
Polymorphic Functions with Set-Theoretic Types
Part 1: Syntax, Semantics, and Evaluation

Giuseppe Castagna1 Kim Nguyễn2 Zhiwu Xu1,3 Hyeonseung Im2 Sergueı̈ Lenglet4 Luca Padovani5
1CNRS, PPS, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France 2LRI, Université Paris-Sud, Orsay, France

3State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
4 LORIA, Université de Lorraine, Nancy, France 5Dipartimento di Informatica, Università di Torino, Italy

Abstract. This article is the first part of a two articles series about
a calculus with higher-order polymorphic functions, recursive types
with arrow and product type constructors and set-theoretic type
connectives (union, intersection, and negation). In this first part
we define and study the explicitly-typed version of the calculus in
which type instantiation is driven by explicit instantiation annota-
tions. In particular, we define an explicitly-typed λ-calculus with
intersection types and an efficient evaluation model for it. In the
second part, presented in a companion paper, we define a local
type inference system that allows the programmer to omit explicit
instantiation annotations, and a type reconstruction system that al-
lows the programmer to omit explicit type annotations. The work
presented in the two articles provides the theoretical foundations
and technical machinery needed to design and implement higher-
order polymorphic functional languages for semi-structured data.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism

Keywords Types, polymorphism, XML, intersection types

1. Introduction
The extensible markup language XML is a current standard for-
mat for exchanging structured data. Many recent XML processing
languages, such as XDuce [14], CDuce [2], XQuery [3], Ocaml-
Duce [11], XHaskell [17], XACT [15], are statically-typed func-
tional languages. However, parametric polymorphism, an essential
feature of such languages, is still missing, or when present it is in
a limited form (no higher-order functions, no polymorphism for
XML types, and so on). Polymorphism for XML has repeatedly
been requested to and discussed in various working groups of stan-
dards (eg, RELAX NG [7]) and higher-order functions have been
recently proposed in the W3C draft for XQuery 3.0 [10]. Despite
all this interest, spurs, and motivations, a comprehensive polymor-
phic type system for XML was still missing for the simple reason
that, until recently, it was deemed unfeasible. A major stumbling
block to this research —ie, the definition of a subtyping relation
for regular tree types with type variables— has been recently lifted
by Castagna and Xu [6], who defined and studied a polymorphic
subtyping relation for a type system with recursive, product, and
arrow types and set-theoretic type connectives (union, intersection,
and negation).

In this work we present the next logical step of that research, that
is, the definition of a higher-order functional language that takes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535840

full advantage of the new capabilities of Castagna and Xu’s system.
In other words, we define and study a calculus with higher-order
polymorphic functions and recursive types with union, intersection,
and negation connectives. The approach is thus general and, as
such, goes well beyond the simple application to XML processing
languages. As a matter of facts, our motivating example developed
all along this paper does not involve XML, but looks like a rather
classic display of functional programming specimens:

map :: (α -> β) -> [α] -> [β]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int -> Bool) ∧ ((α\Int) -> (α\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

The first function is the classic map function defined in Haskell (we
just used Greek letters to denote type variables). The second would
be an Haskell function were it not for two oddities: its type contains
type connectives (type intersection “∧” and type difference “\”);
and the pattern in the case expression is a type, meaning that it
matches all values returned by the matched expression that have
that type. So what does the even function do? It checks whether
its argument is an integer; if it is so it returns whether the integer
is even or not, otherwise it returns its argument as it received it
(although the definition ofeven may be considered weird, itis a
perfect minimal example to illustrate all the aspects of our system).

The goal of this work is to define a calculus and a type system
that can pass three tests. The first test is that it can define the two
functions above. The second, harder, test is that the type system
must be able to verify that these functions have the types declared
in their signatures. That map has the declared type will come as no
surprise (in practice, in the second part of this work we show that
in the absence of a signature given by the programmer the system
can reconstruct a type slightly more precise than this [5]). That
even was given an intersection type means that it must have all the
types that form the intersection. So it must be a function that when
applied to an integer it returns a Boolean and that when applied to
an argument of a type that does not contain any integer, it returns
a result of the same type. In other terms, even is a polymorphic
(dynamically bounded) overloaded function.

