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Zd Shift spaces

Full shift: AZd
over a finite alphabet A.

Shift space: for some list F of “forbidden” configurations
on finite shapes,
X = XF := {x ∈ AZd

: x contains no elements of F}
Shift of finite type (SFT): a shift space where F can be
chosen finite.
Nearest neighbor (n.n.) SFT: a shift space where all
elements of F are configurations on edges of Zd .
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Topological entropy

Bn := [0,n − 1]d

globally admissible configurations:

GAn(X ) = {x(Bn) : x ∈ X}

Topological entropy:

h(X ) := lim
n→∞

log |GAn(X )|
nd

locally admissible configurations:

LAn(X ) = { configs. on Bn forbidding F}

Theorem (Ruelle, Friedland):

h(X ) = lim
n→∞

log |LAn(X )|
nd
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SFT’s, d = 1

A Z n.n. SFT X over alphabet A is specified by a directed
graph G with vertices indexed by A and an edge from a to
b iff ab 6∈ F .

Golden Mean Shift:

Adjacency matrix A of G is the square matrix indexed by A:

Aab =

{
1 ab 6∈ F
0 ab ∈ F

}
h(X ) = logλ(A), where λ(A) is the spectral radius of A.
Characterization of entropies for d = 1 (Lind):

{logλ1/q}

where λ is a Perron number and q ∈ N
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Examples of Z2 SFTs: hard squares

hard squares A = {0,1},F = {11,
1
1
}

h( hard squares ) = ???
h( hard hexagons ) = log(λ) where λ is an algebraic integer
of degree 24.
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Examples of Z2 SFTs: checkerboard (coloring)
constraints

q-checkerboard Cq: A = {1, . . . ,q},F = {aa,
a
a
}

h(C2) = 0
(Lieb): h(C3) = (3/2) log(4/3)

h(C4) = ???
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Examples of Z2 SFT’s: dimers

dimers:

F = {LL,LT ,LB,RR,TR,BR,
T
L
,

T
R
,

T
T
,

B
B
,

L
B
,

R
B
}

(Fisher-Kastelyn-Temperley (1961)):
h( Dimers ) = 1

16π2

∫ π
−π
∫ π
−π log(4 + 2 cos θ + 2 cosφ) dθdφ

h( Monomers-Dimers) = ???
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Examples of Z2 SFTs

Ledrappier 3-dot

X = {x ∈ {0,1}Z2
: x((i , j))+x((i+1, j))+x((i , j+1)) = 0 mod 2}

F = { a
b c

: a + b + c 6= 0 mod 2}
h(X ) = 0.
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Examples of Z2 SFTs: iceberg model

A = {−M, . . . ,−1,0,1, . . .M}

F = {ab,
a
b

: a,b have opposite signs}

positives can sit next to positives and zeros, negatives can
sit next to negatives and zeros, and zeros can sit next to
anyone.
Example: M = 2

1 2 2 1 0 0 −1 −2 0 2
0 2 1 0 −1 0 −2 −1 0 2
1 1 0 −2 0 0 0 0 1 2
0 2 1 0 −1 0 −2 −1 0 2
0 1 2 0 −2 0 −2 −2 0 1
0 1 1 0 −1 0 −1 0 2 1
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Topological entropy, d ≥ 2

Exact formula known only in a few cases.
Characterization of entropies for d ≥ 2
(Hochman-Meyerovitch):

{right recursively enumerable (RRE) numbers h ≥ 0}

i.e, there is an algorithm that produces a sequence rn ≥ h
s.t. rn → h.
Proof:

Necessity: Let rn := log |LAn|
nd .

By Ruelle/Friedland Theorem, rn → h.
By subadditivity of log |LAn|, each rn ≥ h.
Sufficiency (hard): Emulate Turing machine with an SFT.

