
Games with bound
guess actions

Thomas Colcombet
27 April 2016

joint work with
Stefan Göller
(at LICS’16)

Games for model checking

A system

Games for model checking

A system

A specification that
we want to be guaranteed

Games for model checking

A system

A specification that
we want to be guaranteed

A game involving
 - a prover
 - a falsifier

Games for model checking

A system

A specification that
we want to be guaranteed

A game involving
 - a prover
 - a falsifier
such that prover can win if
and only if the system
satisfies the specification.

Games
(Two players, antagonistic, turn-based)

A game is a graph in which vertices
are controller either by:

 the existential player
 = the property prover, or
 the universal player
 = the environment = falsifier.

A unique token is placed,
and is controlled by the
owner of the vertex,
choosing the transition to follow.

The winner is determined based on the infinite sequence of moves.

Games
(Two players, antagonistic, turn-based)

A game is a graph in which vertices
are controller either by:

 the existential player
 = the property prover, or
 the universal player
 = the environment = falsifier.

A unique token is placed,
and is controlled by the
owner of the vertex,
choosing the transition to follow.

The winner is determined based on the infinite sequence of moves.

Usually, moves are labelled by actions, and a (regular) set of winning
sequences of actions is fixed.

Games with bound guess actions
Idea: players can play numbers (non-negative integers), which are
promises on the evolution of some quantity.

Games with bound guess actions
Idea: players can play numbers (non-negative integers), which are
promises on the evolution of some quantity.

A printer receives
printing requests.

Games with bound guess actions
Idea: players can play numbers (non-negative integers), which are
promises on the evolution of some quantity.

A printer receives
printing requests.

Standard games can model
specifications such as:
« every request is treated »
« system never stalls » Success

Abort

wait

Games with bound guess actions
Idea: players can play numbers (non-negative integers), which are
promises on the evolution of some quantity.

A printer receives
printing requests.

Standard games can model
specifications such as:
« every request is treated »
« system never stalls » Success

Abort

wait

Games with bound guess
actions can model things like:
 - the user declares the number
p of pages to be printed,
 - the printer has to guarantee
to bound the printing time by t,
as a function of p.

Success

Abort

∀ p ∃ t

wait page printed

Games with bound guess actions
A game is a graph in which vertices
are controller either by:

the existential player
the universal player

Games with bound guess actions
A game is a graph in which vertices
are controller either by:

the existential player
the universal player

A finite set of registers (r,s,t) is fixed
(and are owned by the players ∃,∀).

Moves are labelled with normal actions
or bound guess actions ∃r , ∀s
(properly quantified).

Games with bound guess actions
A game is a graph in which vertices
are controller either by:

the existential player
the universal player

A finite set of registers (r,s,t) is fixed
(and are owned by the players ∃,∀).

Moves are labelled with normal actions
or bound guess actions ∃r , ∀s
(properly quantified).

∃r

∀s

∀s

∀s

∃r

a b
c

a
b

a

bc

Games with bound guess actions
A game is a graph in which vertices
are controller either by:

the existential player
the universal player

A finite set of registers (r,s,t) is fixed
(and are owned by the players ∃,∀).

Moves are labelled with normal actions
or bound guess actions ∃r , ∀s
(properly quantified).

The token evolves as before, and furthermore, when bound
guess actions are met, the player chooses the new register value.

∃r

∀s

∀s

∀s

∃r

a b
c

a
b

a

bc

Games with bound guess actions
A game is a graph in which vertices
are controller either by:

the existential player
the universal player

The winner is chosen based:
 - on the infinite sequence of moves, and
 - how some quantities exceed the current register values or not.

A finite set of registers (r,s,t) is fixed
(and are owned by the players ∃,∀).

Moves are labelled with normal actions
or bound guess actions ∃r , ∀s
(properly quantified).

The token evolves as before, and furthermore, when bound
guess actions are met, the player chooses the new register value.

∃r

∀s

∀s

∀s

∃r

a b
c

a
b

a

bc

Games with bound guess actions
A game is a graph in which vertices
are controller either by:

the existential player
the universal player

The winner is chosen based:
 - on the infinite sequence of moves, and
 - how some quantities exceed the current register values or not.

A finite set of registers (r,s,t) is fixed
(and are owned by the players ∃,∀).

Moves are labelled with normal actions
or bound guess actions ∃r , ∀s
(properly quantified).

The token evolves as before, and furthermore, when bound
guess actions are met, the player chooses the new register value.

∃r

∀s

∀s

∀s

∃r

a b
c

a
b

a

bc

Positivity: the chooser of the value aims at respecting the promised bound.

