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About this tutorial

What?

I 5 or 6 classical entropy-like notions

I their classical applications

I some examples from CS

What for?

I Because knowledge is power (and fun).

I To explain the basic notion of EQINOCS project.

I To introduce basic notions for comrade speakers’ talks.
I To share my vision of entropy in CS (not much, see more later)
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About the entropy

Definition (almost)

Entropy of a system — a real number characterizing information
content or information production of this system.

Remarks

I it was not a definition (the only precise term: “real number”)

I there are multiple interesting, important and useful entropieS:
in Physics, in Information theory/engineering, in Mathematics,
in Computer science

I we believe it can be more interesting/useful in Computer
science/engineering
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Invented by (incomplete sample)

Rudolf Ludwig Claude Andrey
Clausius Boltzmann Shannon Kolmogorov

1822–1888 1844–1906 1916–2001 1903–1987

Yakov Vladimir Roy Rufus
Sinai Tikhomirov Adler Bowen

b. 1935 b. 1934 b. 1931 1947–1978
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Entropy appears in thermodynamics in 19th century

Authors

Sadi Carnot Lord Kelvin

dS =
δQ

T

Rudolf Clausius

2nd law of thermodynamics

I Planck’s statement: “Every process occurring in nature
proceeds in the sense in which the sum of the entropies of all
bodies taking part in the process is increased”

I Corollary! No 2nd kind perpetuum motion.

I Corollary? Heat death of the Universe.
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Entropy continues in statistical mechanics in 19th century

Creators of statistical mechanics

Ludwig Boltzmann Willard Gibbs James Maxwell

An interesting formula

S = k lnW

with W number of microstates.
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But. . .

I will not speak about entropy(-es) in physics

Only about some more mathematical ones, initiated
by two giants
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Two giants of 20th century

Claude Shannon

I Information theory

I Probabilistic information

I Zero-error information

Andrey Kolmogorov

I Metric entropy

I ε-entropy

I Kolmogorov complexity

I Synoptic view on entropies
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Section 2

Combinatorial entropy
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Definition and explanation
Entropy of languages
Application: channel coding

Towards the first definition
Question
Given a (big) finite set M, we want to describe any x ∈ M in a file

(sequence of 0 and 1)

. What is the size of such file?

Lemma
It is possible with a file of a size ≤ log |M|+ 1.

Proof.
Let m ∈ {1..|M|} be the position of x in M (in some, say lexicographic,
order). The file F contains m in binary.

Lemma
For some x (for any encoding) the file size > log |M| − 2.

Proof.
There are only |M|/2 different files of size ≤ log |M| − 2. Hence, some
x ∈ M requires a larger file.
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The first definition: combinatorial entropy

Definition (Entropy of a finite set (combinatorial))

Given a finite set M, we define its entropy by H(M) = log |M|.

As on Boltzmann’s tomb:

Interpretation

To specify any element of M requires H(M) bits of information.

I a file of size H(M)

I or H(M) yes/no Q&A

Standard question in combinatorial entropy

Given a sequence of sets Mn explore asymptotical behavior of
H(Mn) wrt n.
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Reminder: words and languages

Terminology

I Alphabet: a finite set. E.g. Σ = {a, b, c}.
I Letter: its element

I Word: a finite sequence of letters. E.g. w = cababac

I Language: a set of words. E.g. L = {a, b, bbb}

Regular languages (an interesting subclass)

Recognized by automata, like −→
We prefer deterministic ones: words ↔ paths
{ε, a, b, aa, ab, ba, aaa, aab, aba, baa, bab, bac, aaaa, aaab, aaba, . . . }
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Applying combinatorial entropy to languages

Let us do it

I Take a language L ⊂ Σ∗.

I Consider the words in L of length n, denote Ln
I Look at their entropies H(Ln)

I Often H(Ln) ∼ αn. This α is average per letter entropy of L.

Definition (Per letter combinatorial entropy rate of a language)

Given L its entropy is defined as

H(L) = lim sup
n→∞

H(Ln)

n.

