and the corresponding multiplicative la-
bellingo = ¢,,. For the sake of a contradiction, assume that there is a Resptie of
height|S| — 1 for 0. By Lemma 3.5 this means that there exist a Ramsey factionisat
tree of height at mos¥(|S| — 1) for w, ¢, contradicting Theorem 3.6. O s

In this chapter, we have given an optimised result, with anbloef N (S) in terms of
splits (Theorem 3.1), an8iN (S) — 1 in terms of factorisation forest (Theorem 3.4). In
some casedV(S) = |5, this is the case for instance whénis a group, but not only
(consider for instance the semigrolfd, ..., n}, max)). However, it can also happen
that the gap betweeN (S) and|S| can be arbitrarily high: consider for instance for eacho
positive integern the semigrou,, with elementgas, . .., a,, 0} for which the product
is defined by0 - = « - 0 for all , anda; - a; is a; if j = 4, and0 otherwise. This
semigroup has size+ 1, but N(S,,) = 2 for all n. This shows that a careful analysis can
drastically improve on the original upper bound| 6f.

However, one can still wonder whether the bouv(S) is optimal. More precisely, s
given a semigrou, does there exist always a multiplicative labelling suddt tho split
Ramsey for it has height less thaf(S)?

The answer to this question is negative. Consider for igtdhe semigrou@,, =
({1,2,...,n—1,00},+) (in which the sum is defined in the natural way). THé(S) =
|S| = n. However, for every multiplicative labelling from a (finjtenear ordering tdS,, o
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there exists a Ramsey split of height at mdsg, n| + 2. We give a proof using factori-
sation trees (this extend to splits using Lemma 3.5). Naée (g that in this semigroup,
every word of length greater thanhas valuexo. Note that (b) that in any semigroup,
every word of size at mogt admits a factorisation tree of height at mkte, k] (using

a balanced binary factorisation tree of logarithmic heigGbmbining these remarks, weass
can construct a factorisation for every waras follows. One factorisasinto u; . .. uv

in which |ui| = -+ = |w| = n, and|v] < n. By remark (b), all wordsy, ..., u;,v
admit Ramsey factorisation trees ..., t¢;,t’ of height at mosf{log, n|. Futhermore,
by Remark (b) all words.y, ..., u; have same valuso (which is an idempotent). This

means that one can construct a Ramsey factorisation tresgifttilog, n] + 2 for it: the 430
root is binary, the right child being the root gf and the left child being an idempotent
node withn chidren, which are the roots of respectively. . ., ¢;. Itis clear that this tree

is a Ramsey factorisation far, and also that it has height at mdstg, n| + 2.

Thus, the question of characterising the optimal bound lier factorisation forest
theorem is still open. 435
Kufleitner gives a finer analysis of the bound for aperiodmiggoups using factorisa-
tion trees. Indeed, the result is optimal for groups. Whatalgroup-trivial semigroups?

The answer is that it is possible to obtain a better upper thauthis case:

Theorem 3.8([18],[20]). For every aperiodic (i.e., group-trivial) semigroiy and every
morphism fromA™ to S, every wordu € A™ admits a Ramsey factorisation tree of heighto
at most2|S|. Furthermore, for each, there exists an aperiodic semigroup of sizeuch
that this bound is optimal.

3.5 Infinitary variants

So far, we have seen the factorisation forest theorem faefiimiear orderings/finite
words. In fact, the finiteness assumption is not so relevamthfe result. For the pre- s
sentation of presenting of infinitary variants, the machjrad splits is easier to use than
factorisation trees. We only consider splits in this settio

From what we have seen so far, we can already deduce a firstanfimariant of the
result. Consider the linear orderifdy, <), and a multiplicative labelling- from it to
some finite semigrou@. By Theorem 3.1, for every, there exists a Ramsey spif 4o
of 7,{0,...,n} of height N(S). By compactness (of the Cantor space, see Ch&@jer
there exists a split ofN, <) of height at mostV (S) such that for every, s coincides with
somes,, over{0,...,i}. Itis not difficult to see that, since all thg, splits are Ramsey,
the same holds for.

In fact, the result goes beyorl, <), but for that one needs a new proof. 455

Theorem 3.9([15]). For all finite semigroupss and all multiplicative labelings of a
(possibly infinite) linear orderingy to .S, there exists a split ak that is Ramsey for, «,
and has height at mo&{.S|. The split has height at mogt| for ordinals.

Here, we just state the bound in terms|8f, though it is likely that in the case of
ordinals, the bound ol (S) still holds, and that a similar improved bound can be giver
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in the general case. However, this would require to reprbeeésults of [15], and this
goes beyond the subject of this survey.

But, what is the interest of having an infinitary variant of flactorisation forest theo-
rem? An application is given in [15], namely for the compleration of automata over
scattered countable linear orderings (a linear orderiisgastered if it does not contain auss
dense linear subordering). This result is known from [1Xjedrem 3.9 allows us to give
a much simpler proof of this result. Although outside thepgcof this survey, it is still
possible to explain why the factorisation forest theoremit§ infinitary variant) helps.

Recall from the introduction and Chapt®?, that a very classical use of the theorem
of Ramsey is to prove the complementation of Blichi automegawords indexed by. 47
The idea is to construct an automaton which guesses a goosegatacomposition of the
word. This decomposition splits the word into finite sub-d@bver which one can use
standard finite word automata. In the case of an infinite fioedering, a use of the the-
orem of Ramsey can decompose the word into infinitely manylsjorhich themselves
are infinite. The next step would be to sub-factorise thossveuds, etc... But there is 4
no reason that these nested factorisations terminatesfactwisation forest theorem is
perfectly suited for this kind of applications. It providadound of2|S| such that this
induction is guaranteed to terminate within this bound.

This technique has been pushed even further in [10] for pmpthat a language of
words of countable length is recognised (using a suitalsha faf algebra) if and only if it 40
is definable in monadic second-order logic.

Inthe next section, we will see several other applicatidiisefactorisation forest the-
orem over finite words/finite linear orderings. The extengibsome of these applications
(e.g., the limitedness of distance automata) to the infauteaext is possible. Theorem 3.9
is a good starting point if one is interested in pushing ferrih this direction. 485

4 Algebraic applications

The purpose of this section is to give algebraic consequsetacthe factorisation forest
theorem. In those applications, we deliberately chose ¢canether presentation of the
result, which is at the same time weaker (we lose the infdonaoncerning the bound),
but much more easy to apply (no more trees). 490

4.1 An algebraic presentation

In this section, we give two other equivalent presentatafrtbe factorization forest the-
orem. Depending on the context, the various presentationprave easier to use. In
particular, the two presentations avoid use of trees otsspli

The first presentation below is particularly interestingnwane is interested in ef- 4o
fectively computing a presentation for the semigroup gateer by a given subset of a
monoid. We do not present in this survey any examples of ihi$ & applications.

Theorem 4.1. Let S be a semigroupy be a semigroup morphism fro® to a finite
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semigroupl’, and X C S, then(X) = X3y (1)—1 WhereX,, is defined by

Xo=X and X, =X,UX, X,U | (Xnne¢'(e)s foralln>o0.

e-e=e

Proof. It is clear, by induction om, that X,, C (X). Quite naturally, the proof of the
converse inclusion is by induction on the height of factatiian trees. For alh > 0, set

Y, = {n(u) : u€ X, uhas a Ramsey factorization tree of height at mgst

where the Ramsey factorization is with respect to the memhy o 7. Let us show

by induction onn thaty,, C X,,. Assuming this, Theorem 3.4, implies thgX') C
Xsn(T)—1, and the results follows. The induction remains to be eisfaédi. Clearly, for s
n=0,Xo=X =Y.