The third test, the hardest one, is that the type system must be
able to infer the type of the partial application of map to even, and
the inferred type must be equivalent to the following one1

map even :: ([Int] -> [Bool]) ∧
([α\Int] -> [α\Int]) ∧ (1)
([α∨Int] -> [(α\Int)∨Bool])

1 This type is redundant since the first type of the intersection is an instance
(eg, for α=Int) of the third. We included it for the sake of the presentation.

since map even returns a function that when applied to a list of
integers it returns a list of Booleans; when applied to a list that
does not contain any integer then it returns a list of the same type
(actually, the same list); and when it is applied to a list that may
contain some integers (eg, a list of reals), then it returns a list of the
same type, without the integers but with some Booleans instead (in
the case of reals, a list with Booleans and reals that are not integers).

Technically speaking, the definition of such a calculus and its
type system is difficult for two distinct reasons. First, for the reasons
we explain in the next section, it demands to define an explicitly
typed λ-calculus with intersection types, a task that, despite many
attempts in the last 20 years, still lacked a satisfactory definition.
Second, even if working with an explicitly typed setting may seem
simpler, the system needs to solve “local type inference”2, namely,
the problem of checking whether the types of a function and of
its argument can be made compatible and, if so, of inferring the
type of their result as we did for (1). The difficulty, once more,
mainly resides in the presence of the intersection types: a term can
be given different types either by subsumption (the term is coerced
into a super-type of its type) or by instantiation (the term is used as
a particular instance of its polymorphic type) and it is typed by
the intersection of all these types. Therefore, in this setting, the
problem is not just to find a substitution that unifies the domain
type of the function with the type of its argument but, rather, a set
of substitutions that produce instances whose intersections are in
the right subtyping relation: our map even example should already
have given a rough idea of how difficult this is.

The presentation of our work is split in two parts, accordingly:
in the first part (this paper) we show how to solve the problem of
defining an explicitly-typed λ-calculus with intersection types and
how to efficiently evaluate it; in the second part (the companion
paper [5]) we will show how to solve the problem of “local type
inference” for a calculus with intersection types. In the next section
we outline the various problems we met (focusing on those that
concern the part of the work presented in this paper) and how they
were solved.

2. Problems and overview of the solution
The driver of this work is the definition of an XML processing
functional language with high-order polymorphic functions, that is,
in particular, a polymorphic version of the language CDuce [2].

CDuce in a nutshell. The essence of CDuce is a λ-calculus with
pairs, explicitly-typed recursive functions, and a type-case expres-
sion. Types can be recursively defined and include the arrow and
product type constructors and the intersection, union, and negation
type connectives. In summary, they are the regular trees coinduc-
tively generated by the following productions:

t ::= b | t→ t | t× t | t ∧ t | t ∨ t | ¬t | 0 | 1 (2)
where b ranges over basic types (eg, Int, Bool) and 0 and 1
respectively denote the empty (that types no value) and top (that
types all values) types. We use possibly indexed meta-variables
s and t to range over types. Coinduction accounts for recursive
types. We use the standard convention that infix connectives have a
priority higher than constructors and lower than prefix connectives.

From a strictly practical viewpoint, recursive types, products,
and type connectives are used to encode regular tree types, which
subsume existing XML schema/types while, for what concerns ex-
pressions, the type-case is an abstraction of CDuce pattern match-

2 There are different definitions for local type inference. Here we use it
with the meaning of finding the type of an expression in which not all
type annotations are specified. This is the acceptation used in Scala where
type parameters for polymorphic methods can be omitted. In our specific
problem, we will omit —and, thus, infer— the annotations that specify how
function and argument types can be made compatible.

ing (this uses regular expression patterns on types to define pow-
erful and highly optimized capture primitives for XML data). We
initially focus on the functional core and disregard products and re-
cursive functions since the results presented here can be easily ex-
tended to them (we show it in the Appendix), though we will freely
use them for our examples. So we initially consider the following
“CoreCDuce” terms:

e ::= c | x | ee | λ∧i∈Isi→tix.e | e∈t ? e : e (3)
where c ranges over constants (eg, true, false, 1, 2, ...) which
are values of basic types (we use bc to denote the basic type of
the constant c); x ranges over expression variables; e∈t ? e1 : e2

denotes the type-case expression that evaluates either e1 or e2

according to whether the value returned by e (if any) is of type t
or not; λ∧i∈Isi→tix.e is a value of type ∧i∈Isi → ti that denotes
the function of parameter x and body e.

In this work we show how to define the polymorphic extension
of this calculus, which can then be easily extended to a full-fledged
polymorphic functional language for processing XML documents.
But before let us explain the two specificities of the terms in
(3), namely, why a type-case expression is included and why we
explicitly annotate whole λ-abstractions (with an intersection of
arrow types) rather than just their parameters.