Two or three interpretations of H(L) = α

I Growth rate of L: i.e. |Ln| ∼ 2nα

I Average information content per letter in words of L

I Take x ∈ Ln, encode it in file F , then α ≈ |F |/n ⇒
α is the optimal compression rate for words in L.
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Combinatorial entropy rate of languages: examples

All the words on a k-letter alphabet Σ

Entropy ?

H(Σ∗) = lim sup
n→∞

log |Σn|
n

= lim sup
n→∞

log kn

n
= log k .

All the words with 30%a, 60%b and 10%c

H(L) = lim sup
n→∞

log n!
(0.3n)!(0.6n)!(0.1n)!

n
=

(using Stirling’s formula)

log (n/e)n

(0.3n/e)0.3n(0.6n/e)0.6n(0.1n/e)0.1n

n
= −0.3 log 0.3−0.6 log 0.6−0.1 log 0.1 ≈ 1.295

Nice formula −
∑

pi log pi , we will see it again.
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Combinatorial entropy rate of regular languages

Pioneers

Noam Chomsky

and

George Miller

in

Problem
Given an automaton, compute the entropy rate of its language.
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Combinatorial entropy rate of regular languages: solution

Computing H(L(A)) for a deterministic A

I Remove unreachable states

I Write down the adjacency matrix M.

I Compute ρ = ρ(M) - its spectral radius.

I Then H = log ρ.

Reminders

I Adjacency matrix: Mij = number of a such that i
a→ j .

I Spectral radius: maximal modulus of eigenvalues.
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Entropy rate of regular languages — example

M =

 1 1 0
0 0 1
1 2 0


I Words of length 0,1,2,3,4:
{ε}; {a, b}; {aa, ab, ba}; {aaa, aab, aba, baa, bab, bac};
{aaaa, aaab, aaba, abaa, abab, abac, baaa, bab, baca, baba, babb} . . .

I Cardinalities: 1,2,3,6,11, . . .

I Spectral radius: ρ(M) ≈ 1.80194;
entropy: H = log ρ(M) ≈ 0.84955.
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Entropy rate of regular languages — sketch of proof

Theorem

H(L(A)) = ρ(M).

Proof.

I Mn
ij = number of words w of length n such that i

w→ j

I Hence |Ln| = sum of some elements of Mn

I Perron-Frobenius theory of nonnegative matrices
⇒ |Ln| ≈ ρ(M)n ⇒ H(L) = log ρ(M)
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Entropy of (regular) ω-languages — mostly the same
Reminders

I ω-word: an ifinite sequence of letters. E.g. baaaaaaaaaa . . .

I ω-language: a set of ω-words, e.g. {271828181 . . . , 31415926 . . . }
I ω-regular language: recognized by a sort of finite automaton

Definition (Staiger, entropy of an ω-language)

H(L) = H(pref(L)) = lim sup
n→∞

1

n
log |prefn(L)|

Comments, remember Ludwig’s lecture @ EQINOCS

I Again: quantity of information (in bits/symbol) in words of L

I Related to Hausdorff dimension etc.
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How to compute the entropy of an ω-regular language

A simple algorithm

Given L = L(A) an ω-regular language, where A a Büchi
automaton:

I Trim the automaton A

I Consider it as a finite automaton with all accepting states

I Determinize it.

I Write down adjacency matrix M

I Compute its maximal eigenvalue ρ.

I Return log ρ.
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Entropy of ω-regular languages — some examples
Example

1a b H(L(A)) = log 2 = 1

1 2a
b

a H(L(A)) = log
1 +
√

5

2
= logϕ

I H(Σω) = log |Σ|;
I H(Σ∗bω)∗ = log |Σ| ( word is a prefix of L)

More examples and some applications in. . .
. . . Cătălin’s talk this afternoon
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. . . Cătălin’s talk this afternoon

Eugene Asarin What are entropies?



Introduction
Combinatorial entropy

The continuous case
Shannon entropy

Measuring dynamical systems
Everything related

Summary

Definition and explanation
Entropy of languages
Application: channel coding

A typical application of entropy: channel coding

Given. . .

I a source

(possible message, contents of a file, etc.)

I a channel

(e.g. what can be transmited by telegraph, written
on a DVD, etc)

Can we transmit all?

?
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Channel coding: formalizing

Given...