Consider now some > 0, and leta € Y,,; 1. One aims at € X, ;. By definition,
there exists a Ramsey factorizati@hof height at most. + 1 for someu € X+ with
m(u) = a. There are three cases.TIfhas height at most, thenu is also a witness that
a €Y, CX,, andX, C X, by definition of X,,.1. Thusa € X,,;,. Otherwise, s
assume the root df’ is a binary node. Them can be decomposed aw, such that
m(v) € X,, andw(w) € X,,. It follows, by induction hypothesis and definition &f,
thata = n(u) = 7(v) - 7(w) € T, - T, € X, - X;, € X,,41. Finally, assume the root
of T' is an idempotent node. This means thatan be decomposed as. . . vy, such that
there exists an idempoteatvith ¢(7(v;)) = e for all ¢, andr= (v;) € T,, for all i. Hence, s
by induction hypothesisy(v;) € X,, for all i and thusr(v;) € X,, N~ 1(e). Thus
a=mn(u)=m(vi)-7m(vg) € (Xn N t(e)) C X, 41 by definition of X, ;1. O

In fact, a closer inspection reveals that the above theosesqjuivalent to the forest
factorisation theorem. Indeed, a similar inductive pratébblishes thdt,, = X, for all
n (whereT,, is as in the above proof). Thus, if one applies Theorem 49 10 A*, one s
directly deduces Theorem 3.4.

Our second variant can be understood as follows. Theoremsahle seen as an
iteration reaching a least fix-point. Theorem 4.2 formaidéferently this view of the
result.

Theorem 4.2. Let S be a semigroupy be a semigroup morphism frof to a finite s
semigroupT’, and X C S. Then every family? C P(S) such that

(1) foralla e T,{zx € X : p(z) =a} € P;

(2) forall A,Be P,AUB € P;

(3) forall A,Be€ P, A-B € P;and,

(4) forall A € P with f(A) = {e} for some idempotente T, (A)s € P, 525
satisfies X') € P.

Remark 4.3. In practice, instead of (1), we will frequently use the fallag slightly
stronger conditions:

(1) foral AC Be P,Ae€ P;

1M X e P. 530
Itis clear that (1') and (1”) together imply (1).
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Proof. Let us assume first thdt is minimal such that it satisfies conditions (1), (2), (3)
and (4).

One claims first that event € P has theestriction propertyi.e.,for all ¢ € T, then
ANny~(c) € PU{D}. Itis sufficient forus to prove that having the restrictiooperty
is preserved under the rules (1) to (4). Indeed} i {z € X : p(z) = a} € P, then
clearly, A N ¢~*(c) equalsA if ¢ = a, or (). This settles the case (1). Consider now the
caseA U B. Itis clear that if bothA and B have the restriction property, thehU B also
has the property singel U B) Ny~ 1(c) = (ANp~1(c)) N (BNy~L(c)) € P (by (2).
This proves the case (2). Consider now the casd3. We have

(A-B)ne o) = |J (Ane a) - (Bnyg ' ().
a-b=c

Thus, assuming thatl, B have the restriction property, using (3},- B also has the
restriction property. This establishes the case of (3)alkinassumed € P andp(A) = s
{e} for some idempotent. Then clearly, ifc # e, then(A) N p~1(c) = (). Otherwise
whene = e, this implies(A)Ny~!(c) = (A) € P. Hence(A) has the restriction property,
which is the case (4). It follows that evedy € P (using the minimality assumption) has
the restriction property. The claim is established.

Let now theX,’s be as in Theorem 4.1 In this case, let us prove by induction 0 s«
thatX,, € P. Forn = 0, from (1) and (2),Xo = X € P. Otherwise, assum¥&,, ¢ P,
then clearly, using the properties (1) to (4) and the aboaelX,,.; € P (the claim
is mandatory for proving that if¢,, € P, thenX,, N o~!(e) € P). It follows, using
Theorem 4.1, thatX') = X5y (1)—1 € P.

Consider now somé’ that satisfies conditions (1) to (4) (without any minimalityas
assumption). This meari® C P’ (whereP’ is minimal). One hagX) € P C P’. This
establishes the general case. O

Once more, it is easy to show that this result is equivalethédforest factorization
theorem, as far as the precise bound d%(S) — 1 is not concerned.

4.2 Brown’s lemma 550

In this section we show how to derive Brown’s lemma from thevabresult. Extending
Brown’s lemma was one of the motivations of Simon when ini@dg the factorisation
forest theorem.

A semigroufs is locally finiteif every finite subseX C S generates a finite subsemi-
group(X)s. Brown’s theorem is stated as follows: 555

Lemma 4.4([8]). Letf : S — T be a semigroup morphism.Tf is locally finite and for
every idempotent € T, f~1(e) is locally finite, thers is locally finite.

Proof. Let f,S and T be as in the statement of the theorem. KetC S be finite. We
want to show thats’ = (X)g is finite. LetT” = f(S5’). Sincef(X) is finite andT is
locally finite, we get thal” = f(S") = f((X)s) = (f(X))r is finite. LetP be the set sew
of finite subsets of’. Clearly, P satisfies conditions (1), (1), (2) and (3) of Theorem 4.2
and Remark 4.3. Let us establish the missing (4). ConslderP such thatf (4) = {e}.
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This meansA C f~!(e). Since by hypothesig=!(e) is locally finite andA is finite, it
follows that(A)g is finite, i.e.,(A)g € P. Using Theorem 4.2 we obtaf§{ € P, i.e., S’
is finite. Since this holds for alk, S is locally finite. O ses

4.3 The finite closure property in the tropical semiring

In this section, we show how to use Brown’s lemma for decidimafinite closure problem

in the tropical semiring. In the next section, we will extehdse techniques to solve a

more general result, this time using the factorisationdotieeorem. This theory is nicely

surveyed in [29]. 570
We consider here theopical semiringT = (NU {oc}, min, +), (also called théin-

Plus-semiring. We use standard notation for matrices over this semifihgtrices over

a semiring form themselves a semiring when equipped withugtval multiplication and

sum. In this section, we consider the multiplicative grofithts matrix semiring.

Thefinite closure problens the following: 575
Input: A positive integem and matricesAy, ..., Ay € T?*™.
Output: “Yes”, if the set(44, ..., Ax)T~x~ is finite; “no” otherwise.

We prove below that this problem is decidable. On the way wevsthat the cor-
responding Burnside problem admits a positive answer. Nogeisely, one says that a
semigroups is torsionif for every element: € S, (z)g is finite. Itis clear that every s«
finite semigroup is both finitely generated and torsion. Bhenside problentonsists in
determining for which semigroups the converse holds. Thefof Simon shows that the
Burnside problem admits a positive answer for semigroupsatfices over the tropical
semiring, i.e., a subsemigroup®f =" is finite iff it is both finitely generated and torsion.
Phrased differently: 585

Theorem 4.5([28]). Every torsion subsemigroup @f**" is locally finite.
The corresponding decidability result is established estime time:
Theorem 4.6([28]). The finite closure property is decidable insitig*".

The problem for the decidability proof is that the tropicaigring is infinite, which
prevents exploring entirely. For this reason, the essartimment in the proof consists insw
translating the question to a question concerning a fingelahic object. Formally, one
constructs a morphism from the tropical semiring to a finémsing which forgets the
exact values of the matrix entries.

Let us consider theeduced semirind’; = ({0, 1, oo}, min, +) (in which all opera-
tions are natural, antl+ 1 equalsl). Given an element € T, denote by its reduced sos
version defined by = 0, 530 = oo anda = 1 in all other cases. l.e., one approximates
every positive integer by. The function™ is a morphism of semirings. This is the reason
it extends in the usual way to matrices, yielding once moregphism of semirings: the
morphism which replaces every positive integer entry in &imay 1.

Call a matrixA in T"*" idempotentf its image undef™ is an idempotent (oT7*"). w0
Conversely, given an element {0, 1, 00}, and a positive integér, we denote by: x a
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the element: if a € {0, oo}, andk otherwise. We also extend this operation to matrices.
Given a matrixA4, denote by|| A|| the maximal positive integer entry it contains (oif
there is no such entry).

An idempotent matrix4 overT is calledstableif the set(A)p.x= is finite. 605

Lemma 4.7. For every idempotent matrig € T"*", the following statements are equiv-
alent:
(1) Ais stable,
(2) for all 4,7 such that4; ; # oo, there exists: such that4; ; # oo, Apr = 0
andAk,j # o0, 610
(3) ||AP|| < 2||4]| forallp > 1.