The reason of inclusion of a type-case is twofold. First, a nat-
ural application of intersection types is to type overloaded func-
tions, and without a type-case only “coherent overloading” à la
Forsythe [21] can be defined (which, for example, precludes in
our setting the definition of a —non diverging— function of type,
say, (Int→Bool)∧ (Bool→Int)). The second motivation derives
from the way arrow types are interpreted in [6, 12]. In particular,
for any types s1, s2, t1, t2 the following containment is, in general,
strict:

s1 ∨ s2 → t1 ∧ t2 � (s1 → t1) ∧ (s2 → t2) (4)
so there is a function in the type on the right that is not in the
type of the left. Notice that from a typing viewpoint the functions
on the left do not distinguish inputs of s1 and s2 types, while
the ones on the right do. So the interpretation of types naturally
induces the definition of functions that can distinguish inputs of
two different types s1 and s2 whatever s1 and s2 are. Actually this
second motivation is just a different facet of the full-fledged vs.
only “coherent” overloading motivation, since the functions that are
in the difference of the two types in (4) are also those that make
the difference between coherent and non coherent overloading.
Both arguments, thus, advocate for “real” overloaded functions, that
execute different code according to the type of their input, whence
the need of type-case. Therefore our terms include a type-case.

The need of explicitly typed functions is a direct consequence
of the introduction of the type-case, because without explicit typing
we can run into paradoxes such as the following recursively defined
(constant) function

µf.λx.f∈(1→ Int) ? true : 42 (5)
This function has type 1→Int if and only if it does not have type
1→Int. In order to decide whether the function above is well-
typed or not, we must explicitly give a type to it. For instance,
the function in (5) is well-typed if it is explicitly assigned the type
1→ Int∨Bool. This shows both that functions must be explicitly
typed and that specifying not only the type of parameters but also
the type of the result is strictly more expressive, as more terms can
be typed. As a matter of fact, if we provide just the type of the
parameter x (not used in the body), then there is no type (apart
from the useless 0 type) that makes (5) typeable.

In summary, we need to define an explicitly typed language with
intersection types. This is a difficult problem for which no full-
fledged solution existed, yet: there exist only few intersection type
systems with explicitly typed terms, and none of them is completely

satisfactory (see Section 7 on related work). To give an idea of
why this is difficult, imagine we adopt for functions a Church-style
notation as λxt.e and consider the following “switch” function

λxt. (x∈Int ? true : 42) (6)
that when applied to an Int returns true and returns 42 oth-
erwise. Intuitively, we want to assign to this function the type
(Int→Bool) ∧ (¬Int→Int), the type of a function that when
applied to an Int, returns a Bool, and when applied to a value
which is not an Int, returns an Int. For the sake of presentation,
let us say that we are happy to deduce for the function above the
less precise type (Int→Bool) ∧ (Bool→Int) (which is a super-
type of the former since if a function maps anything that is not an
Int into an Int—it has type ¬Int→Int—, then in particular it
maps Booleans to integers —ie, it has also type Bool→Int). The
problem is to determine which type we should use for t in equa-
tion (6). If we use, say, Int∨Bool, then under the hypothesis that
x : Int∨Bool the type deduced for the body of the function is
Int∨Bool. So the best type we can give to the function in (6) is
Int∨Bool → Int∨Bool which is far less precise than the sought
intersection type, insofar as it does not make any distinction be-
tween arguments of type Int and those of type Bool.

The solution, which was introduced by CDuce, is to explicitly
type —by an intersection type— whole λ-abstractions instead of
just their parameters:

λ(Int→Bool)∧(Bool→Int)x . (x∈Int ? true : 42)

In doing so we also explicitly define the result type of functions
which, as we have just seen, increases the expressiveness of the
calculus. Thus the general form of λ-abstractions is, as stated by
the grammar in (3), λ∧i∈Isi→tix.e. Such a term is well typed if for
all i ∈ I from the hypothesis that x has type si it is possible to
deduce that e has type ti. Unfortunately, with polymorphic types,
this simple solution introduced by CDuce no longer suffices.
Polymorphic extension. The novelty of this work is to allow type
variables (ranged over by lower-case Greek letters: α, β, ...) to oc-
cur in the types in (2) and, thus, in the types labeling λ-abstractions
in (3). It becomes thus possible to define the polymorphic identity
function as λα→αx.x, while classic “auto-application” term can be
written as λ((α→β)∧α)→βx.xx. The intended meaning of using a
type variable, such as α, is that a (well-typed) λ-abstraction not
only has the type specified in its label (and by subsumption all its
super-types) but also all the types obtained by instantiating the type
variables occurring in the label. So λα→αx.x has not only type
α→α but also, for example, by subsumption the types 0→1 (the
type of all functions, which is a super-type of α→α) and ¬Int
(since every well-typed λ-abstraction is not an integer, then ¬Int
contains —ie, is a super-type of— all function types), and by in-
stantiation the types Int→Int, Bool→Bool, etc.