I a source: S ⊆ Σ∗

I a channel: C ⊆ Γ∗

(no noise, no probability in this paradigm)

Questions

I Is it possible to transmit any source message via the channel?

I What would be the transmission speed?

I How to encode the message before and to decode it after
transmission?
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Writing a DVD

Description of the coding problem
I Source: {0, 1}∗

I Channel: words of {0, 1}∗ without blocks
11, 101, 00000000000.

Efficiency of EFMPlus

I Optimal rate for this problem: 0.5418.

I EFMPlus code used in practice, rate: 1/2.
Designed by: Kees Immink
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Coding: a definition

Definition (φ : S → C , encoding with rate α ∈ Q )

I it is of rate α, i.e. α = |w |
|φ(w)| ;

I it is injective,

i.e.
if |w | = |w ′| and |u| = |u′| = d then
φ(wu) = φ(w ′u′)⇒ w = w ′.
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Coding: a definition

Definition (φ : S → C , encoding with rate α ∈ Q )

I it is of rate α, i.e. α = |w |
|φ(w)| ;

I it is almost injective with delay d , i.e.
if |w | = |w ′| and |u| = |u′| = d then
φ(wu) = φ(w ′u′)⇒ w = w ′.
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Finite state coding theorem

Information Inequality

αH(S) ≤ H(C ) (II)

Theorem ((II) is necessary: it is easy)

If an (S ,C )-encoding with rate α exists, then (II) holds.

Proof.
By injectivity |Sαn| ≤ |Cn+d |. Apply lim sup 1

n log and get (II)

Theorem ((II) is almost sufficient)

If S and C are sofic1 and strong (II) holds, then there exists an
(S ,C )-encoding realized by a finite-state transducer.

The optimal rate. . .

. . . is α ≈ H(C )/H(S)
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Section 3

The continuous case
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The continuous case: Q&A

I Q: Given a continuous set M, how much information contains
x ∈ M (what is the file size to describe x)?

I A: ∞, infinitely many bits needed. . . it was a stupid question.

I Q: Given a continuous set M, and ε > 0, how much
information contains x ∈ M (what is the file size to describe x
with precision ε > 0)?

I A: Nice question, the answer by Kolmogorov &
Tikhomirov is ε-entropy (and ε-capacity).

I Q: Is it relevant for computer science?

I A: IMHO yes, for timed and hybrid systems, compression of
real-valued data etc.
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Defining ε-entropy

Definition (ε-net)

Given M a metric space and ε > 0, a subset S ⊂ M is an ε-net if
∀x ∈ M ∃y ∈ S : d(x , y) < ε
If M is compact, a finite ε-net always exists.

Definition (ε-entropy)

Hε(M) = log min{|S | : S ⊂ M an ε-net}

Explanation

To describe x ∈ M with precision ε in Hε(M) bits:

I fix an optimal ε-net S ;

I choose y ∈ S such that d(x , y) < ε;

I write in binary the ordinal number of y in S .
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Classical examples of ε-entropy and an old application
M Hε(M)

A d-dimensional set of volume V log(V /(2ε)d) = O(log(1/ε))
1-Lipshitz functions on [0; 1] O(1/ε)

C k([0; 1]d) O((1/ε)d/k)
Analytic functions O(log2(1/ε))

Theorem (Vitushkin, in the context of 13th Hilbert’s problem)

Exists a 1-Lipshitz f on the unit square [0, 1]2 which cannot be
written as a term using 1-Lipshitz functions on [0; 1] and +

Proof.
Hε(Lip([0, 1]2)) ≈ (1/ε)2;
Hε(all the terms on Lip([0, 1]) ≈ (1/ε).
Thus the former set is larger then the latter!
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A new application (ongoing work)
Example (“Timed words” of duration ≤ T )
MT = {t1at2at3 . . . atk :

∑
ti ≤ T} How much information are there in

such words (for a precision ε)?