Proof. (1)= (2) Assume that is stable, and considey;j such thatd; ; # oco. SinceAd

is idempotentAﬁj # oo forall p > 1. Since furthermored is stable,A’;j can take
only finitely many values whep ranges. Lein be the highest such value, i.elﬁj <m
forallp > 1. In particular, forp = (m + 1)|Q| + 2, this is witnessed by the existence:s
of 20,81y - - ,ip such thatio = 1, ’ip =7, andAl-w-l + Ai17i2 + -+ Aip,l,ip <m.
Sincep = (m+1)|Q|+2, there exist <1 < s < psuchthatd;, ;,, , +---+A4;,_, i, =0,
andi; = i,. Using the idempotency of, we get fork = 4; that A; , # oo, Arr, = 0,
andA; j # oo.

(2) = (3) Assume (2) holds. Far = 1, (3) is obvious. Consider some> 2. Letl < &0
i,7 < n. If A; ; =0, then by idempotency o, Af,j = 0. The same holds fad; ; = oo.
Now if A4, ; € N*, then, by hypothesis, there exigtsuch thatd;  # oo, Axr = 0
andAy, ; # oo. This means that the terdy; ,, + A + - - - + Ar.x + Ax j isinvolved in

the minimum defining the value of} ;. It follows that A} ; < 2||A[|. Overall, we obtain

that A7 ; < 2||A||. Since this holds for all, j, A? < (2||A]]) x A. 625

(3) = (1) Assume (3) holds. Each matri® € (A) is such that bottB = A (by idem-
potency) and|B|| < 2||4]|| (by ltem 3). There are only finitely many such matrices
satisfying these properties. Heng#) is finite, which means that is stable. O

Corollary 4.8. Let A, B in T"*" with A = B, A is stable iff B is stable. Furthermore,
the stability of a matrix is decidable. 630

Thanks to the above corollary, it is meaningful to say thae#rix A overT; is stable
if there exist one matri®8 € T™*" such thatB = A is stable, or equivalently if this holds
for every matricB such thatB = A.

The core of the proof is embedded in the following lemma.

Lemma 4.9. Given matricesAy, ..., Ay € T™", (A1, ..., Ag)pnxn is finite iff every e
idempotent matrix ifAq, . .. ,AQMM is stable.

Proof. Setc - <A1, “e ,Ak>jrn><n. Then@ = <14_17 e 7A_k>11-11><n.

If there is an unstable matrix i@, this means that there exists an unstable matrix
in A € C. By definition of stability, this means thatl)y.x. is infinite, and henc€' is
infinite. 640
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Conversely, assume that every idempotent matrig'iis stable. We apply Brown’s
lemma to the morphism™ which sends” to C. SinceC C T ™, itis finite, and as a
consequence also locally finite. Consider now some idempatatrix A € T7*", let us
show that{ B : B = A} is locally finite. For this, consider some finite sétC T"*"
such thatX = {A}. Letm = maxgcx(||B||), and consider somB;, ..., B, € X, we
have:

[|Br -+ Bul| <||(m x A)--- (m x A)[| <2m .

(the last inequality is from (3) of Lemma 4.7). Since thera@nly finitely manyB’s such
thatB = A and||B|| < 2m, it follows that (X ).~ is finite, and hencéB : B = A}
is locally finite.
Hence by Brown'’s lemma, we directly get th@is locally finite. Since’ is generated
by finitely many matrices (namely,, . . . Ax), this means that' is finite. [

From the above lemma, one immediately obtains Theorem drisider a torsion sub-
semigroups of T"*™. Then every idempotent matrix #iis stable. Hence iX is a finite
subset ofS, then(X) does only contain stable idempotents. By Lemma 4.9, thi;sea
that (X) is finite. We conclude thaf is locally finite.

The lemma also yields a decision procedure: compute thereasf {A;, ..., A}, oo
and check whether there is an unstable matrix in this set. M&Theorem 4.6.

Technically, in this application, we did not use directlg ttactorisation forest theo-
rem, but rather Brown’s lemma which is one of its consequende the next section,
we study a generalisation of the above problem, and this, tBnewn’s lemma is not

sufficient anymore. 655

4.4 The bounded section in the tropical semiring

We have seen in the above section how to decide whether teereloinder product of
a set of matrices over the tropical semiring is finite. Thertzoad section problem is a
generalisation of this problem, which requires a more sudntlalysis. The problem now
is not to check whether infinitely many matrices are gendrdbeit more precisely to sso
determine what are the entries in the matrices which canrgeiunded.

Formally, thebounded section problers the following:

Input: A positive integem, a finite set of matriceX’ C T"*", and twon-tuplesI, I’ €
{0, c0}™.

Output: “Yes”, if there ism such that for alld € (X)pnxn, ['AF < m. “No” other- s
wise.

Before presenting a decision procedure for this problene¢fém 4.10 below), we
introduce a related problem, the limitedness problem fetagice automata. Distance
automata are non-deterministic finite automata in whichhdeansition is labelled by
a costamong0, 1. The cost of a run of such an automaton is the sum of the costs-of
its transitions. The cost of a word is the minimum cost ovépaksible runs of the
automaton over this input. This value candadf there are no such runs, otherwise it is a
non-negative integer. For instance, the following aut@mabmputes the minimal size of
a maximal segment of consecutivs (i.e., mapsa™ba™ ... ba"* to max (ny,...nk)):
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a,b:0 a-1

a,b:0
é b:0 P b:0 é
i

It does this by guessing the position of the maximal segmicgresecutiver’s of shortest
size and using statg along this segment, stagebefore, and the state after. The cor-
responding run computes the length of this segment by usisgl dor eacha-transition
betweeny-states.

Theboundedness probleimthe following: 680

675

Input: A distance automatod.
Output: “Yes”, if the function it computes is bounded. “No”, othesei

This problem is very close to the originahitedness probleratudied by Hashiguchi
which asks whether the function is bounded over its domiaé, over the words that
are mapped to an integer by the automaton (a closer inspestiows simple mutual s
reductions between the two problems; we do not develop @&)her

The bounded section problem and the boundedness problémfactthe same prob-
lem. The proof of this equivalence uses the classical argtithat weighted automata
can be represented by matrices (see Chajerindeed, given a distance automaton, it is
possible to associate with each lettes transition matrix4 over {0, 1, co} whose rows es
and columns are indexed lfy in the following way. The entry with indey, ¢ of the
matrix is0 if in the automaton there is a transition frgnto ¢ reading letter: with cost0
in the automaton, it i§ a transition of cost (but none of cosb), and finally it isco if
there are no transitions of the automaton at all fpeto ¢ while reading letten. Using
this translation, each finite word over . . . a; can be transformed into a sequence of mas
tricesAy, ..., A; € T™ ™, One can prove (by induction) that the enfry; in the product
matrix A; - - - A; has valuen if and only if there is a run of the automaton owar. . . a;
starting in state, ending in state, andm is the least cost among all such runs. The entry
is oo if there is no such run. The sets of initial states and finaéstaan be translated into
vectorsl andF over{0, 0o} by I(p) = 0if pis initial, co otherwise, and’(p) = 0if pis 7o
final, oo otherwise. It is then easy to see tlfa#, - - - A; I is exactly the value computed
by the automaton while reading the watd. . . ;. Hence the existence of a bound on
the function computed by the automaton has been reducee footlmded section prob-
lem. The converse reduction is similar: there is a stragghtérd translation from a set
of matricesA, ..., A to a distance automaton over an alphabet of siggote here that s
a distance automaton does only use the costed1. Therefore the reduction replaces
every positive integer by. This approximation is valid since we are only interested in
boundedness questions.)

Theorem 4.10([19]). The bounded section problem is decidable.