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

What are the quantities ?

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

What are the quantities ?

What is the global condition ?

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

What are the quantities ?

What is the global condition ?

General games considered in this work

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

What are the quantities ?

What is the global condition ?

General games considered in this work
Quantities are regular cost functions:
(possibility to count and aggregate using min/inf and max/sup quite freely)

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

What are the quantities ?

What is the global condition ?

General games considered in this work
Quantities are regular cost functions:
(possibility to count and aggregate using min/inf and max/sup quite freely)
« number of pages printed since the job was last initiated »

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

What are the quantities ?

What is the global condition ?

General games considered in this work
Quantities are regular cost functions:
(possibility to count and aggregate using min/inf and max/sup quite freely)
« number of pages printed since the job was last initiated »
« largest number of consecutive action a seen so far »

Games with bound guess actions

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

- players declare values (in registers)
- these are promises on the future of

some quantity
- positivity assumption: the values

declared are always upper bounds.

What are the quantities ?

What is the global condition ?

General games considered in this work
Quantities are regular cost functions:
(possibility to count and aggregate using min/inf and max/sup quite freely)
« number of pages printed since the job was last initiated »
« largest number of consecutive action a seen so far »
The global condition is a regular language of words over actions enriched
with bits representing « has quantity f exceeded register r ».
This bits have to be used positively.

The result

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Theorem: The winner of a finite game with bound guess
action in general form can be decided.

Translation into usual games
p qp qa a

p q∃r p

r:=0
r:=1
r:=2
r:=3
r:=4

…

q

∀sp q p

r:=0
r:=1
r:=2
r:=3
r:=4

…

q

Translation into usual games
p qp qa a

p q∃r p

r:=0
r:=1
r:=2
r:=3
r:=4

…

q

∀sp q p

r:=0
r:=1
r:=2
r:=3
r:=4

…

q

Formally, this translation is a way to describe the semantics of
games with bound guess actions.

Strategies in games (wbga)
Strategies are used to define the property of being winning.

Strategies in games (wbga)
Strategies are used to define the property of being winning.

(Standard) strategies (for the existential player) are trees with vertex
labelled nodes, such that
 - either a vertex is owned by the existential player, and it has one child…
 - or it is owned by the universal player, and it has as many children as
 successors in the arena …

Strategies in games (wbga)
Strategies are used to define the property of being winning.

(Standard) strategies (for the existential player) are trees with vertex
labelled nodes, such that
 - either a vertex is owned by the existential player, and it has one child…
 - or it is owned by the universal player, and it has as many children as
 successors in the arena …

Now…

Strategies in games (wbga)
Strategies are used to define the property of being winning.

…

r=5

s=0,1,2,…

a
b c

(Standard) strategies (for the existential player) are trees with vertex
labelled nodes, such that
 - either a vertex is owned by the existential player, and it has one child…
 - or it is owned by the universal player, and it has as many children as
 successors in the arena …

Now…

Strategies in games (wbga)
Strategies are used to define the property of being winning.

…

r=5

s=0,1,2,…

a
b c

Nodes in which the
player chooses the
direction.

(Standard) strategies (for the existential player) are trees with vertex
labelled nodes, such that
 - either a vertex is owned by the existential player, and it has one child…
 - or it is owned by the universal player, and it has as many children as
 successors in the arena …

Now…

Strategies in games (wbga)
Strategies are used to define the property of being winning.

…

r=5

s=0,1,2,…

a
b c

Nodes in which the
player chooses the
direction.

Nodes in which the
player chooses a
value of a register

(Standard) strategies (for the existential player) are trees with vertex
labelled nodes, such that
 - either a vertex is owned by the existential player, and it has one child…
 - or it is owned by the universal player, and it has as many children as
 successors in the arena …

Now…

Strategies in games (wbga)
Strategies are used to define the property of being winning.

…

r=5

s=0,1,2,…

a
b c

Nodes in which the
player chooses the
direction.

Nodes corresponding
to the opponent
choosing the direction.

Nodes in which the
player chooses a
value of a register

(Standard) strategies (for the existential player) are trees with vertex
labelled nodes, such that
 - either a vertex is owned by the existential player, and it has one child…
 - or it is owned by the universal player, and it has as many children as
 successors in the arena …

Now…

Strategies in games (wbga)
Strategies are used to define the property of being winning.

…

r=5

s=0,1,2,…

a
b c

Nodes in which the
player chooses the
direction.

Nodes corresponding
to the opponent
choosing the direction.

Nodes in which the
player chooses a
value of a register

Infinitely branching
nodes in which the
opponent may choose
any value for one of its
registers.