Geometry: can we measure all that together?
t1 ≤ T t1 + t2 ≤ T t1 + t2 + t3 ≤ T t1 + · · ·+ tk ≤ T

k-dim simplex

Some stores succeed

Wire at 0.9 e/m Lino at 21e/m2 Sand at 75e/m3

500 m + 40 m2 + 2m3 =1440e
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Computing ε-entropy of MT = {t1at2 . . . atk :
∑

ti ≤ T}
t1 ≤ T t1 + t2 ≤ T t1 + t2 + t3 ≤ T t1 + · · ·+ tk ≤ T

k-dim simplex

V1 = T V2 = T 2

2 V3 = T 3

6 Vk = T k

k!

|ε-net| ≈ T
2ε

T 2

2·(2ε)2
T 3

6·(2ε)3
T k

k!(2ε)k

Adding everything together

Hε(MT ) ≈ log
∞∑
k=1

T k

k!2kεk
= log(eT/2ε − 1) ≈ T log e

2ε

This is the file size for any timed word in MT up to ε.
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Section 4

Shannon entropy
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A simple probabilistic setting

Objects of study

I A random variable X talking values a1, . . . , ak with
probabilities p(a1) = p1, . . . , p(ak) = pk .

I A Bernoulli (iid) sequence X1, . . . ,Xn of such variables
(generates a random word).

Usual question

How much information is contained in such a random word?
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Shannon’s solution (1948)

Definition (Shannon entropy)

H(X ) = −
∑
i

pi log pi .

Theorem (Shannon’s source coding)

A random word generated by X1, . . . ,Xn can be encoded in a file
of size ≈ nH(X ), with error probability < δ. It is impossible with a
smaller file.

Comments

I Random words thus contain H(x) bits/symbol of information.

I Déjà vu in the combinatorial setting. Go there
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Shannon’s proof: the key lemma

I take w = x1x2 . . . xn a random word, outcome of X1X2 . . .Xn

I compute s(w) = log p(x1) + log p(x2) + · · ·+ log p(xn)

I by the law of big numbers with high probability s(w) ≈ Es(w)

I we have Es(w) = nE log p(X ) = n
∑

pi log pi = −nH(X )

I with high probability s(w) ≈ −nH(X ), let us exponentiate it:

I with high probability p(w) = p(x1) · p(x2) · · · p(xn) ≈ 2−nH(X )

Lemma (AEP — almost equiprobable)

With probability > 1− δ, the probability of a random word w is
close to 2−nH(X ). A new interpretation of entropy
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Introduction
Combinatorial entropy

The continuous case
Shannon entropy

Measuring dynamical systems
Everything related

Summary

Shannon’s proof: the key lemma

I take w = x1x2 . . . xn a random word, outcome of X1X2 . . .Xn

I compute s(w) = log p(x1) + log p(x2) + · · ·+ log p(xn)

I by the law of big numbers with high probability s(w) ≈ Es(w)

I we have Es(w) = nE log p(X ) = n
∑

pi log pi = −nH(X )

I with high probability s(w) ≈ −nH(X ),

let us exponentiate it:

I with high probability p(w) = p(x1) · p(x2) · · · p(xn) ≈ 2−nH(X )

Lemma (AEP — almost equiprobable)

With probability > 1− δ, the probability of a random word w is
close to 2−nH(X ). A new interpretation of entropy

Eugene Asarin What are entropies?



Introduction
Combinatorial entropy

The continuous case
Shannon entropy

Measuring dynamical systems
Everything related

Summary

Shannon’s proof: the key lemma

I take w = x1x2 . . . xn a random word, outcome of X1X2 . . .Xn

I compute s(w) = log p(x1) + log p(x2) + · · ·+ log p(xn)

I by the law of big numbers with high probability s(w) ≈ Es(w)

I we have Es(w) = nE log p(X ) = n
∑

pi log pi = −nH(X )

I with high probability s(w) ≈ −nH(X ), let us exponentiate it:

I with high probability p(w) = p(x1) · p(x2) · · · p(xn) ≈ 2−nH(X )

Lemma (AEP — almost equiprobable)

With probability > 1− δ, the probability of a random word w is
close to 2−nH(X ).

A new interpretation of entropy

Eugene Asarin What are entropies?