The use of instantiation in combination with intersection types
has nasty consequences, for if a term has two distinct types,
then it has also their intersection type (eg, λα→αx.x has type
(Int→Int) ∧ (Bool→Bool) ∧ ¬Int). In the monomorphic case
a term can have distinct types only by subsumption and, thus, inter-
section types are transparently assigned to terms via subsumption.
But in the polymorphic case this is no longer possible: a term can
be typed by the intersection of two distinct instances of its polymor-
phic type which, in general, are not in any subtyping relation with
the latter: for instance, α→α is neither a subtype of Int→Int nor
vice versa, since the subtyping relation must hold for all possible
instantiations of α and there are infinitely many instances of α→α
that are neither a subtype nor a super-type of Int→Int.
Explicit instantiation. Concretely, if we want to apply the poly-
morphic identity λα→αx.x to, say, 42, then the particular instance
obtained by the type-substitution {Int/α} (denoting the replace-
ment of every occurrence of α by Int) must be used, that is

(λInt→Intx.x)42. We have thus to relabel the type decorations of
λ-abstractions before applying them. In implicitly typed languages,
such as ML, the relabeling is meaningless (no type decoration is
used in terms) while in their explicitly-typed counterparts relabel-
ing can be seen as a logically meaningful but computationally use-
less operation, insofar as execution takes place on type erasures (ie,
the terms obtained by erasing all type decorations). In the presence
of type-case expressions, however, relabeling is necessary since the
label of a λ-abstraction determines its type: testing whether an ex-
pression has type, say, Int→Int should succeed for the application
of λα→α→αx.λα→αy.x to 42 and fail for its application to true.
In practice, we have that

(λα→α→αx.λα→αy.x)42∈Int→Int ? 0 : 1

must reduce to λInt→Inty.42∈Int→Int ? 0 : 1 and thus to 0,
while

(λα→α→αx.λα→αy.x)true∈Int→Int ? 0 : 1

must reduce to λBool→Booly.true∈Int→Int ? 0 : 1 and thus to
1. This means that, in Reynolds’ terminology, our terms have an
intrinsic meaning [22], that is to say, the semantics of a term
depends on its typing.

If we need to relabel some function, then it may be necessary
to relabel also its body as witnessed by the following “daffy” —
though well-typed— definition of the identity function:

(λα→αx.(λα→αy.x)x) (7)
If we want to apply this function to, say, 3, then we have first to
relabel it by applying the substitution {Int/α}. However, applying
the relabeling only to the outer “λ” does not suffice since the
application of (7) to 3 reduces to (λα→αy.3)3 which is not well-
typed (it is not possible to deduce the type α→α for λα→αy.3,
which is the constant function that always returns 3) although it is
the reductum of a well-typed application.3

The solution is to apply the relabeling also to the body of the
function. Here what “to relabel the body” means is straightforward:
apply the same type-substitution {Int/α} to the body. This yields a
reductum (λInt→Inty.3)3 which is well typed. In general, however,
the way to perform a relabeling of the body of a function is not so
straightforward and clearly defined, since two different problems
may arise: (i) it may be necessary to apply more than a single
type-substitution and (ii) the relabeling of the body may depend
on the dynamic type of the actual argument of the function (both
problems are better known as —or are instances of— the problem
of determining expansions for intersection type systems [8]). Next,
we discuss each problem in detail.
Multiple substitutions. First of all, notice that we may need to re-
label/instantiate functions not only when they are applied but also
when they are used as arguments. For instance, consider a func-
tion that expects arguments of type Int→Int. It is clear that we
can apply it to the identity function λα→αx.x, since the iden-
tity function has type Int→Int (feed it by an integer and it will
return an integer). Before, though, we have to relabel the latter
by the substitution {Int/α} yielding λInt→Intx.x. As the identity
λα→αx.x has type Int→Int, so it has type Bool→Bool and,
therefore, the intersection of the two: (Int→Int)∧(Bool→Bool).
So we can apply a function that expects an argument of this inter-
section type to our identity function. The problem is now how to
relabel λα→αx.x. Intuitively, we have to apply two distinct type-
substitutions {Int/α} and {Bool/α} to the label of the λ-abstraction