We present a proof based on the algorithm of Leung [23] andhtberem of factori- 7.0
sation forest for establishing its correctness. Simorr lgéve another proof for Theo-
rem 4.10 using the factorisation forest theorem [31], batdbmplexity is not as good as
the one obtained by Leung (which is optimal).
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The principal idea of this algorithm is similar to the one fbe finite closure prob-
lem: one “approximates” the matricesTitt*" by matrices i} *". However, checking s
whether there exist unstable matrices(iXi)t~x» is now no longer sufficient: indeed,
the stability property ensures that no entry in the matrits gmbounded. Here, we are
interested in determining which entries get unbounded sy we use thstabilisation
operation introduced by Leung. Given any idempotent mafvixin T7*", it transforms
it into a stable matrix\/®. 720

Indeed, when an idempotent matrik in T™*"™ is not stable, iterating it yields an
infinite set of matrices. Thus, some of its entries get to fmabérary high values when
the matrix is iterated. We defin@ﬂ, thestabilisationof the matrixA, to be obtained from
the matrixA by setting those entries t& whose values are unbounded when the matrix
is iterated. This matrix happens to be stable, and it esdntepresents the result of s
iterating the matrixA “many times”.

For instance, consider the following idempotent mattiand its iterations:

A:(o 1>’ A2:(0 1)’ A”:(O 1)’
oo 1 oo 2 o0 n

The right bottom entry is the only non-infinity one which tertdward infinity in this se-
guence. The stabilisation reflects this fact in that theesgonding entry is set to infinity:

Z_< 0 1> is stabilised into Zﬁ_< 0 1 >

oo 1 00 00
Formally, given an idempotedt € T7*", the matrixM* € T7*™ is defined by:

0 ifM;;=0
MZ?{J- =41 if M;; =1andforsome, M, # oo, My = 0andMy ; # oo
oo otherwise

Keeping Lemma 4.7 in mind, one clearly sees thiéh = M iff M is stable. It is also
easy to verify thaf\/* is always idempotent and stable.

GivenZ C T?*", define(Z)# C T7*" to be the closure of under product and
stabilisation of idempotents. In the remainder of the sectve shall prove that: 730

Lemma 4.11. For every finite sek C T"*™ and all I, F' € T™, the following statements
are equivalent:

(1) there existsV/ € (X)# such thal M = oo,
(2) for all k, there exists somé € (X) such thatl* AF > k.

Since the second statement exactly corresponds to the taseegative answer to 7
the bounded section problem, we obtain a decision procdduthe boundedness prob-
lem by taking the set of input matrice$, closing it under product and stabilisation of
idempotents, and verifying that BF # oo for all the resulting matrices. This completes
the proof of Theorem 4.10. This procedure is exponentidlateloser inspection of the
structure of(X)* reveals in fact that the algorithm can be performed in PSPAE 70
This also matches the known lower bound from [24].
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The remainder of this section is devoted to the proof of Lerdma. This requires
to introduce some notations. Givenc T and some: > 1 leta* € T, be0if a = 0,
1if 1 € a < k, andoo otherwise. The intention is that € T; represents a “small”
value, whileco € T, represents a “big” value (not necessarily infinity). Seés this, s
the mapping which ta associateg” tells us whether the value should be considered
as small or big, wheré denotes the threshold between “small” and “big”. One easily
checks thatib" < @5" < ab". Since this operation is non-decreasing, this inequality
extends to matrices in a natural way: Af B are matrices over the tropical semiring,
thenAB>" < A" B < AB" where—* is extended to matrices componentwise. Morg
generally A, - A, " < A A <A A

Given matricesdy, ..., A,, € T"*" (we also use the same definition for matrices
in T3*™), apath fromig to i; in Ay ... A, is a sequencg = io,...,i, of elements
amongl ...n such that = i, andi,, = j. ltsvaluewv(p) is the sum(A;); 4, + - +
(Am)i,._1.in- This definition is related to the product of matrices in thoiving way:  7ss
(A1 ---Ay)i; is the minimum value over all paths froio j in Ay, ..., A,,.

Lemma 4.12.Forall M € (X)* and allk > 1, there existsA € (X) such thatM < A",

Proof. The proofis by induction on the number of multiplication®ded to produce the
matrix M from matrices inX. Fix k. If M € X, thenM = A for someA € X.
HenceM = A < A" (whateverk is). If the induction hypothesis holds fd/, N, 7o
i.e, there ared, B € (X) such that\/ < A" andN < B", then it holds forM N
sinceAB € (X)andMN < A'B' < 4AB".

Finally, the interesting case is when the induction hypsithkolds for an idempotent
matrix . Assume there exist8 € (X) such thatt < Fk, and consideK sufficiently
big (for instance = kn+3). We claim thatz < A" whereA = BX (which belongs to
(X)). Consideri,j = 1...n, and a pathp = iy, ..., ix fromito j in BX with valuev.

We have to prove tha‘Ef,j < . Since we already know thd = EX < A...ak <

—k . . . . e
AK” | the only interesting case is for entries for whigtand E* differ, i.e., whenE; ; = 1
andEf,j = oo. By definition of stabilisation, this implies that for dl=1...n,

either E;; = oo, or E;; = o0, or Ej; >1. (*)

Since we have choseR sufficiently large, there is some statevhich appears at
leastk+1timesamondy, . . . ,ix 1. Thisinduces a decompositionpintopy, . . . , pr+1,
in which eachp,, is a path in somé&*~. The pathp, is fromito, p,,... px are fromi
to [, andp;; is from! to j. We distinguish three cases dependingorf E;; = oo,
then:

L L

—\ Ko k k k
00 = Eiy = (B < (A') <A, <vlp) <o)
3

)

from which we deduce that(p) > k. The same holds i;; = co. The third case is

whenE;; = 1. Then, the same chain of inequalities yieldp,,) > 1 forallm =
1...k. Hencev(p,,) = 1. As a consequence, we have once mgge > k. O 7es
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Corollary 4.13. Statement (1) of Lemma 4.11 implies Statement (2).

Proof. Assume thal’ MF = oo, and fixk. By Lemma 4.12, there exists a matuix e
(X)) such thatV/ < A" Henceso = T'MF < TAF < ItAFk, e, ["AF > k. O

The second implication is the more involved one. It amoumfsoving the following
lemma. 770

Lemma 4.14. There exist& such that for allA € (X), A" < M for someM e (X)*.
Corollary 4.15. Statement (2) of Lemma 4.11 implies Statement (1).

Proof. Assume (2), and let be the positive integer obtained from Lemma 4.14. Then
there is somed € (X) such thatl*AF > k, i.e, TTAF" = oo. Furthermore, by
Lemma 4.11A4" < M for someM e (X)%. We obtainco = TAF" = TA'F < s
T'MT. This establishes (1). O

It remains to prove Lemma 4.14. For the rest of this sectiehu$ say that a set
Y C T7*" coversa setX € T™*™ if there existsk > 1 such that, for alld € X,
there existsM € Y such thatZk < M. In this casef is called thewitness Using
this terminology, Lemma 4.14 can be rephrased simply&s$* covers(X)’. Call two 7
matrices ovefl™*™ 0-equivalentif they coincide on thei entries. Call a matrix-
idempotentf it is 0-equivalent to its square.

Lemma 4.16. If Y coversX, and all matrices inX are 0-equivalent and all are)-
idempotents, the(t")* covers(X).

Proof. Let A;,..., A, € X, and setA = A;---A,. We have to prove that there iss

someM € (Y)* such thatd" < M, in which k£ must be constructed independently
from A4, ..., A, (and in particular independently fron).

We first claim that for alk and all idempotenk € (Y)#, if A_lk < E andA_nk <E
thenZglC < E* (note that we do not make here any assumptionsien .., A,_1).
Indeed, consider,j = 1...n. If Y, = oo, we of course havel”" < oo = Ef . o

If Efj = 0, this means thak; ; = 0 and, as a consequence, there is a path frooy

in E™ with value0. Since all thed-entries inE are alsd)-entries in eachd,,,, the same
path can be used iAy, ..., A,. The last case iEf_j = 1. By definition of stabilisation,
this implies that there is somesuch thatt; ; < 1, El,l = 0andE;; < 1. Consider the
pathp =i,1,...,1,jin Ay,..., A,. SinceA_llC < EandE;; < 1,wehave(A;);; < k. s
In the same wayA,,);; < k. Furthermore, sinc&; ; = 0 and using thé-equivalence

assumption, we obtaifd,,);; = 0 for all m. Hence the value af is at most2k. This
concludes the claim.