Introduction
Combinatorial entropy

The continuous case
Shannon entropy

Measuring dynamical systems
Everything related

Summary

Shannon’s proof: the key lemma

I take w = x1x2 . . . xn a random word, outcome of X1X2 . . .Xn

I compute s(w) = log p(x1) + log p(x2) + · · ·+ log p(xn)

I by the law of big numbers with high probability s(w) ≈ Es(w)

I we have Es(w) = nE log p(X ) = n
∑

pi log pi = −nH(X )

I with high probability s(w) ≈ −nH(X ), let us exponentiate it:

I with high probability p(w) = p(x1) · p(x2) · · · p(xn) ≈ 2−nH(X )

Lemma (AEP — almost equiprobable)

With probability > 1− δ, the probability of a random word w is
close to 2−nH(X ). A new interpretation of entropy

Eugene Asarin What are entropies?



Introduction
Combinatorial entropy

The continuous case
Shannon entropy

Measuring dynamical systems
Everything related

Summary

Shannon’s proof continued

Definition (Typical words)

A : set of words w s.t. 2−n(H(X )+ε) < p(w) < 2−n(H(X )−ε).

Properties of typical words

I AEP lemma: with probability > 1− δ a random w is in A.

I Cardinality bounds: 2n(H(X )−ε) < |A| < 2n(H(X )+ε).

The encoding of size nH(X ) exists

For a random word w

I if w 6∈ A produce an error (prob. < δ)

I if w ∈ A encode it by the ordinal number of w in
lexicographic order of A
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Shannon’s proof finished

Reminder on the set A of typical words

I For w ∈ A we have 2−n(H(X )+ε) < p(w) < 2−n(H(X )−ε).

I P(A) > 1− δ.

I 2n(H(X )−ε) < |A| < 2n(H(X )+ε).

nH(X ) bits required by any encoding

Consider any encoding (with small error probability).

I Let B be the set of words we can encode with P(B) > 1− δ
I Then P(B ∩A) > 1/2, hence |B| ≥ |B ∩A| ≥ 0.5 · 2n(H(X )−ε).

I all elements of B require different files ⇒ at least
n(H(X )− ε)− 2 bits needed.

OUF!
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Shannon’s entropy, what else

Nicer encoding possible

A prefix code: for each letter a take a codeword with length
log p(a)

Many extensions exist

I Markov chains instead of i.i.d.

I Constrained, noisy, lossy channels

I ???
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I will skip one important entropy

A weakness of preceding ones

They all apply to a set M, a language L or a stochastic process Xi

in order to measure information in a typical element x .

An important question

How to measure information in an x (for example a word)?

You probably know the answer

Solomonoff, Kolmogorov, Chaitin complexity

More details in Alexander Shen’s talk on Wednesday.
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Tired? Me too. . . A coffee break now!
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Topological entropy
Metric entropy

Section 5

Measuring dynamical systems
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Topological entropy
Metric entropy

What is a dynamical system?

Definition (dynamical system is a couple (X ,T ) with)

I X a state space

I T : X → X dynamics

Definition (trajectory)

x ,Tx ,T 2x ,T 3x , . . . (in CS this is called a run)

Variants and enhancements

I reversible

I continuous-time

I with some structure on X (topology, metrics, measure) and
restrictions on T .
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Topological entropy
Metric entropy

Examples of dynamical systems: “classical math”

Any recurrence on [0; 1]n
I Tx = sin x (a stupid one)

I Tx = x + c mod 1 (shift on torus)

I Tx = Ax mod 1 with A integer
unimodular (torus automorphism), e.g.

T

(
x
y

)
=

(
2x + 3y
3x + 5y

)
mod 1

x1
x2
x3

x4x5x6
x7

Given a differential equation ẋ = f (x)

I Tx = start from x , wait one second.

I Tx = start from x , wait until hit a plane
(Poincaré map);

I continuous time. . .
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Important dynamical systems: shifts

Definition (Shifts)

Fix an alphabet Σ

I State space X = Σω or ΣZ

I Dynamics σ : a0a1a2a3 · · · 7→ a1a2a3a4 . . .

I Probability measure on X can be added (Bernoulli, Markov)

Explanation

I State: all the future a0a1a2a3 . . . (or all the eternity for
bi-infinite sequences)

I Today situation : a0

I Dynamics: (today state) 7→ (tomorrow state).
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Examples of dynamical systems: computer science

Turing machine, according to Cris Moore

With moving ribbon(s) and fixed head (at 0).