3 By convention a type variable is introduced by the outermost λ in which
it occurs and this λ implicitly binds all inner occurrences of the variable.
For instance, all the α’s in the term (7) are the same while in a term
such as (λα→αx.x)(λα→αx.x) the variables in the function are distinct
from those in its argument and, thus, can be α-converted separately, as
(λγ→γx.x)(λδ→δx.x).

and replace it by the intersection of the two instances. This cor-
responds to relabel the polymorphic identity from λα→αx.x into
λ(Int→Int)∧(Bool→Bool)x.x. This is the solution adopted by this
work, where we manipulate sets of type-substitutions —delimited
by square brackets. The application of such a set (eg, in the previous
example [{Int/α}, {Bool/α}]) to a type t returns the intersection of
all types obtained by applying each substitution in the set to t (eg,
in the example t{Int/α} ∧ t{Bool/α}). Thus the first problem has
an easy solution.
Relabeling of function bodies. The second problem is much harder
and concerns the relabeling of the body of a function. While the
naive solution consisting of propagating the application of type-
substitutions to the bodies of functions works for single type-
substitutions, in general, it fails for sets of type-substitutions. This
can be seen by considering the relabeling via the set of type-
substitutions [{Int/α}, {Bool/α}] of the daffy function in (7). If
we apply the naive solution, this yields

(λ(Int→Int)∧(Bool→Bool)x.(λ(Int→Int)∧(Bool→Bool)y.x)x) (8)
which is not well typed. That this term is not well typed is clear
if we try applying it to, say, 3: the application of a function of
type (Int→Int)∧(Bool→Bool) to an Int should have type Int,
but here it reduces to (λ(Int→Int)∧(Bool→Bool)y.3)3, and there is no
way to deduce the intersection type (Int→Int) ∧ (Bool→Bool)
for the constant function λy.3. But we can also directly verify
that it is not well typed, by trying typing the function in (8).
This corresponds to prove that under the hypothesis x : Int the
term (λ(Int→Int)∧(Bool→Bool)y.x)x has type Int, and that under
the hypothesis x : Bool this same term has type Bool. Both
checks fail because, in both cases, λ(Int→Int)∧(Bool→Bool)y.x is ill-
typed (it neither has type Int→Int when x:Bool, nor has it type
Bool→Bool when x:Int). This example shows that in order to
ensure that relabeling yields well-typed terms, the relabeling of the
body must change according to the type of the value the parameter
x is bound to. More precisely, (λα→αy.x) should be relabeled as
λInt→Inty.xwhen x is of type Int, and as λBool→Booly.xwhen x is
of type Bool. An example of this same problem less artificial than
our daffy function is given by the classic apply function λf.λx.fx
which, with our polymorphic type annotations, is written as:

λ(α→β)→α→βf.λα→βx.fx (9)
The apply function in (9) has type (Int→Int)→Int→Int,
obtained by instantiating its type annotation by the substitution
{Int/α, Int/β}, as well as type (Bool→Bool)→Bool→Bool, ob-
tained by the substitution {Bool/α, Bool/β}. If we want to feed this
function to another function that expects arguments whose type is
the intersections of these two types, then we have to relabel it by us-
ing the set of type-substitutions [{Int/α, Int/β}, {Bool/α, Bool/β}].
But, once more, it is easy to verify that the naive solution that con-
sists in propagating the application of the set of type-substitutions
down to the body of the function yields an ill-typed expression.

This second problem is the showstopper for the definition of
an explicitly typed λ-calculus with intersection types. Most of the
solutions found in the literature [4, 16, 23, 26] rely on the dupli-
cation of lambda terms and/or typing derivations, while other cal-
culi such as [27] that aim at avoiding such duplication obtain it by
adding new expressions and new syntax for types (see related work
in Section 7); but none of them is able to produce an explicitly-
typed λ-calculus with intersection types, as we do, by just adding
annotations to λ-abstractions.
Our solution. Here we introduce a new technique that consists in
performing a “lazy” relabeling of the bodies. This is obtained by
decorating λ-abstractions by (sets of) type-substitutions. For exam-
ple, in order to pass our daffy identity function (7) to a function that
expects arguments of type (Int→Int) ∧ (Bool→Bool), we first