Consider now the general case. kdte the witness that coversX anffix My,..., M, €
Y such thatEk < M, for each. 800

We choose a sufficiently larg€. Given an elemeny € (Y)*, we say thatV appears
in My, ..., M, between positionsy, m’ if N = M,, --- M,,,, andm’ —m < K.
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The proof is by induction on the number of idempotents agpgan M, ..., M,.
More precisely, we prove that for eaclthere exist a constait such that, if at most
distinct idempotents appear M, . .., M,,, thenA; .. .Anki < M forsomeM € (X)), oo

Fori = 0, no idempotents appear M, ..., M,,. This means that is small,i.e.,

n < K (indeed, by the theorem of Ramsey or the factorisation fdateorem, every
sufficiently long product has to contain an idempotent). \Afeeh

Al---AnKk<A1---Annk<A_1k---A_nk<Ml---Mne<X>ﬁ.

Suppose now that > 1 idempotents appear vy, ..., M,,. Let E be one of them.
We first treat the case whefeappears both at the beginning and the endifef . . ., M,,,
i.e., both between positionis m, and between position’, n. There are two cases.H+

1 > m/, the two appearances &f overlap or are contiguous. In this case, by definition
of appearance; < 2K and, as in the case= 0, we obtain that4; - - - AngKk < N for
someN € (X)#. Otherwise, we know that; - ~-Aka < E, andA4,, ~-~AnKk < E.

Hence we can use our first claim on the following sequence ¢fices:

(Al o Am)v Am+17 ) Am/*17 (Am/ o An) ’

and we obtaim; - - ~AnQK]C < Ef,

The general case is now easy. Consider a sequénce. , A,,. It can be decomposed
into three sequences

U= (Ao, A1), Vo= (Ao o Apir)y W= (Ao, An),

such thatE’ does not appear ity nor W, but both at the beginning and the endlof

According to the induction hypothesis éhand W, there exists\M, M’ € (X)¥ such
thatd, -4, ;' < MandA4,, -4, ' < M. Using the previous case withi
appearing at the beginning and the end/gfwe also have4,,, - - - Am,,12m < N for

someN € (X)*. Overall,

mQKk+2k171 g Al — .Am71!ui71Am — Am/712Kr’vAm/ . .An):’mi—l
<MNM' € (X)*,
This establishes the induction hypothesis with= 2Kk + 2k; 1. O

We can now conclude the proof of Lemma 4.11 using the facttois forest theorem.

Proof of Lemma 4.11Let P be the set of all subsels C (X) that are covered byX )*.
We also say that a set covered{y) has porpertyP. Consider the morphisfimapping sw
each element ofX) to its 0-equivalence class.
Let us show that one can apply Theorem 4.2 %), which is generated by, the
morphism beingf and the familyP:
(1) If Y is covered by X ), it is clear that the same holds for every subset of

(1”) Let k be the maximum oveffA|| for all A € X. Then, we havel® < 4 € X for s
all A € X. HenceX is covered byX.
(2) If Y, Z are covered by X)* with respective witnesséds andkz, thenY U Z is
covered by X )#, taking as witnesmax(ky, kz).
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(3) If Y, Z are covered byX)*, witnessed by:y andk, thenAB™ %7 <« A" B>,
Hencek 4 + kg is a witness thaty” - Z) is covered by(X)%. 820
(4) Finally, suppose that is covered by X )f and thatf(Y) = {E} an idempotent’.
SinceY is covered by(X)*#, Lemma 4.14 implies thaft’) is covered by((X )#)*,

i.e., by (X)*.
Overall, by Theorem 4.2, we conclude that)# covers(X). This concludes the proof of
Lemma 4.14, and hence of Theorem 4.10. O e

4.5 Polynomial closure

Our last algebraic application of the factorisation fotesibrem concerns the problem of
finding characterisations of families of regular languagasChapters?? and?? of this
handbook, this topic is treated much more deeply.

The factorisation forest theorem is used in this contexthitaim characterisations sz
(possibly non-effective) of the polynomial closure of asdaf languages. Given a class of
languaged’, a languagés belongs to its polynomial closure Rdl) if it is a finite union
of languages of the formgalL; ... a,L,, where eacll; belongs tal and thea;’s are
letters. In general, the idea is to transform a charactesisaf £ (by profinite equations,
identities, ...) into another one for Rdl). The first use of this technique appear in Pigs
and Weil [26] for positive varieties, and the most general eatent such result treats the
case of the polynomial closure of any lattice of regular leages [6]. A similar technique
is used for characterising another pseudovariety of redatgguages. We present here
the simplest among the results of this kind: the charaettois of polynomial languages.
This corresponds to the case whércontains the languages of the forB where B s«
is any set of letters. The interest of this particular cashas the family of languages
obtained in this way coincide with the ones definablelin i.e., the fragment of first-
order logic consisting of formulas which take the form of adi of existential quantifiers,
followed by a block of universal quantifiers, followed by saqifier-free formula.

A monomial languagis a language of the forma; A5 . . . a, A% inwhichay, ..., a,  ss
are letters, and\y, ..., A,, are sets of letters. For instanfe} is the monomial language
defined byp*, and{a} is defined a$*af*. A polynomial languagés a finite union of
monomial languages.

Theorem 4.17([26]). A language is a polynomial langauge if and only if its syntact
ordered monoid satisfies> e({s : e <7 s})e for all idempotent. 850

The exact content of the inequality> e({s : e <7 s})e may be at first sight uneasy
to grasp. To give some more intuition, let us make the follmwiemark before entering
the proof.

Remark 4.18. At first glance the constraint > e({s : e <7 s})e is quite unintuitive.
Let us denote byiph(u) the set of letters occurring in a worde A*. Then

({s : a<g s})={f(u) : alph(u) C alph(f~"(a))}

forall a € M, i.e, this set represents the possible values of all words thadists of
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letters that could appear in a word evaluating télence, the conditioa > e{{s : e <7 s
s})e tests the occurring letters in an idempotent context.

Consider now the particularly simple monomial langadtjefor someB C A. Then
clearly, the membership to this language has only to do wighaccurring letters; more
precisely, ifalph(u) C alph(v) andv € B*, thenu € B*. The above property >
e({s : e <z s})eis aform of generalisation of this remark to polynomial laages: sco
in particular it implies that wheneveris an idempotent word, ifuy is in the language,
zuvuy is also in the language for allsuch hatulph(v) C alph(u).

Proof. From left to right. Assume that. is a polynomial language and letbe the max-
imal degree of a monomial it contains. Consider now an idgemgovordv and as-
sumezuy € L for some words:, y, thenzu*+1y € L (by idempotency ofi). This word s
belongs to one of the monomials bf sayK = Aja, ... a; A}, with [ < k. Since there
arek + 1 occurrences of the wordin v, at least one is contained in one of thg. This
means thatu® € Aja;...a; A, u € Af, andu*~* € Afaiy1...aA;. Let noww

be any word such thatiph(w) C alph(u). From the above decomposition, we have
thatzuuwuu®~*y also belong tds and hence td.. Using the idempotency of, thisis &

also the case faruwuy.

From right to left. This direction uses the factorisation forest theorem.
We denote by? C P(A*) the set

{X C A* : foreverya € M, there exists a polynomial languagg,
such thatX N f~'(al) € K, € f~'(al)}

We will apply Theorem 4.2 to the family? to show thatd* € P. By definitions of P,

this means that, for every € M there exists a polynomidl, such thati, = f~*(al).

Since polynomial languages are closed under finite uniorlyiqwmials, it follows that, s

for every ideall C M, f~%(I) is a polynomial language. This concludes this direction

of the proof. What needs
It remains to show that Theorem 4.2 can indeed be appliéd tois clear thatd € P to be proved

since every finite language is a polynomial language. Itss alear from the definitiorroncerning

that P is closed under taking subsets, and under unions (sinca@oiial languages arérdered

closed under unions). Consider ne\WB in P. Letus showthatl-B € P. Let(K,)zen monoids?