I State: Q × ΣZ (control state and ribbon content)

I Dynamics T : rewrite the symbol at 0, change the state, move
the ribbon, according to the program.

More general then a shift!

Subshifts ≈ languages

I X ⊂ Σω or ΣZ, closed and shift-invariant.

I Dynamics: shift σ.

I Main example: ω-language of an automaton (w/o acceptance
condition).
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What about entropy?

A question about any dynamical system

At which rate does it produce information?

What for

I An interesting characteristics of systems

I Distinguishes order from chaos

I A powerful method to compare/distinguish systems.

How: the general idea of symbolic dynamics

I Fix some regions

I For each trajectory consider the sequence of regions visited

I Measure entropy (combinatorial, Shannon) of such sequences
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Topological dynamical systems

Definition
It is a couple (X ,T )

I States: a topological space X (compact in most cases)

I Dynamics: a continuous function T : X → X

I no probability, no frills
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Towards a definition of topological entropy 1

Definition (Open cover of X and its entropy)

I A cover C: a set of open sets with union X

I Its entropy H(C) = min{log |B| : B ⊂ C a cover}

Explanation

Given x ∈ X , how many bits are needed to say to which region C
in C it belongs?

I take the smallest finite subcover B
I take a region B ∈ B containing x

I give the ordinal number of B in B in binary: log |B| bits.
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Towards a definition of topological entropy 2

Example (Entropy of a cover)

Let X = [0, 1]2, and C the cover of circles of
radius < 0.1. The minimal subcover contains
(I think) 64 circles, H(C) = log 64 = 6.
Very similar to ε-entropy

Definition (Join of covers)

B ∨ C consists of all B ∩ C with B ∈ B and C ∈ C
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Definition of topological entropy, Adler et al.

Definition (n-step information in system (X ,T ) wrt cover C)

hn(T , C) = H(C ∨ T−1C ∨ · · · ∨ T−(n−1)C).

Explanation

We observe regions of C visited by a trajectory from x during n
steps, and measure the (combinatorial) entropy thereof.

Definition (Topological entropy of (X ,T ))

H(T ) = sup
C

lim sup
n→∞

hn(T , C)

n

(information production rate)

Lemma
Forget about sup, take a generating2 C

2
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Let us compute the topological entropy for shifts

Shift ({a, b, c}ω, σ}

I Cover C contains 3 opens: aΣω, bΣω, cΣω

I C ∨ σ−1C contains 9 opens aaΣω, abΣω, . . . , ccΣω

I In general, C ∨ T−1C ∨ · · · ∨ T−(n−1)C contains 3n opens
corresponding to n-letter prefixes.

I Cover entropies 3, 9, . . . , 3n (no smaller subcovers exist)

I H(σ) = log 3n

n = log 3

Shift (Σω, σ)

Of course H(σ) = log |Σ|
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Topological entropy of an ω-language (subshift)

The topologic entropy of (L, σ)

I Again C ∨ T−1C ∨ · · · ∨ T−(n−1)C correspond to n-letter
prefixes.

I H(L) = lim supn→∞
log |prefn(L)|

n (entropy=growth rate).

I We have seen this entropy one hour ago! And we can
compute it, easily.
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Topological entropy of Turing machines

Theorem (Blondel&Delvenne)

Topological entropy is uncomputable for two-tape TM

Theorem (Jeandel)

Topological entropy is computable for one-tape TM!!!

It was presented at an EQINOCS meeting. . .

Remark
A TM as dynamical system is quite different from the usual
perspective: all the possible tape contents should be considered!
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Metric dynamical systems

Definition (A metric dynamical system (X ,T , µ))

I A Lebesgue3 space X with a measure µ.