RRE’s can be poorly computable, or even non-computable.
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polynomial time approximation

A polynomial time approximation algorithm: on input n,
produces a sequence rn s.t. |rn − h| < 1/n and rn can be
computed in time poly(n).
Theorem (Gamarnik-Katz, Pavlov): There is a polynomial
time approximation algorithm to compute
h( hard squares ).
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Measure-theoretic entropy

Given a shift-invariant Borel probability measure µ on AZd
,

For finite S b Zd ,

Hµ(S) :=
∑

x∈AS

−µ(x) logµ(x) =

∫
− logµ(x)dµ(x)

For finite disjoint S,T ,

Hµ(S | T ) :=
∑

x∈AS ,y∈AT : µ(y)>0

−µ(x , y) logµ(x | y)

Extend to finite S and infinite T :

Hµ(S | T ) := inf
T ′bT

Hµ(S|T ′)

Author Short Paper Title
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Hµ(S | T ) :=
∑

x∈AS ,y∈AT : µ(y)>0

−µ(x , y) logµ(x | y)

Extend to finite S and infinite T :

Hµ(S | T ) := inf
T ′bT

Hµ(S|T ′)
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Entropy of µ

h(µ) := limn→∞
Hµ(Bn)

nd

d = 1: Theorem: h(µ) = Hµ(0 | {−1,−2,−3, . . .})
d = 2: Let ≺ denotes lexicographic order: (i , j) ≺ (i ′, j ′) iff
either j < j ′ or (j = j ′ and i < i ′).

For z ∈ Z2, let P−(z) := {z ′ ∈ Z2 : z ′ ≺ z} the lexicographic
past of z, and P− := P−(0)

· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
• • • • • • • 0 · · · · · · · ·
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

Theorem: h(µ) = Hµ(0 | P−).
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P− := P−(0)

· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
• • • • • • • 0 · · · · · · · ·
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

Theorem: h(µ) = Hµ(0 | P−).

Defn: The information function of µ is defined as

Iµ(x) := − logµ(x(0)| x(P−)) (µ− a.e.)

Corollary:

h(µ) = Hµ(0| P−) =

∫
Iµ(x)dµ(x).
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Variational Principle for Topological Entropy

For a shift space X ,

h(X ) = sup
µ

h(µ)

where the sup is taken over all shift-invariant Borel
probability measures µ s.t. support(µ) ⊆ X .
Fact: The sup is always achieved. A measure which
achieves the sup is called a measure of maximal entropy
(MME).
So for an MME µ, h(X ) = h(µ) =

∫
Iµ(x)dµ(x)

Under certain conditions, h(X ) = h(µ) =
∫

Iµdν for some
other invariant measure ν and, under stronger conditions,
for all invariant measures ν.
If this works for ν = the δ-measure on a fixed point
x∗ = aZd

, then

h(X ) = h(µ) = Iµ(x∗) = − logµ(x∗(0) | x∗(P−))
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Maximal entropy is characterized by as much:
Site-to-site independence -and-
Uniformity of distribution

as possible.
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Markov random fields

A Markov random field (MRF) is a shift-invariant Borel
probability measure µ on AZd

such that for any choice of:
S b Zd ,
T b Zd s.t. ∂S ⊆ T ⊆ Zd \ S
configuration x on S
configuration y on T s.t. µ(y) > 0,

we have:
µ(x | y) = µ(x | y(∂S))
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Uniform MRF

Let X be a n.n. SFT. For S b Zd and y ∈ A∂S, let

GAy
S(X ) := {x ∈ AS : xy is globally admissible }

An MRF on X is uniform if whenever µ(y) > 0, then for
x ∈ GAy

S(X )

µ(x | y) =
1

|GAy
S(X )|

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n.
SFT is a uniform MRF.
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Safe symbol

A n.n. SFT X has a safe symbol s if it is locally admissible with
every configuration of nearest neighbours:

?

? s ?

?

Examples: Yes: Hard squares (s = 0), Iceberg model (s = 0)
No: Checkerboard shifts, Dimers
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Entropy Representation

Let Ra,b,c := [−a,−1]× [1, c] ∪ [0,b]× [0, c]
Example: R3,4,3 :

| · · · · · · · ·
c · · · · · · · ·
| · · · · · · · ·

· · · · ·
− a − − b −

Theorem (special case of Gamarnik-Katz): Let X be a n.n. Zd

SFT and µ an MME on X . If
1 X has a safe symbol s – and –
2 (for d = 2)

L := lim
a,b,c→∞

µ(s0 | s∂Ra,b,c ) exists

Then
h(X ) = − log L
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Proof

Since µ is an MME, µ must be a uniform MRF.
Since s is a safe symbol,

1 For all T b Zd containing 0,

µ(s0 | s∂T ) ≥ 1
|A| .