(Standard) strategies (for the existential player) are trees with vertex
labelled nodes, such that
 - either a vertex is owned by the existential player, and it has one child…
 - or it is owned by the universal player, and it has as many children as
 successors in the arena …

Now…

The results

The results
Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Theorem: The winner of a finite game with bound guess actions in general
form can be decided.

The results

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Theorem: The winner of a finite game with bound guess actions in general
form can be decided.

The results

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Theorem: The winner of a finite game with bound guess actions in general
form can be decided.

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

The results

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Lemma(reduction 2): A finite simple game with bound guess actions can
be effectively turned into a finite ω-regular game with of same winner.

Theorem: The winner of a finite game with bound guess actions in general
form can be decided.

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

First reduction

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

Regular cost functions
Def: regular cost functions are functions of the form

f : A⇤ ! N [{1}
considered modulo an equivalence relation ≈ (that does not matter here).

Regular cost functions
Def: regular cost functions are functions of the form

f : A⇤ ! N [{1}
considered modulo an equivalence relation ≈ (that does not matter here).

For a regular cost function, the following statements are equivalent:
- being definable in cost monadic second-order logic (costMSO)
- being described by a B-automaton, an S-automaton,
- being described a B-regular expression, or an S-regular expression,
- being recognized by a stabilisation monoid.

Regular cost functions
Def: regular cost functions are functions of the form

f : A⇤ ! N [{1}
considered modulo an equivalence relation ≈ (that does not matter here).

For a regular cost function, the following statements are equivalent:
- being definable in cost monadic second-order logic (costMSO)
- being described by a B-automaton, an S-automaton,
- being described a B-regular expression, or an S-regular expression,
- being recognized by a stabilisation monoid.

Furthermore, several problems are decidable like the (modulo version of)
equality of the (modulo version of) inequality.

Regular cost functions
Def: regular cost functions are functions of the form

f : A⇤ ! N [{1}
considered modulo an equivalence relation ≈ (that does not matter here).

For a regular cost function, the following statements are equivalent:
- being definable in cost monadic second-order logic (costMSO)
- being described by a B-automaton, an S-automaton,
- being described a B-regular expression, or an S-regular expression,
- being recognized by a stabilisation monoid.

Furthermore, several problems are decidable like the (modulo version of)
equality of the (modulo version of) inequality.

A B-automaton has counters that can be
incremented or reset
It accepts a word with value n if there
exists an accepting run such that no
counter exceeds value n.

p q r

a,b:- a,b:-a:inc

b:- b:-

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

B-condition

Reduction by transduction
Standard generic reduction technique (winning condition transduction):

L-game deterministic
W-automaton for L

W-game
of same winner=⨂

Reduction by transduction
Standard generic reduction technique (winning condition transduction):

L-game deterministic
W-automaton for L

W-game
of same winner=⨂

the winning condition
the accepting condition

the accepted language
the winning condition

Reduction by transduction
Standard generic reduction technique (winning condition transduction):

L-game deterministic
W-automaton for L

W-game
of same winner=⨂

the winning condition
the accepting condition

the accepted language
the winning condition

L=« infinitely many a’s
and infinitely many b’s »

a

b
b

c
c

Reduction by transduction
Standard generic reduction technique (winning condition transduction):

L-game deterministic
W-automaton for L

W-game
of same winner=⨂

the winning condition
the accepting condition

the accepted language
the winning condition

L=« infinitely many a’s
and infinitely many b’s »

a

b
b

c
c

b,c:- a,c:-a:B

b:-

deterministic
Büchi-automaton for L

⨂

Reduction by transduction
Standard generic reduction technique (winning condition transduction):

L-game deterministic
W-automaton for L

W-game
of same winner=⨂

the winning condition
the accepting condition

the accepted language
the winning condition

L=« infinitely many a’s
and infinitely many b’s »

a

b
b

c
c

Büchi=« infinitely many B’s »

b,c:- a,c:-a:B

b:-

deterministic
Büchi-automaton for L

⨂

Reduction by transduction
Standard generic reduction technique (winning condition transduction):

L-game deterministic
W-automaton for L

W-game
of same winner=⨂

the winning condition
the accepting condition

the accepted language
the winning condition

L=« infinitely many a’s
and infinitely many b’s »

a

b
b

c
c

Büchi=« infinitely many B’s »

b,c:- a,c:-a:B

b:-

deterministic
Büchi-automaton for L

⨂ =
B- -

--
-

- -

-

-

Büchi-game of
same winner

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

B-condition

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

It would be « sufficient » to compose with a deterministic B-automaton

B-condition

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

Remark: If the automaton is not deterministic (even alternating), ⨂ is
well defined…

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

Remark: If the automaton is not deterministic (even alternating), ⨂ is
well defined… but the product game may have a different winner.