“lazily” relabel it as follows:
(λα→α[{Int/α},{Bool/α}]x.(λ

α→αy.x)x). (10)
The new annotation in the outer “λ” indicates that the function must
be relabeled and, therefore, that we are using the particular instance
whose type is the one in the interface (ie, α→α) to which we apply
the set of type-substitutions. The relabeling will be actually prop-
agated to the body of the function at the moment of the reduction,
only if and when the function is applied (relabeling is thus lazy).
However, the new annotation is statically used by the type system to
check soundness. Notice that, unlike existing solutions, we preserve
the structure of λ-terms (at the expenses of some extra annotation
that is propagated during the reduction) which is of the uttermost
importance in a language-oriented study.

In this paper we focus on the study of the calculus with these
“lazy” type-substitutions annotations. We temporarily avoid the
problem of local type inference by defining a calculus with explicit
sets of type substitutions: expressions will be explicitly annotated
with appropriate sets of type-substitutions.
Polymorphic CDuce. From a practical point of view, however,
it is important to stress that, at the end, these annotations will
be invisible to the programmer and, as we show in the second
part presented in the companion paper [5], all the necessary type-
substitutions will be inferred statically. In practice, the programmer
will program in the language defined by grammar (3), but where
the types that annotate λ’s may contain type variables, that is, the
polymorphic version of CDuce. The problem of inferring explicit
sets of type-substitutions to annotate the polymorphic version of
the expressions in (3) is the topic of the second part of this work
presented in the companion paper [5]. For the time being, simply
notice that the language defined by (3) and extended with type
variables passes our first test inasmuch as the even function can
be defined as follows (where s\t is syntactic sugar for s∧¬t):
λ(Int→Bool)∧(α\Int→α\Int)x . x∈Int ? (x mod 2) = 0 :x (11)

while —with the products and recursive functions described in the
Appendix— map is defined as (see also discussion in Appendix E)

µm(α→β)→[α]→[β] f =
λ[α]→[β]` . `∈nil ? nil : (f(π1`),mf(π2`))

(12)
where the type nil tested in the type-case denotes the singleton
type that contains just the constant nil, and [α] denotes the regu-
lar type that is the (least) solution of X = (α,X) ∨ nil.

When fed by any expression of this language, the type infer-
ence system defined in the companion paper [5] will infer sets of
type-substitutions and insert them into the expression to make it
well typed (if possible, of course). For example, for the application
(of the terms defining) map to even, the inference system of the
companion paper [5] infers the following set of type-substitutions
[{(α\Int)/α, (α\Int)/β}, {α∨Int/α, (α\Int)∨Bool/β}] and textu-
ally inserts it between the two terms (so that the type-substitutions
apply to the type variables of map) yielding the typing in (1). Fi-
nally, as we explain in Section 5.3 later on, the compiler will com-
pile the expression into an expression of an intermediate language
that can be evaluated as efficiently as the monomorphic calculus.
Outline. The rest of the presentation proceeds as follows. In
Section 3 we define and study our calculus with explicit type-
substitutions: we define its syntax, its operational semantics, and
its type system; we prove that the type system is sound and sub-
sumes classic intersection type systems. In Section 4 we define
an algorithm for type inference and prove that it is sound, com-
plete, and terminating. In Section 5 we show that the addition of
type-substitutions has in practice no impact on the efficiency of the
evaluation since the calculus can be compiled into an intermedi-
ate language that executes as efficiently as monomorphic CDuce.

Section 7 presents related work and in Section 8 we conclude our
presentation.

In the rest of the presentation we will focus on the intuition and
try to avoid as many technical details as possible. We dot the i’s
and cross the t’s in the Appendix, where all formal definitions and
complete proofs of properties can be found (n.b.: references in the
text starting by capital letters —eg, Definition A.7— refer to this
appendix). All these as well as other details can also be found in the
third author’s PhD thesis manuscript [28].
Contributions. The overall contribution of our work is the def-
inition of a statically-typed core language with (i) polymorphic
higher-order functions for a type system with recursive types and
union, intersection, and negation type connectives, (ii) an efficient
evaluation model, (iii) local type inference for application, and
(iv) a limited form of type reconstruction.