I Dynamics T : X → X (measurable)

Axiom: ∀A : µ(T−1A) = µ(A) (invariance of µ wrt T )

Main difference
Topological Metric

a b a, 3/5 b, 2/51/3

2/3

1

3whatever it means
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Probabilistic examples of metric dynamical systems

Bernoulli shift
({a, b, c}ω, σ,B) with Bernoulli probability B such that
p(a) = 0.3, p(b) = 0.6, p(c) = 0.1

Markov subshift

a, 3/5 b, 2/51/3
2/3

1

(L, σ,M) with

I L = (b + ε)(a+b)ω

I M stationary Markov chain
probability defined by

p(a) =0.6, p(b) = 0.4

P =

(
1/3 2/3

1 0

)
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Deterministic examples of metric dynamical systems

Hamiltonian systems

Physical systems without energy dissipation:
ṗ = ∂H/∂q; q̇ = −∂H/∂p with H(p, q) full energy.
X : phase space; Tx = position of x in 1 second;
µ = phase volume.

Torus automorphism

Like that: X : unit square; µ surface;

and T

(
x
y

)
=

(
2x + 3y
3x + 5y

)
mod 1.

x0

x1
x2

x3

x4
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Towards a definition of metric entropy

Definition (Partition of X and its entropy)

I A partition ξ: a set of disjoint sets with union X

I Its entropy H(ξ) = −
∑

C∈ξ µ(C ) logµ(C )

Explanation

Given a µ-random x ∈ X , how many bits needed to say to which
region C (of ξ) it belongs?

I As for Shannon, encode region C by a codeword with
− logµ(C ) bits
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Metric entropy

Definition (n-step entropy in system (X ,T , µ) wrt partition ξ)

hn(T , ξ) = H(ξ ∨ T−1ξ ∨ · · · ∨ T−(n−1)ξ).

Explanation

I Observe regions of ξ visited by a trajectory from x during n
steps, and measure the (Shannon) entropy thereof.

I Compared to topological: open cover → partition;
combinatorial → Shannon.

Definition (Kolmogorov-Sinai entropy of (X ,T , µ))

H(T ) = sup
ξ

lim sup
n→∞

hn(T , ξ)

n

Lemma
Forget about sup, take a generating C
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Example of computation

Bernoulli shift on {a, b, c} with
p(a) = 0.3, p(b) = 0.6, p(c) = 0.1

I Partition ξ contains 3 parts: aΣω, bΣω, cΣω

I ξ ∨ σ−1ξ contains 9 parts aaΣω, abΣω, . . . , ccΣω

I In general, ξ ∨ T−1ξ ∨ · · · ∨ T−(n−1)ξ contains 3n parts
corresponding to n-letter prefixes.

I hn = −
∑
w∈Σn

p(w) log p(w) = En log p(w) = −nE log pi = nHSh

with Shannon entropy HSh =
∑

pi log pi ≈ 1.295

I Thus HMETR(σ) = HSh ≈ 1.295
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Another example

Markov subshift on L = (b + ε)(a+b)ω

a, 3/5 b, 2/51/3
2/3

1

Computing the entropy

I Partition ξ contains 2 parts: aΣω, bΣω

I In general, ξ ∨ T−1ξ ∨ · · · ∨ T−(n−1)ξ contains parts
corresponding to n-letter prefixes of L

I H(σ) = −
∑

i pi
∑

j pij log pij =

−0.6
(

1
3 log(1/3) + 2

3 log(2/3)
)
− 0.4 · 0 ≈ 0.551
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Origin of all that dynamic entropy: a problem

Definition (Isomorphism of metric dynamical systems)
(X ,T , µ) and (Y , S, ν) isomorphic if exists ϕ : X → Y s.t.

I ϕ a bijection (upto measure 0)

I ϕ and ϕ−1 measurable

I ϕ preserves measure: µ(A) = ν(ϕ(A))

I ϕ compatible with dynamics: Sϕ(x) = ϕ(Tx)

Natural but sometimes surprising

e.g Torus automorphism isomorphic to a Markov shift!

Problem (von Neumann, 1932 or 1941)

Are Bernoulli shifts B2 with p(a) = p(b) = 1/2 and
B3 with p(a) = p(b) = p(c) = 1/3 isomorphic?

Eugene Asarin What are entropies?



Introduction
Combinatorial entropy

The continuous case
Shannon entropy

Measuring dynamical systems
Everything related

Summary

Topological entropy
Metric entropy

Origin of all that dynamic entropy: a problem

Definition (Isomorphism of metric dynamical systems)
(X ,T , µ) and (Y , S, ν) isomorphic if exists ϕ : X → Y s.t.