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

Remark: If the automaton is not deterministic (even alternating), ⨂ is
well defined…

An automaton is good-for-game (=history-deterministic) if this product
deserves the winner for all games.

but the product game may have a different winner.

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

Remark: If the automaton is not deterministic (even alternating), ⨂ is
well defined…

An automaton is good-for-game (=history-deterministic) if this product
deserves the winner for all games.

but the product game may have a different winner.

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

Theorem (C.09/C.Unp/C.&Fijalkow 16): Every regular cost function is
accepted by an history-deterministic B-automaton.

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

Remark: If the automaton is not deterministic (even alternating), ⨂ is
well defined…

An automaton is good-for-game (=history-deterministic) if this product
deserves the winner for all games.

but the product game may have a different winner.

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

p q r

a,b:- a,b:-a:inc

b:- b:-

Theorem (C.09/C.Unp/C.&Fijalkow 16): Every regular cost function is
accepted by an history-deterministic B-automaton.

History-determinism
L-game deterministic

W-automaton for L
W-game

of same winner=⨂

Remark: If the automaton is not deterministic (even alternating), ⨂ is
well defined…

An automaton is good-for-game (=history-deterministic) if this product
deserves the winner for all games.

but the product game may have a different winner.

For regular cost functions (as opposed to ω-regular languages),
not all regular cost functions are accepted by a deterministic automaton.

p q r

a,b:- a,b:-a:inc

b:- b:- p q r

a,b:- a,b:-a:inc

b:-
b:-a:reset

Theorem (C.09/C.Unp/C.&Fijalkow 16): Every regular cost function is
accepted by an history-deterministic B-automaton.

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

It would be « sufficient » to compose with a deterministic B-automaton

B-condition

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

It would be « sufficient » to compose with a deterministic B-automaton

B-condition

First reduction

Lemma(reduction 1): A finite game with bound guess actions in
general form can be effectively turned into a simple finite game with
bound actions of same winner.

Games with bound guess actions in general form:
 - quantities = regular cost function
 - global condition = any ω-regular language (positive)

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Main change

It would be « sufficient » to compose with a deterministic B-automaton

B-condition

It is sufficient to compose with history-deterministic B-automata.

Second reduction

Second reduction

Lemma(reduction 2): A finite simple game with bound guess actions can
be effectively turned into a finite ω-regular game with of same winner.

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

How values change
Positivity assumption:

« Whenever a player choses a value (through of a bound guess
action), the winning condition is required to use this value as an
upper bound in the definition of what it is winning for this player. »

How values change
Positivity assumption:

« Whenever a player choses a value (through of a bound guess
action), the winning condition is required to use this value as an
upper bound in the definition of what it is winning for this player. »

Hence, a player, if he wins using a strategy, also wins using any identical
strategy in which he would choose higher values of (his) registers.

How values change
Positivity assumption:

« Whenever a player choses a value (through of a bound guess
action), the winning condition is required to use this value as an
upper bound in the definition of what it is winning for this player. »

Hence, a player, if he wins using a strategy, also wins using any identical
strategy in which he would choose higher values of (his) registers.
Consequence 1: a slight modification of quantities (like doubling) does
not change the winner of the game.

How values change
Positivity assumption:

« Whenever a player choses a value (through of a bound guess
action), the winning condition is required to use this value as an
upper bound in the definition of what it is winning for this player. »

Hence, a player, if he wins using a strategy, also wins using any identical
strategy in which he would choose higher values of (his) registers.

Consequence 2: when a player chooses a value, he can (and should be
thought of as) choose a value very large in front of al the values seen so far.

Consequence 1: a slight modification of quantities (like doubling) does
not change the winner of the game.

How values change
Positivity assumption:

« Whenever a player choses a value (through of a bound guess
action), the winning condition is required to use this value as an
upper bound in the definition of what it is winning for this player. »

Hence, a player, if he wins using a strategy, also wins using any identical
strategy in which he would choose higher values of (his) registers.

Consequence 2: when a player chooses a value, he can (and should be
thought of as) choose a value very large in front of al the values seen so far.

Consequence 1: a slight modification of quantities (like doubling) does
not change the winner of the game.

Thus, the order in which registers have been guessed gives an idea of
their relative values/magnitude.