The main contribution of this first part of the work is the defini-
tion of an explicitly-typed λ-calculus (actually, a family of calculi)
with intersection (and union and negation) types and of its efficient
evaluation via the compilation into an intermediate language. From
a syntactic viewpoint our solution is a minimal extension since it
just requires to add annotations to λ-abstractions of the untyped
λ-calculus (cf. Section 3.5). Although this problem has been stud-
ied for over 20 years, no existing solution proposes such a minimal
extension, which is of paramount importance in a programming
language-oriented study (see related works in Section 7).

The technical contributions are the definition of an explicitly
typed calculus with intersection types; the proof that it subsumes
existing intersection type systems; the soundness of its type system,
the definition of a sound, complete and terminating algorithm for
type inference (which as byproduct yields an intersection type proof
system satisfying the Curry-Howard isomorphism); the definition
of a compilation technique into an intermediate language that can
be evaluated as efficiently as the monomorphic one; its extension
to the so called let-polymorphism and the proof of the adequacy
of the compilation. Local type inference for application and type
reconstruction are studied in the second part of this work presented
in the companion paper [5].

3. A calculus with explicit type-substitutions
The types of the calculus are those in the grammar (2) to which
we add type variables (ranged over by α) and, for the sake of
presentation, stripped of product types. In summary, types are the
regular trees coinductively generated by

t ::= α | b | t→ t | t ∧ t | t ∨ t | ¬t | 0 | 1 (13)
and such that every infinite branch contains infinitely many occur-
rences of type constructors. We use T to denote the set of all types.
The condition on infinite branches bars out ill-formed types such
as t = t ∨ t (which does not carry any information about the
set denoted by the type) or t = ¬t (which cannot represent any
set). It also ensures that the binary relation B ⊆ T 2 defined by
t1 ∨ t2 B ti, t1 ∧ t2 B ti, ¬t B t is Noetherian (that is, strongly
normalizing). This gives an induction principle on T that we will
use without any further explicit reference to the relation. We use
var(t) to denote the set of type variables occurring in a type t (see
Definition A.2). A type t is said to be ground or closed if and only
if var(t) is empty.

The subtyping relation for the types in T is the one defined
by Castagna and Xu [6]. For this work it suffices to consider that
ground types are interpreted as sets of values (n.b., just values, not
expressions) that have that type and subtyping is set containment
(ie, a ground type s is a subtype of a ground type t if and only if t
contains all the values of type s). In particular, s→t contains all λ-
abstractions that when applied to a value of type s, if they return a
result, then this result is of type t (so 0→1 is the set of all functions

and 1→0 is the set of functions that diverge on all arguments).
Type connectives (union, intersection, negation) are interpreted
as the corresponding set-theoretic operators and subtyping is set
containment. For what concerns non-ground types (ie, types with
variables occurring in them) all the reader needs to know for this
work is that the subtyping relation of Castagna and Xu is preserved
by type-substitutions. Namely, if s ≤ t, then sσ ≤ tσ for every
type-substitution σ (the converse does not hold in general, while
it holds for semantic type-substitutions in convex models: see [6]).
Two types are equivalent if they denote the same set of values, that
is, if they are subtype one of each other (type equivalence is denoted
by '). An important property of this system we will often use is
that every type is equivalent to (and can be effectively transformed
into) a type in disjunctive normal form, that is, a union of uniform
intersections of literals. A literal is either an arrow, or a basic type,
or a type variable, or their negations. An intersection is uniform
if all the literals have the same constructor, that is, either it is an
intersection of arrows, type variables, and their negations or it is
an intersection of basic types, type variables, and their negations.
In summary, a disjunctive normal form is a union of summands
whose form is either∧

p∈P

bp ∧
∧
n∈N

¬bn ∧
∧
q∈P ′

αq ∧
∧
r∈N′

¬αr (14)

or ∧
p∈P

(sp→tp) ∧
∧
n∈N

¬(sn→tn) ∧
∧
q∈P ′

αq ∧
∧
r∈N′

¬αr (15)

When either P ′ or N ′ is not empty, we call the variables αq’s and
αr’s the top-level variables of the normal form.

3.1 Expressions
Expressions are derived from those of CoreCDuce (with type
variables in types) with the addition that sets of explicit type-
substitutions (ranged over by [σj]j∈J) may be applied to terms
and decorate λ-abstractions
e ::= c | x | ee | λ∧i∈Isi→ti[σj]j∈J

x.e | e∈t ? e : e | e[σj]j∈J (16)

and with the restriction that the type tested in type-case expressions
is closed. Henceforth, given a λ-abstraction λ

∧i∈Isi→ti
[σj]j∈J

x.e we
call the type

∧
i∈I si→ti the interface of the function and the set

of type-substitutions [σj]j∈J the decoration of the function. We
write λ∧i∈I ti→six.e for short when the decoration is a singleton
containing the empty substitution. Let e be an expression. We use
fv(e) and bv(e) respectively to denote the sets of free expression
variables and bound expressions variables of the expression e; we
use tv(e) to denote the set of type variables occurring in e (see
Definition A.8).