(resp. (K.)zenm) be the polynomial languages witnessing the fact that P (resp.

B € P). Consider now the polynomial language:

K=Y KK,

z-y<La

By construction,f(u) < a for every wordu € K. HenceK C f~!(al). Consider
nowu € (A-B)N f~(al). Sinceu € A - B, u can be decomposed as= vw
with v € A, w € B. By hypothesisy € A, and hence € Kj(,). Similarly w € K}(w). 880
We getu = vw € Kf(v)K}(w). Since furthermore € f~!(al), we havef(v) - f(w) =
f(u) < aand, as a consequende€(,) K}, € K. Overallu € K.

It remains to check the last condition. Assumec P and f(A) = {e} for some
idempotenk. Let K, for x € M be the polynomial languages witnessing tHat P.
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Consider the following polynomial:
K' =K.+ K.alph(f*(e))* K. .

By the above remark, we know thatK’) C f~!(el). Conversely, assume thatc A™.
Thenu can be written ag; .. . u,, withu; € A foralli. Clearly, ifn = 1, thenu € K, C
K'. Otherwise, sinces, . . ., u,_1 belong toalph(f~t(e)), u € K'. Hence

AT C K C fNel).

Let us prove thatdt € P using the above inequalities. Consider same M. If e ¢
f~(al), setK, = O sincef(A") = {e} we haveAT™ N f~1(al) =0 C K, C f~*(al).
Otherwise, sef{, = K’, and we have by the above inqualities

AtnfNal) CK' =K, C f'(el) C fal).

HenceA™ € A, and Theorem 4.2 can indeed be appliedto O

5 A deterministic variant of the factorisation forest
theorem

The factorisation forest theorem states the existenceadtarisation (of bounded depth)
for each word. A natural question to ask is whether a siméault holds for trees. We
do not fully resolve this question, the exact formal statetrod which is even unclear.
Nevertheless, we present a variant of the factorisatioestdheorem which has several
interesting consequences over trees. 890

Given a tree, each of its branches can be seen as a word, oh waéccan apply
the factorisation forest theorem. For each branch, thisiges a Ramsey split (or fac-
torisation). However, there is no reason, a priori, that bs@nches sharing a common
prefix have a common split on this prefix. This property is @dse in several applica-
tions. In particular, it implies that a single split over tinee induces a Ramsey split ovekss
each branch. One can already have some feeling about tleeediffe between the word
approach and the tree approach by looking at the memory ddedstoring the infor-
mation. A single split for the tree is an object of size lingathe size of the tree, since
it amounts to providing some finite quantity of information every node. However,
storing a different split for each branch requires a quadremory, since there can besw
linearly many branches of linear length (an extremal casesists in a string shaped tree
of heightn — 1, the deepest node of which haghildren which are leaves: this results in
n branches of height, i.e., memory of sizex? for a tree of siz&n). Hence, constructing
a single split for the tree means to have a significantly moregact representation.

The theorem described in this section provides a resultlwlgiven a tree, provides os
a single split (of bounded depth) such that on every brantieliaves (almost) like a
Ramsey split. The proof is obtained by describing a (finigedttransducer, which reads
the input and deterministically outputs the split. We widkshelow some applications of
this result.

To obtain the result we have to slightly weaken the conchlusidhe theorem. Instead o1



The factorisation Forest Theorem 29

of constructing Ramsey splits, we construct the weaker fafrfforward Ramsey” splits.
A split s over a labellingr is forward Ramseyf, for all z,y, 2/, v’ equivalent for~

and such that < y andz’ < ¢/, we haveo(z,y) - o(2’,y’) = o(x,y). Thisis a

weakening of the notion of Ramsey split, as described bydhefing remark.

Remark 5.1. Every Ramsey split is forward Ramsey. Indeed, for everyequivalence os
classC of a Ramsey split, there is an idempoterguch thatr(x,y) = e forall z < y

in C. In particular, ifr < y andz’ < 3’ belong toC, thenco(x,y) - o(z',y') = e-e =

e = o(z,y). Hence, the splitis forward Ramsey.

However, in general, not every forward Ramsey split is RgmSensider for instance
the two element semigroup ovéd, b} definedbya-a =a-b=aandb-a=>b-b="5b. oo
Then for every two elements, y, = - y = z. This implies that every split is forward
Ramsey for this semigroup, but not every split is Ramsey.

In some situations, the two notions coincide. For instaimciie case of groups, being
Ramsey and being forward Ramsey are equivalent notionse generally, the notions
coincide if and only ifR = D. 925

The way the notion of a forward Ramsey split is often used isd&ying that for
al z < y < zwithz ~; y ~, 2z, we haveo(z,y) = o(x,2). Indeed, we have

o(x,2) = o(x,y) -0y, 2) = o(x,y).

Theorem 5.2(improvement of [13]).For all finite semigroup$ = (S, - ), alphabets4
and morphismp from A* to S, there exists a deterministic and complete automaton es
with at mostS|'S! states and a numbering of its states{ldy. . ., |S|} such that, on every
input wordu € A*, the numbering of the states along the unique run of the aatimm
overu defines a forward Ramsey split for, .

Without loss of generality, we assume in the sequel that S andy is simply the
evaluation morphism. 95
Our proof consists in giving a direct construction of thecaw&ton equipped with a

numbering of its states. This automaton has the propertywieen reading a word, the
sequence of numbers assumed by the states form a forwarceRRapig for the word. In
fact, the arguments involved in the proof are very close éoptoof given above for the
standard factorisation forest theorem, however, thictizenstruction makes it different, o4
and likely easier to implement.
A configurationis a non-empty sequence;, . .. , a,,) of elements oB. A configura-
tion is calledvalid if furthermore:
(1) a; -ai+1---ajjaiforalli <]|n1n,
(2) a; <gajforali<jinl...n. s
We construct the deterministic automatdras follows:
¢ the states are the valid configurations,
¢ the initial state can be chosen arbitrarily,
e the transition function is defined for all configuratiotus, . . ., a,,) and allb by:

5(<CL1, cee 7an>7b) = <a13 sy Ak, (akJrl cr Qe (p(b)»
wherek is maximal such thafas, . . ., ag, (ar+1 - - - a, -b)) is @ valid configuration,
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e each valid configuration is numbered bya; ... a,) = ho(a,) wWherehg is any o
injective mapping fron® to {1, ..., |S|} such that: < b implieshg(a) > ho(b).

Given two state®, ¢ and a wordu, let us writep wp g to denote the fact that the
automaton4 can go from state to stateg, andk is the maximal value it outputs on the

way. Formally, if5(p, a) = g thenp “™ ¢, and ifp “¥ ¢ andg “¢  thenp

Let us give an example of this construction on a particulangple example: the
syntactic semigroup which recognises over the alphdbet{a, b} the language of words
which contains a repetition of a lettére., L. = A*aaA* + A*bbA*. This semigroup
contains five elements: the eleméntepresents the words which contain a repetition of
a letter, and the four classes of respectively the wardsad, andba. The multiplication
table is defined by the equations = b0 = 0 = 0a = a0 = b0 = 0b = 0, aba = a
andbab = b. Interms of7-classesp) <7 a J b J ab J ba. To entirely define the
automaton of the construction, we also need to define thetiajeh. We sethy(a) = 1,
ho(b) = 2, ho(ab) = 3, ho(ba) = 4 andhy(0) = 5. This results in the following set of
configurations—written in vertical boxes and indexed with torresponding value af-:

ab ba
{ @51 Ela @21 31 47 11 21 0 ) 0 } '

Let us see how the resulting automaton would process the baisdbabaastarting from
configuration(a):

ba ba
E153$E153$@552$ 0 &[0} 0] «[0]
The objective of the construction is to produce a forward Beyrsplit,i.e., for all o
elementst < y and2’ < y’ of the same classy(x,y) - o(2',y') = o(x,y). For

b = o(x,y) andec = o(2/, '), this means - ¢ = b. The following lemma contains the
argument we use to obtain such an equality from the congtruct

wv:max(k,l)
%

Lemma 5.3. Leta,b,c € Sbesuchthat - b =a-c=aanda J b,thenb-c=b.