2

h(X ) = lim
n→∞

− logµ(sBn | s∂Bn )

nd

Proof:
µ(sBn | s∂Bn ) =

1
|GAn(X )|
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Decomposition

h(X ) = lim
n→∞

− logµ(sBn | s∂Bn )

nd

µ(sBn | s∂Bn ) =
∏

z∈Bn

µ(sz | sP−(z)∩Bns∂Bn )

• • • •
• · · · · •
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Proof

So,

logµ(sBn | s∂Bn ) =
∑
z∈Bn

logµ(sz | s∂Ra(z),b(z),c(z))

By the convergence assumption, for “most” z ∈ Bn

logµ(sz | s∂Ra(z),b(z),c(z)) ≈ log L

By safe symbol assumption, for the remaining z ∈ Bn,

0 ≥ logµ(sz | s∂Ra(z),b(z),c(z)) ≥ − log |A|

Thus, h(X ) = lim
n→∞

− logµ(sBn | s∂Bn )

nd = − log L. �
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Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. Z2

SFT and µ an MME on X . If
1 X has a safe symbol s – and –
2

L := lim
a,b,c→∞

µ(s0 | s∂Ra,b,c ) exists

and convergence is exponential
Then there is a polynomial time algorithm to compute
h(X ) = − log L.
Proof: Approximate L by µ(s0 | s∂Rn,n,n ).

Accuracy is e−Ω(n)

Claim: Computation time is eO(n)

Trade exponential accuracy in exponential time for linear
accuracy (1/n) in polynomial time. �
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Proof of Claim, via transition matrices

µ(s0 | s∂Rn,n,n ) =

#

s s s s s
s · · · · · s
s · · · · · s
s s s s · · s

s s s

#

s s s s s
s · · · · · s
s · · · · · s
s s s · · · s

s s s

=
(
∏−1

i=−n Mi)M̂0(
∏n−1

i=1 Mi)

(
∏−1

i=−n Mi)M0(
∏n−1

i=1 Mi)

Mi is transition matrix from column i to column i + 1 compatible
with s∂Sn,n,n and
M̂0 is matrix obtained from M0 by forcing s at origin. �
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Topological Strong Spatial Mixing (TSSM)

A Zd SFT X satisfies topological strong spatial mixing
(TSSM) with gap g if

for any disjoint U,S,V b Z d s.t. d(U,V ) ≥ g,

u ∈ AU , s ∈ AS, v ∈ AV , s.t. us and sv are globally
admissible,

then so is usv .
Safe symbol⇒ TSSM
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Generalization

Theorem (Adams, Briceno, Marcus, Pavlov): Let X be a Zd n.n.
SFT and µ an MME on X . If

1 X satisfies TSSM
2 For some periodic orbit O in X and all ω ∈ O

L(ω) := lim
a,b,c→∞

µ(ω(0) | ω(∂Ra,b,c)) exists

Then
h(X ) = − 1

|O|
∑
ω∈O

log L(ω)

Moreover, if d = 2 and convergence in hypothesis 2 is
exponential, then there is a polynomial time algorithm to
compute h(X ).
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Examples

Verification of exponential convergence condition: using
coupling and Peierls arguments.
Applies to:

hard squares
q-checkerboard with q ≥ 6
iceberg with M ≥ 24.
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Strong Spatial Mixing

An MRF µ satisfies strong spatial mixing (SSM) at rate
f (n)

if for all V b Z d , U ⊂ V

all u ∈ AU , and v , v ′ ∈ A∂V satisfying µ(v), µ(v ′) > 0,

we have
∣∣µ(u | v)− µ(u | v ′)

∣∣ ≤ |U|f (d(U,Σ∂V (v , v ′))).
where Σ∂V (v , v ′) = {t ∈ ∂V : v(t) 6= v(t ′)}.
SSM⇒ convergence condition in theorem.

Author Short Paper Title



Strong Spatial Mixing

An MRF µ satisfies strong spatial mixing (SSM) at rate
f (n)

if for all V b Z d , U ⊂ V

all u ∈ AU , and v , v ′ ∈ A∂V satisfying µ(v), µ(v ′) > 0,

we have
∣∣µ(u | v)− µ(u | v ′)

∣∣ ≤ |U|f (d(U,Σ∂V (v , v ′))).
where Σ∂V (v , v ′) = {t ∈ ∂V : v(t) 6= v(t ′)}.
SSM⇒ convergence condition in theorem.