I ϕ a bijection (upto measure 0)

I ϕ and ϕ−1 measurable

I ϕ preserves measure: µ(A) = ν(ϕ(A))

I ϕ compatible with dynamics: Sϕ(x) = ϕ(Tx)

Natural but sometimes surprising

e.g Torus automorphism isomorphic to a Markov shift!

Problem (von Neumann, 1932 or 1941)

Are Bernoulli shifts B2 with p(a) = p(b) = 1/2 and
B3 with p(a) = p(b) = p(c) = 1/3 isomorphic?

Eugene Asarin What are entropies?



Introduction
Combinatorial entropy

The continuous case
Shannon entropy

Measuring dynamical systems
Everything related

Summary

Topological entropy
Metric entropy

Classification of Bernoulli shifts: the solution

Theorem (Kolmogorov, 1957)

B2 and B3 are not isomorphic.

Proof.
H(B2) = 1 and H(B3) = log 3, but 1 6= log 3.

Theorem (Ornstein, 1970)

Two Bernoulli shifts are isomorphic if and only if
their entropies are equal.

And also..
Adler-Marcus analog for topological entropy.
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Section 6

Everything related
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Physical and others

Sorry

I don’t understand physics . . .
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Static case

See Sasha’s talk on Shannon, combinatorial
entropies and Kolmogorov complexity (on
Wednesday).
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Dynamic versus static 1

Näıve comparisons

1. Topological entropy is combinatorial entropy rate of region
sequence

2. Metric entropy is Shannon entropy rate of region sequence

3. For languages you can tel the same story in two ways

4. There were also two communities, they get closer now!
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Dynamic versus static 2

Bowen-Dinaburg’s definition of topological entropy
I forget about partitions/covers

I define an n-step metrics
dn(x , y) = maxi<n d(T ix ,T iy)

I compute its ε-entropy Hε(X , dn)

I ”how much information to describe the n-step
trajectory with precision ε”

I find its growth rate
H = limε→0 lim supn→0Hε(X , dn)

I topological entropy can be phrased as ε-entropy!
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Dynamic case: topological versus metric

Theorem

I HTOP(X ,T ) = supµHMETR(X ,T , µ), with supremum over all
invariant µ.

I Under a weak technical condition an optimal µ exist:
HTOP(X ,T ) = HMETR(X ,T , µ)

In other words

I Topological entropy ≥ the metric one

I (Often) exists an invariant measure of maximal entropy such
that topological= metric
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HTOP = maxHMETR : application

A problem and a recipe

I Given an automaton (subshift) we want to generate its words
of length n equiprobably

I We compute the measure of maximal entropy by simple linear
algebra (Shannon-Parry measure). It is a Markov chain!

I We generate words according to this Markov chain, and it
works.
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HTOP = maxHMETR : application continued

Example

I Aim: generate prefixes of L = (b + ε)(a+b)ω (no bb)

I Automaton:
a b

I Topological entropy logϕ, where ϕ = golden ratio.

I Maximal entropy provided by Shannon-Parry Markov chain.

a, 1/ϕ b, 1/ϕ31/ϕ

1/ϕ2

1

I Easy to generate words!
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Section 7

Summary
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Summary 1

Entropy is a real number that characterizes. . .

I quantity of information (binary file size, number of binary
questions, transmission time etc.)

I size or growth rate of the set of possibile beahviours

I I forgot to discuss chaos

I in fact we should distinguish between entropy (bits) and
entropy rate (bits/event), but we forget to
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Summary 2

We know several entropies now

I Combinatorial entropy

I Shannon entropy.

I Kolmogorov complexity (not yet)

I ε-entropy

I Topological entropy of dynamical systems

I Metric entropy of dynamical systems

I And they are all tightly related.
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Summary

Summary 3

Entropies (≈ savant cardinality arguments) are used to. . .

I find bounds on information transmission speed

I prove that two systems are different

I prove that they are equal

They apply to systems from computer science

I Languages and ω-languages (combinatorial and topological)

I Turing machines (topological)

I Probabilistic automata (Shannon and metric)

I anything (Kolmogorov complexity)

I more to come during next 3 days
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