How values change
Positivity assumption:

« Whenever a player choses a value (through of a bound guess
action), the winning condition is required to use this value as an
upper bound in the definition of what it is winning for this player. »

Hence, a player, if he wins using a strategy, also wins using any identical
strategy in which he would choose higher values of (his) registers.

Consequence 2: when a player chooses a value, he can (and should be
thought of as) choose a value very large in front of al the values seen so far.

Consequence 1: a slight modification of quantities (like doubling) does
not change the winner of the game.

Thus, the order in which registers have been guessed gives an idea of
their relative values/magnitude.

by maintaining a permutation of the registers one may « know » during the
game what is this order.

Second reduction

Lemma(reduction 2): A finite simple game with bound guess actions can
be effectively turned into a finite ω-regular game with of same winner.

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Second reduction

Lemma(reduction 2): A finite simple game with bound guess actions can
be effectively turned into a finite ω-regular game with of same winner.

Simple games with bound guess actions:
 - quantities = max over several counters ɣ of
 « the number of incᵧ since the last resetᵧ or the beginning of the word »
 - global condition =
 + first time a quantity exceeds its register, the owner immediately looses
 + if no quantity exceeds its value, an ω-regular language is used.

Using the permutation or register techniques, one can « essentially »
restricts to a situation where
 1) the registers are not guessed anymore,
 2) their relative order (of magnitudes) is known.

From simple to ω-regular
We assume r1 ≪ r2≪ r2≪ … ≪ rk known (as if bound guess actions at init).

From simple to ω-regular
We assume r1 ≪ r2≪ r2≪ … ≪ rk known (as if bound guess actions at init).
For simplicity, we assume one counter per register.

From simple to ω-regular
We assume r1 ≪ r2≪ r2≪ … ≪ rk known (as if bound guess actions at init).

Simple condition:
- if some register gets its value exceeded, and it is the first such register,

then its owner immediately looses,
- else the long term condition W decides the winner.

For simplicity, we assume one counter per register.

From simple to ω-regular
We assume r1 ≪ r2≪ r2≪ … ≪ rk known (as if bound guess actions at init).

Simple condition:
- if some register gets its value exceeded, and it is the first such register,

then its owner immediately looses,
- else the long term condition W decides the winner.

Corresponding ω-regular condition:
- if there are infinitely many inc1, finitely many reset1, then owner1 looses, else
- …
- if there are infinitely many inck, finitely many resetk, then ownerk looses, else
- the long term condition W decides the winner.

For simplicity, we assume one counter per register.

From simple to ω-regular
We assume r1 ≪ r2≪ r2≪ … ≪ rk known (as if bound guess actions at init).

Simple condition:
- if some register gets its value exceeded, and it is the first such register,

then its owner immediately looses,
- else the long term condition W decides the winner.

Corresponding ω-regular condition:
- if there are infinitely many inc1, finitely many reset1, then owner1 looses, else
- …
- if there are infinitely many inck, finitely many resetk, then ownerk looses, else
- the long term condition W decides the winner.

Lemma: For finite games (with bound guess actions at init), the simple
condition, and the corresponding ω-regular condition have same winner.

For simplicity, we assume one counter per register.

From simple to ω-regular
We assume r1 ≪ r2≪ r2≪ … ≪ rk known (as if bound guess actions at init).

Simple condition:
- if some register gets its value exceeded, and it is the first such register,

then its owner immediately looses,
- else the long term condition W decides the winner.

Corresponding ω-regular condition:
- if there are infinitely many inc1, finitely many reset1, then owner1 looses, else
- …
- if there are infinitely many inck, finitely many resetk, then ownerk looses, else
- the long term condition W decides the winner.

Lemma: For finite games (with bound guess actions at init), the simple
condition, and the corresponding ω-regular condition have same winner.
The proof crucially uses the finiteness of the game, and the existence of
finite memory strategies in ω-regular games.

For simplicity, we assume one counter per register.

Conclusion
Games with bound guess actions
allow to describe phenomenon that
virtually happen in infinite games.

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

Conclusion
Games with bound guess actions
allow to describe phenomenon that
virtually happen in infinite games.

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

Finite such games with a reasonable
class of conditions
- regular cost functions as quantities,
- regular condition as long term goal,
are decidable.

Conclusion
Games with bound guess actions
allow to describe phenomenon that
virtually happen in infinite games.

∀s

∃r

∀s

∀s

∃r

a b
c

a
b

a

bc

Finite such games with a reasonable
class of conditions
- regular cost functions as quantities,
- regular condition as long term goal,
are decidable.

The proof goes into several step of reduction involving:
- history-deterministic cost automata,
- LAR-like technique for assessing relative magnitudes of register values,
- a final reduction to ω-regular condition.