Proof. By Fact2.4p 7 a - bimpliesb L a-b = a. Henceb = d - a for somed. It follows s
thatb-c=(d-a)-c=d-(a-¢c)=d-a=b. O

The next lemma is an analysis of what happens when two positice in the same
class (one can recognise some of the premises of Lemma S%h3Har(u)).

Lemma 5.4. If (v,a) “™” (w, a) for some non-empty word thena - ¢(u) = a and

a ._7 cp(u) 965
Proof. We prove by induction on the length af(possibly empty) the stronger property
that whenevefv, a) wh (w) with k < h(a), then:

1) (w) ={v,a4,...,an) forsomeay,...,a, € S, with

(2) a1 J a,
(3) ay - am :a'SD(U)a 970
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(4) if m > 1, there is a suffix.’ of u such thatp(v') = a2 - - - am, and,
(5) if u # ¢, andm = 1, thena J ¢(u).
This clearly yields the lemma, by (3) and (5).
One easily checks that the statement holdsufee . Assume now that (1),...,(5)

holds for some: such thatv, a) wh (v,a1,...,am)with k < h(a). Letc be aletter such o5

that (v, a1,...,am) ok’ (w) for somek’ < h(a). We aim at establishing the claim for
the worduc.

Assume that = dy, ..., ds is not a prefix ofw. Then by definition of the transition
function there is some< ssuchthatv = dq,...,dj_1,dwithd=d;---ds-a1---apm, -
©(c). In particular, this means thdt< ;7 d;. Furthermorel; <7 asince(ds,...,ds,a1,...am)
is a valid configuration in whicl; 7 a by (2) of the induction hypothesis. It follows
thatk’ = h(d) > h(a), by choice ofh. This contradict’ > h(a). Hence (1) holds.

At this point, we know that for somi, .. ., by,

<'U,(11,...,am> Cﬁ;/ <w> = <Uvb17"'7bn> .

According to the definition of the transition functi@n two cases can happen. Ei-
thern > 1 and by definition of the transition functidn = a;. Sincea; J a by (2) of the
induction hypothesis, we have 7 a. Otherwise ifn = 1, we havehy = a1 - - ap, - 0(c). o8
This impliesb; <7 a1 J a. Conversely, assume that <; a. This would im-
ply ¥ = h({w)) = h(b1) > h(a). This contradicts the assumption thdt > h(a).
Overall, (2) holds.

By (3) of the induction hypothesis;(u) = a; - -a,,. By definition of 6 we ob-
tainby - by, = a1 - am - p(c) andby - - - b, = (u) - p(c) = p(uc). Hence (3) holds. oo

Assumen > 1. Two cases can happen./f = 1, this means that = 2, b; = a,
andbs = ¢(c). It follows thatc is a suffix ofuc, i.e., a witness for (4). Otherwise: > 1.

Let u’ be the witness of (4) obtained by induction hypothesisfodsing the definition
of the transition function we obtaip(u’c) = p(u') - p(c) = ag - - am - @(c) = bz - - by.
Thereforey/c is a witness for (4). 995

Finally, assume. = 1. Thenb; = a1 -dwithd = az - - - a,, - p(c). By definition of the
transition function this means thét, a;, d) is not a valid configuration whilév, a; - d) is
valid. One knows further from (2) that 7 a 7 a1 -d. This last pointimplies > 7 a J a;.

The only possible reason fdp, a1, d) not to be valid is thatl # 7 a;. Henced J a.
Setu’ to ¢ if m = 1, otherwiseu’ is the suffix ofu obtained by (4) of the inductionio
hypothesis. In both case, we hayéu'c) = d 7 a. This means thap(uc) <7 a. Since
furthermorep(uc) > 7 a by (3), we havep(uc) J a, i.e., (5). O

Overall, we obtain the following statement:

Lemma 5.5. Let qo, - . ., ¢, be the states successively assumeddbynhile reading a
word u, thens(0) = h(qo), - - -, s(n) = h(qy) is a forward Ramsey split fap,, . 1005

Proof. Let s be the split defined by(i) = h(g;) fori =0...n. Letz < y, andz’ < ¢/
be ~-equivalent elements among. . ., m.

Sincez,y,2’, andy’ are~,-equivalenth(q,) = h(gy) = h(qw) = h(qy). Letk
be this value. Sincé is injective onS, there exists a single such thath(a) = k. By
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definition of h on configurationsg, = (v,a), ¢, = (w,a), ¢ = (V',a) andg, = 100
(w', a) for somev, w, v', w'.

Sincex ~, y, by Lemma 5.44 - ¢(usz,) = a andy(ug,,) J a. The same holds
for 2/, y'. In particulara - p(uy ) = a. Applying Lemma 5.3 td = ¢(u, ) andc =
©(ugr ), We obtaing(uy ) - e(ug ) = b-c = b= ¢(uy,). Hence,s is forward-
Ramsey. I ETT:

6 Applications as an accelerating structure

In this last section, we provide applications of the facation forest theorem of a differ-
ent kind. The principle of these applications is that, orm@mputed, a (forward) Ramsey
split (or a factorisation tree) can be used as a data steugthich allows us to perform
some computations in an efficient way. We refer to this usae®fisations as aaccel- 1oz
eration structure

6.1 Fast infix evaluation

The canonical example of such an application is a solutidhédollowing question:

Given aregular languageand a word., is it possible to efficitently compute

a data structure (meaning here in time lineaujpossibly more complex in 1025
the presentation of) such that every request of the form; € L can be
answered very efficiently (meaning here in time indepenftentu, i, j, i.e.,
dependent only on the presentationgf

Since we are not interested in the exact complexity in terins @which depends on the
way the language is described, and would require a long aefltanalysis), we considerios
L to be fixed. This means that every parameter depending onlyisrconsidered as a
constant. With this convention, the statement boils dowoaimputing a data structure
in time linear inu, and answering every request in constant time. In whatdg is
assumed to be some morphism which recognisemdS = (S, - ) is the corresponding
semigroup. The goal is to efficiently compuytéu; ;). 1035

There are two straightforward approaches to this problehe first consists in not
performing any pre-computation. In this case, the pre-gssing time in constant, how-
ever, answering to each request of the ferm € L requires a time i (j — ), which in
the worth case i®)(Ju|). Another solution would be to pre-compute the answer toyever
request, and store it in a table. This requires quadratie {gnd space), but reaches theo
constant time objective for query evaluation. These twatsmhs have the advantage of
making weak assumptions dn namely that it is computable in linear time, for ensuring
the bounds given above. None of those solutions does pravsdéution to our problem.

A third attempt would be a simple divide and conquer algomnitifhe data structure
consists of a binary tree, the leaves of which yield the importd when read from left to
right. Furthermore, one enriches each node of this tree thghvaluep(v) in which v
is the word obtained by reading the leaves below the node leftrto right. For: a leaf
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below a node:, we definesuff(i, n) to bep(v) wherew is the node obtained by reading
the leaves below from left to right, starting from leaf. This function can be computed
using the following formula:

(1) if n=1

suff (i, m) if 2 appears below the right child of n,

suff (i,m) - o(m’) if i appears below the left chilak of n,
andm’ is the right child ofn.

suff (i, n) =

The correctness of this equation follows from the definitigising this equation we can
computesuff (i, n) in at mosth recursion steps, where s the height of the tree. Thewss
same argument gives an algorithm for computinef (7, m) which computes the image
undery of the word belown up to letterj. Giveni < j, one computes the valyg{u; ;)
assuff(i, m) - pref(j,n) wherem, n are two sibling nodes such thaappears belown
andj belown. Overall, we obtain an algorithm which is linear/in Since it is clear that
we can use an almost balanced tree as data structure, thies i computings; ; IS 1os0
logarithmic in the length of the word. Itis also easy to wetifat the tree can be computed
in linear time.

