
Games with bound 
guess actions

Thomas Colcombet 
27 April 2016 

joint work with 
Stefan Göller 
(at LICS’16)



Games for model checking

A system



Games for model checking

A system

A specification that 
we want to be guaranteed



Games for model checking

A system

A specification that 
we want to be guaranteed

A game involving 
 - a prover 
 - a falsifier



Games for model checking

A system

A specification that 
we want to be guaranteed

A game involving 
 - a prover 
 - a falsifier
such that prover can win if 
and only if the system 
satisfies the specification.
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and is controlled by the 
owner of the vertex, 
choosing the transition to follow.
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A game is a graph in which vertices 
are controller either by: 

     the existential player 
     = the property prover, or
     the universal player 
     = the environment = falsifier.

A unique token is placed, 
and is controlled by the 
owner of the vertex, 
choosing the transition to follow.

The winner is determined based on the infinite sequence of moves.

Usually, moves are labelled by actions, and a (regular) set of winning 
sequences of actions is fixed.
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Games with bound guess actions
Idea: players can play numbers (non-negative integers), which are 
promises on the evolution of some quantity.

A printer receives 
printing requests.

Standard games can model 
specifications such as: 
« every request is treated »
« system never stalls » Success

Abort

wait

Games with bound guess 
actions can model things like: 
 - the user declares the number 
p of pages to be printed, 
 - the printer has to guarantee 
to bound the printing time by t, 
as a function of p.

Success

Abort

∀ p ∃ t

wait page printed
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are controller either by:
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The winner is chosen based: 
  - on the infinite sequence of moves, and 
  - how some quantities exceed the current register values or not.

A finite set of registers (r,s,t) is fixed 
(and are owned by the players ∃,∀).

Moves are labelled with normal actions 
or bound guess actions ∃r ,  ∀s 
(properly quantified).

The token evolves as before, and furthermore, when bound 
guess actions are met, the player chooses the new register value.
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Positivity: the chooser of the value aims at respecting the promised bound.
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- players declare values (in registers) 
- these are promises on the future of 

some quantity 
- positivity assumption: the values 

declared are always upper bounds.

What are the quantities ?

What is the global condition ?

General games considered in this work
Quantities are regular cost functions: 
(possibility to count and aggregate using min/inf and max/sup quite freely)
« number of pages printed since the job was last initiated »
« largest number of consecutive action a seen so far »
The global condition is a regular language of words over actions enriched 
with bits representing  « has quantity f exceeded register r ». 
This bits have to be used positively.



The result

Games with bound guess actions in general form: 
 - quantities = regular cost function 
 - global condition = any ω-regular language (positive)

Theorem: The winner of a finite game with bound guess 
action in general form can be decided.
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p qp qa a

p q∃r p

r:=0
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…

q

∀sp q p
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Formally, this translation is a way to describe the semantics of 
games with bound guess actions.
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Nodes in which the 
player chooses the 
direction.

Nodes corresponding 
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Infinitely branching 
nodes in which the 
opponent may choose 
any value for one of its 
registers.
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Regular cost functions
Def: regular cost functions are functions of the form

f : A⇤ ! N [ {1}
considered modulo an equivalence relation ≈ (that does not matter here).

For a regular cost function, the following statements are equivalent: 
- being definable in cost monadic second-order logic (costMSO) 
- being described by a B-automaton, an S-automaton, 
- being described a B-regular expression, or an S-regular expression, 
- being recognized by a stabilisation monoid.

Furthermore, several problems are decidable like the (modulo version of) 
equality of the (modulo version of) inequality.