Author Short Paper Title



Strong Spatial Mixing

An MRF µ satisfies strong spatial mixing (SSM) at rate
f (n)

if for all V b Z d , U ⊂ V

all u ∈ AU , and v , v ′ ∈ A∂V satisfying µ(v), µ(v ′) > 0,

we have
∣∣µ(u | v)− µ(u | v ′)

∣∣ ≤ |U|f (d(U,Σ∂V (v , v ′))).
where Σ∂V (v , v ′) = {t ∈ ∂V : v(t) 6= v(t ′)}.
SSM⇒ convergence condition in theorem.

Author Short Paper Title



Strong Spatial Mixing

An MRF µ satisfies strong spatial mixing (SSM) at rate
f (n)

if for all V b Z d , U ⊂ V

all u ∈ AU , and v , v ′ ∈ A∂V satisfying µ(v), µ(v ′) > 0,

we have
∣∣µ(u | v)− µ(u | v ′)

∣∣ ≤ |U|f (d(U,Σ∂V (v , v ′))).
where Σ∂V (v , v ′) = {t ∈ ∂V : v(t) 6= v(t ′)}.
SSM⇒ convergence condition in theorem.

U
Σ ∂V

Author Short Paper Title



Strong Spatial Mixing

An MRF µ satisfies strong spatial mixing (SSM) at rate
f (n)

if for all V b Z d , U ⊂ V

all u ∈ AU , and v , v ′ ∈ A∂V satisfying µ(v), µ(v ′) > 0,

we have
∣∣µ(u | v)− µ(u | v ′)

∣∣ ≤ |U|f (d(U,Σ∂V (v , v ′))).
where Σ∂V (v , v ′) = {t ∈ ∂V : v(t) 6= v(t ′)}.
SSM⇒ convergence condition in theorem.

U
Σ ∂V

Author Short Paper Title



Strong Spatial Mixing

An MRF µ satisfies strong spatial mixing (SSM) at rate
f (n)

if for all V b Z d , U ⊂ V

all u ∈ AU , and v , v ′ ∈ A∂V satisfying µ(v), µ(v ′) > 0,

we have
∣∣µ(u | v)− µ(u | v ′)

∣∣ ≤ |U|f (d(U,Σ∂V (v , v ′))).
where Σ∂V (v , v ′) = {t ∈ ∂V : v(t) 6= v(t ′)}.
SSM⇒ convergence condition in theorem.

U
Σ ∂V

Author Short Paper Title



Stronger conclusion

Theorem (Briceno): Let X be a Zd n.n. SFT and µ an MME on
X . If

1 X satisfies TSSM
2 µ satisfies SSM

Then for all invariant measures ν s.t. support(ν) ⊆ X ,

h(X ) =

∫
Iµ(x) dν(x)

Applies to:
hard squares
q-checkerboard with q ≥ 6

but not to iceberg.
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Extension to Pressure

Generalize results from entropy to pressure of nearest
neighbour interactions
Applies to large sets of parameters for classical models in
statistical physics, including Hard squares, Ising, Potts, and
Widom-Rowlinson.
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Topological Pressure and Variational Principle

Let X be a shift space and f : X → R a continuous function.
Topological Pressure (defined by Variational Principle):

PX (f ) := sup
µ

h(µ) +

∫
fdµ

where the sup is taken over all shift-invariant Borel
probability measures µ such that support(µ) ⊆ X .
Fact: The sup is always achieved.
A measure which achieves the sup is called an
equilibrium state.
Note: PX (0) = h(X ).
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Nearest-Neighbour interactions and Gibbs measures

A nearest-neighbor interaction is a shift-invariant function
Φ from a set of configurations on vertices and edges in Zd

to R ∪∞
For a nearest-neighbor interaction Φ, the underlying SFT:

X = XΦ := {x ∈ AZd
: Φ(x({v , v ′})) 6=∞, for all v ∼ v ′}.