If one uses a Ramsey factorisation tree as data structusaahsf a binary tree, then
one obtains a similar result, but this time the height of the being bounded 85| — 1,
answering a single query becomes constant time. Note thrahif to work, we have to ioss
be able to compute a factorisation tree in linear time, aiglighpossible. We then reach
the following theorem:

Theorem 6.1. There exists an algorithm which, given a language of finiteded.,, and
awordu,

e pre-processes in time linear in|u|, and then; 1060
e is able to answer each query of the form “does the facton btween position
and positionj belong toL?” in constant time (constant wriu|, but notL).

When replacing the binary tree of the above algorithm by a $&gmniactorisation
tree we have to explain how to compuigf (i, ) whenn is a node of arity at leas},

i.e, a node such thap(n) = e is an idempotent, angp(n;) = --- = p(ng) = e
whereny, ..., n; are the children of. read from left to right. In this case, we evalu-
atesuff (¢, n) using:
Suff(i, n) = suff(z:,nk) if z ?s belown,, ,
suff(i,n;) - e if iis belown; for somel < k.

Indeed, ifi appears below,; for somel < k, then
suff (i, n) = suff (i, ny) - o(nig1) -+ p(nk) = suff(i,ny) - e---e =suff(i,n) - e.

In fact, forward Ramsey splits are as good as Ramsey spiithifkind of applica-
tions, and, in this case, it is obvious how to construct thecstire in linear time: simply
by evaluating the deterministic transducer of Theorem 312is is clearly linear in the 1es
length of the word.
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This use of Ramsey factorisations has been employed inalgegpers of Bojanczyk
and Parys [3, 5, 4], improving on the complexity in terms &f itmput language, and using
the technique for solving XPath queries.

6.2 Acceleration in monadic second-order logic 1070

TODO: Is there a reference to MSO in another chapter?

Let us recall here thdil, is the fragment of first-order logic consisting of formulas
which, do only contain universal quantifiers (no existdraizes) when transformed into
prenex normal form. The fragment consists of formulas for which no existential quan-
tifier is in the scope of a universal one. In general, and evewards,>; is strictly less 1o
expressive than full first-order logic, which is itself stty less expressive than MSO.

The following result was the first use of Ramsey factorisatias an acceleration struc-
ture:

Theorem 6.2(Theorem 2 in [13)). Given an MSO formul&@ (z1, .. ., x,,) with free first-
order variables, there effectively exist®a-formula ¥*(z1, ..., z,) which uses MSO-10s0
definable unary predicates, such thatand U* are equivalent over trees equipped with
the ancestor relatiol™- and unary predicates.

This result shows that, in some sense, the gab in expressiverpetween MSO and
Y9, Which is a weak fragment of first-order logic, can be col&ply simply adding some
extra local {.e., unary) information. 1085

Below, we give a high level presentation of this proof. It scdmposed into two
steps. For simplicity, we assume a fixed tree for the expianstthough of course, the
construction is uniformi,e., the same construction works for all trees.

During the first step, we establishe the result for a binargnfda ¥ («x, y) such that
U(z,y) impliesxz C y. In this case, using the standard relationship between MED 0
recognizable languages, we can construct a semigkdup (M, -) (this semigroup de-
pends on the formula, but not on the tree), and an additivallag o over the tree, such
that it is sufficient to knows(z, y) to determine whethe¥ (x, y) holds. Furthermore,
this additive labelling is MSO-definable in the sense thatefacha € M, there is an
MSO-formula®, (z, y) which holds if and only ift C y ando(x,y) = a. This can be 1o
established either using tree automata, or directly ugiegcomposition method ([27]).
Both approaches would go beyond the scope of this chapter.

Our goal is to enhance the tree with suitable MSO-definabéyupredicates such
thato(z,y) can be reconstructed based on those extra predicates. ©hid wlearly
complete the first step. The main extra information we useftswaard Ramsey split 1100
for o obtained from Theorem 5.2. According to Theorem 5.2, thiwvésd Ramsey split
can be computed by a transducer. This means in the preserthedshe unary predicates
“s(x) = k" for each fixedk = 1,...,|M| are definable in MSO, using this time the
standard translation from automata to logic. Let us defineeézhk = 1...|M| and
each node, parent (y) to be, if it exists, the (unique) ancestoof y such thats(z) = k, 10s
ands(z) < kforall z such that: < z < y. We label foreaclt = 1...|M|and each €

3The statement in [13] does only mention first-order rathantfiz. The proof is the same.
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M, the tree with the MSO-definable unary predicaig(c) = «” which expresses that
parent, (x) exists ands(parent (z), x) = a.

What remains to be done is to prove that, using only the nedigaies %(z) = k”
and ‘o (z) = a”, as well as the ancestor relation, it is possible to reqogsthe value 110
of o(x,y) foranyz C y. More formally, we need to provide for eache M a 3,-
formulag, (z, y) which can use the above predicates, and suchgh@at y) holds if and
only if o(z,y) = a.

Note at this point that givem andy, we can express ii; whetherr ~; y, simply by
implementing the definition of ; (x). In the same way, we can expresslinwhetherr = 115
parent (y) (x*). Itis also very easy, given someC y such that: ~; y, to check using
aX,-formulathe value of (z,y) (x*x*). Indeed, eithex = y, and the result i$ (the unit
of the monoidM). Or there exisk andz such thats(z) = k andparent, (z) = x, and in
this case the value is simpby.(z), and we have introduced the suitable unary predicate
for testing this. 1120

To conclude the argument, it is sufficient to note that givey o nodesr C v,
there exists a sequenge= z; C --- C z, = y of length at mostt|M| such that for
alli=1...n—1, eitherz; = parent, (z;4+1) for somek, or z; ~4 zi+1 ().

Consider now the followingls-formula:

\/ dz1 ...z, /\

ai-ag-Qp—1=a, n<4|M‘ i=1l..n—1

Zi ~s Zit1 N\ o(2i, zip1) = a; vV \/ parent (z;, zi+1) A ok (zit1) = a
—— N—————

in IT; by (x) in X5 by (x % x) sincez; ~s z;41 k in IT; by (xx) new unary predical

This formulas holds if and only i&(x,y) = «. Indeed, by construction, whenever
this formula holdsg (z, y) = a. For the converse, assumiér, y) = a. Then the formula 112
holds for the choice ofy, . . ., z,, obtained from remarkyj.

The goal of the second step is to generalise the first stepytmemula¥ (z4, . . ., z,).
We do not develop this part further. It consists in sepagdtie cases depending on the
relationship betweem;’s with respect ta_. For instance, ifi = 2, andx; andx, are
incomparable, one choosg$o be the least common ancestongfandz,, andy; (resp 1z
12) to be the child ofy ancestor oft; (resp.xs). This yields the following picture.

Using syntactic transformations of the formula, e.g., gsimce more the composition
method, it follows that whethe¥ (x4, 22 ) holds depends solely on some local information
concerningy, y; andys, and some formulas involving eithef, 1 or y2, z2. Those two 11
last cases can be treated using the first step gin€ex, andy, C x5. Since furthermore
x,y1,y2 are definable irts from 27, andy», one can construct 8;-formula equivalent
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to \I/(.Il, SCQ).

A consequence in graph theoifhe analysis of the structure of graphs is also related
to definability questions. There exists a parameter forlggdpnd more generally struco
tures) called the clique-width [17] — which we do not develmre — such that a lot of
graph problems admit solutions with better complexitieewthis parameter is bounded
(more precisely when the decomposition witnessing the dedwglique-width is known).

In this paper, the following fact concerning clique-widshsufficient:

Fact 6.3. A family of graphs has bounded clique-width if and only ifStMSO-definable 115
in a family of trees.

In other words, graphs of bounded-clique width consist masense of a tree skele-
ton on which the graph can be reconstructed, using solely {d&@able relations. Since
our result applies to trees we directly obtain the corollary

Corollary 6.4. A family of graphs/structure is of bounded clique width iflamly if itis s
Yo-definable in a family of trees.

We redirect the reader to [2] for more pointers in this dilatt
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