A B-automaton has counters that can be 
incremented or reset 
It accepts a word with value n if there 
exists an accepting run such that no 
counter exceeds value n. 

p q r

a,b:- a,b:-a:inc

b:- b:-
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Standard generic reduction technique (winning condition transduction):

L-game deterministic
W-automaton for L

W-game 
of same winner=⨂

the winning condition
the accepting condition

the accepted language
the winning condition

L=« infinitely many a’s
and infinitely many b’s »

a

b
b

c
c

Büchi=« infinitely many B’s »

b,c:- a,c:-a:B

b:-

deterministic  
Büchi-automaton for L

⨂ =
B- -

--
-

- -

-

-

Büchi-game of 
same winner
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It would be « sufficient » to compose with a deterministic B-automaton

B-condition
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L-game deterministic 

W-automaton for L
W-game 

of same winner=⨂

Remark: If the automaton is not deterministic (even alternating), ⨂ is 
well defined…

An automaton is good-for-game (=history-deterministic) if this product 
deserves the winner for all games.

but the product game may have a different winner.

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

p q r

a,b:- a,b:-a:inc

b:- b:- p q r

a,b:- a,b:-a:inc

b:-
b:-a:reset

Theorem (C.09/C.Unp/C.&Fijalkow 16): Every regular cost function is 
accepted by an history-deterministic B-automaton.
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Lemma(reduction 1): A finite game with bound guess actions in 
general form can be effectively turned into a simple finite game with 
bound actions of same winner.

Games with bound guess actions in general form: 
 - quantities = regular cost function 
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions: 
 - quantities = max over several counters ɣ of  
     « the number of incᵧ since the last resetᵧ or the beginning of the word » 
 - global condition = 
   + first time a quantity exceeds its register, the owner immediately looses 
   + if no quantity exceeds its value, an ω-regular language is used.

Main change

It would be « sufficient » to compose with a deterministic B-automaton

B-condition

It is sufficient to compose with history-deterministic B-automata.
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Lemma(reduction 2): A finite simple game with bound guess actions can 
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How values change
Positivity assumption:

« Whenever a player choses a value (through of a bound guess 
action), the winning condition is required to use this value as an 
upper bound in the definition of what it is winning for this player. »

Hence, a player, if he wins using a strategy, also wins using any identical 
strategy in which he would choose higher values of (his) registers.

Consequence 2: when a player chooses a value, he can (and should be 
thought of as) choose a value very large in front of al the values seen so far.

Consequence 1: a slight modification of quantities (like doubling) does 
not change the winner of the game.

Thus, the order in which registers have been guessed gives an idea of 
their relative values/magnitude.

by maintaining a permutation of the registers one may « know » during the 
game what is this order.
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Second reduction

Lemma(reduction 2): A finite simple game with bound guess actions can 
be effectively turned into a finite ω-regular game with of same winner.

Simple games with bound guess actions: 
 - quantities = max over several counters ɣ of  
     « the number of incᵧ since the last resetᵧ or the beginning of the word » 
 - global condition = 
   + first time a quantity exceeds its register, the owner immediately looses 
   + if no quantity exceeds its value, an ω-regular language is used.

Using the permutation or register techniques, one can « essentially » 
restricts to a situation where 
  1) the registers are not guessed anymore, 
  2) their relative order (of magnitudes) is known.
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From simple to ω-regular
We assume r1 ≪ r2≪ r2≪ … ≪ rk known (as if bound guess actions at init).

Simple condition: 
- if some register gets its value exceeded, and it is the first such register, 

then its owner immediately looses, 
- else the long term condition W decides the winner.

Corresponding ω-regular condition: 
- if there are infinitely many inc1, finitely many reset1, then owner1 looses, else 
- … 
- if there are infinitely many inck, finitely many resetk, then ownerk looses, else 
- the long term condition W decides the winner.

Lemma: For finite games (with bound guess actions at init), the simple 
condition, and the corresponding ω-regular condition have same winner.
The proof crucially uses the finiteness of the game, and the existence of 
finite memory strategies in ω-regular games.

For simplicity, we assume one counter per register.
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Finite such games with a reasonable 
class of conditions 
- regular cost functions as quantities, 
- regular condition as long term goal, 
are decidable.

The proof goes into several step of reduction involving: 
- history-deterministic cost automata, 
- LAR-like technique for assessing relative magnitudes of register values, 
- a final reduction to ω-regular condition.