A nearest neighbour (n.n.) Gibbs measure µ
corresponding to Φ is an MRF on X such that for S b Zd ,
δ ∈ A∂S, µ(δ) > 0, w ∈ AS:

µ(w |δ) =
e−UΦ(wδ)

Z Φ,δ(S)
.

where
UΦ(wδ) is the sum of all Φ-values of wδ for vertices, edges
in S ∪ ∂S
Z Φ,δ(S) is the normalization factor.
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Examples of n.n. Gibbs measures

uniform MME on n.n. SFT
hard square model with activities
ferromagnetic Ising model with no external field.
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Equilibrium states versus n.n. Gibbs measures

Pressure of n.n. interaction Φ:

P(Φ) := lim
n→∞

log Z Φ(Bn)

nd

where Z Φ(Bn) is the “free boundary” normalization.
Let AΦ(x) := −Φ(x(0))−∑d

i=1 Φ(x(0), x(ei)).
Fact: PXΦ

(AΦ) = P(Φ).
Lanford-Ruelle Theorem: Every equilibrium state for AΦ is
a Gibbs measure for Φ.
Dobrushin Theorem: If XΦ is strongly irreducible, then
every Gibbs measure for Φ is an equilibrium state for AΦ.
These theorems hold in much greater generality.
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Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let µ a Gibbs
measure for a n.n. interaction Φ with underlying Zd n.n. SFT X .
If

1 X satisfies TSSM
2 For some periodic orbit O in X and all ω ∈ O

L(ω) := lim
a,b,c→∞

µ(ω(0) | ω(∂Ra,b,c)) exists

Then
P(Φ) =

1
|O|

∑
ω∈O

− log L(ω) + AΦ(ω)

Moreover, if d = 2 and convergence in hypothesis 2 is
exponential, then there is a polynomial time algorithm to
compute P(Φ).
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Stronger conclusion

Theorem (Briceno): Let µ a Gibbs measure for a n.n.
interaction Φ with underlying Zd n.n. SFT X . If

X satisfies TSSM
µ satisfies SSM.

Then for all shift-invariant measures ν such that
support(ν) ⊆ X ,

P(Φ) =

∫
(Iµ(x) + AΦ(x))dν
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D-condition

An SFT X satisfies the D-condition if
there exist sequences of finite subsets (Λn), (Mn) of Zd

such that Λn ↗∞, Λn ⊆ Mn, |Mn|
|Λn| → 1, such that

for any globally admissible v ∈ AΛn and finite S ⊂ Mc
n and

globally admissible w ∈ AS, we have that vw is globally
admissible.

Safe symbol⇒ TSSM⇒ D-condition
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Connection with Thermodynamic Formalism

Theorem: Let µ a Gibbs measure for a n.n. interaction Φ with
underlying Zd n.n. SFT X . If

X satisfies the D-condition
Iµ = AΨ for some absolutely summable interaction Ψ s.t.
XΨ = X ,

Then
P(Φ) =

∫
Iµ(x) + AΦ(x) dν(x)

for every shift-invariant measure ν with support(ν) ⊆ X .
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MME, d = 1

Assuming adjacency matrix A is irreducible and aperiodic,
there is a unique MME µmax, which is a Markov chain given
by transition matrix

Pij =

{
rj
λri

ij 6∈ F
0 ij ∈ F

}
where λ = λ(A) and r is a right eigenvector for λ, and
stationary vector ri`i where ` is a left eigenvector for λ
(suitably normalized)
Thus, if µ(w1w2 . . .wn−1wn) > 0, then

µ(w1w2 . . .wn−1wn) =
`w1rwn

λn−1

Thus, fixing w1,wn,

µ(w2 . . .wn−1| w1,wn) is uniform
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stationary vector ri`i where ` is a left eigenvector for λ
(suitably normalized)
Thus, if µ(w1w2 . . .wn−1wn) > 0, then

µ(w1w2 . . .wn−1wn) =
`w1rwn

λn−1

Thus, fixing w1,wn,

µ(w2 . . .wn−1| w1,wn) is uniform
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Entropy representation for MME, d = 1

Iµ(x) = − logµ(x(0)| x(P−))
= − log Px0x−1

= logλ+ log rx−1 − log rx0

So, for all invariant measures ν,∫
Iµ(x)dν(x) =

∫
(logλ+ log rx−1 − log rx0)dν(x)

= logλ
= h(X )

In particular, if the SFT has a fixed point x∗ := aZ and ν is
the delta measure on x∗, then on

h(X ) =

∫
Iµ(x)dν(x) = Iµ(x∗) = − logµ(x∗)

and so h(X ) can be computed from the value of the
information function at only one point.
In this case, Iµ(x) is defined everywhere.
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