As customary, we assume bound expression variables to be pair-
wise distinct and distinct from any free expression variable occur-
ring in the expressions under consideration. We equate expressions
up to the α-renaming of their bound expression variables. In partic-
ular, when substituting an expression e for a variable y in an expres-
sion e′ (see Definition A.10), we assume that the bound variables
of e′ are distinct from the bound and free variables of e, to avoid
unwanted captures. For example, (λα→αx.x)y is α-equivalent to
(λα→αz.z)y.

The situation is a bit more complex for type variables, as we do
not have an explicit binder for them. Intuitively, a type variable can
be α-converted if it is a polymorphic one, that is, if it can be instan-
tiated. For example, (λα→αx.x)y is α-equivalent to (λβ→βx.x)y,
and (λα→α

[{Int/α}]
x.x)y is α-equivalent to (λβ→β

[{Int/β}]
x.x)y. Poly-

morphic variables can be bound by interfaces, but also by dec-
orations: for example, in λβ→β[{α/β}]

x.(λα→αy.y)x, the α occur-
ring in the interface of the inner abstraction is “bound” by the
decoration [{α/β}], and the whole expression is α-equivalent to

(subsum)
∆ ; Γ ` e : t1 t1≤t2

∆ ; Γ ` e : t2

(appl)
∆ ; Γ ` e1 : t1→t2 ∆ ; Γ ` e2 : t1

∆ ; Γ ` e1e2 : t2

(abstr)
∆ ∪ var(∧i∈I,j∈J tiσj→siσj) ; Γ, (x : tiσj) ` e@[σj] : siσj

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e :

∧
i∈I,j∈J

tiσj → siσj

i ∈ I
j ∈ J

(var)

∆ ; Γ ` x : Γ(x)

(case)

∆ ; Γ ` e : t′
{
t′ 6≤ ¬t ⇒ ∆ ; Γ ` e1 : s
t′ 6≤ t ⇒ ∆ ; Γ ` e2 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s

(inst)
∆ ; Γ ` e : t σ] ∆

∆ ; Γ ` e[σ] : tσ

(inter)
∀j ∈ J. ∆ ; Γ ` e[σj] : tj

∆ ; Γ ` e[σj]j∈J :
∧
j∈J

tj
|J | > 1

Figure 1. Static semantics

(λβ→β[{γ/β}]
x.(λγ→γy.y)x). If a type variable is bound by an outer

abstraction, it cannot be instantiated; such a variable is called
monomorphic. For example, the following expression

λ(α→α)→(α→α)y.((λα→αx.x)[{Int/α}]y)
is not sound (ie, it cannot be typed), because α is bound at the
level of the outer abstraction, not at level of the inner one. Con-
sequently, in this expression, α is monomorphic for the inner ab-
straction, but polymorphic for the outer one (strictly speaking, thus,
the monomorphic and polymorphic adjectives apply to occurrences
of variables rather than variables themselves). Monomorphic type
variables cannot be α-converted: λ(α→α)→(α→α)y.(λα→αx.x)y
is not α-equivalent to λ(α→α)→(α→α)y.(λβ→βx.x)y (but it is α-
equivalent to λ(β→β)→(β→β)y.(λβ→βx.x)y). Note that the scope
of polymorphic variables may include some type-substitutions
[σi]i∈I : for example, ((λα→αx.x)y)[Int/α] is α-equivalent to
((λβ→βx.x)y)[Int/β]. Finally, we have to be careful when per-
forming expression substitutions and type-substitutions to avoid
clashes of polymorphic variable namespaces. For example, substi-
tuting λα→αz.z for y in λα→αx.x y would lead to an unwanted
capture of α (assuming α is polymorphic, that is, not bound by a
λ-abstraction placed above these two expressions), so we have to
α-convert one of them, so that the result of the substitution is, for
instance, λα→αx.x (λβ→βz.z).

To resume, we assume polymorphic variables to be pairwise
distinct and distinct from any monomorphic variable in the expres-
sions under consideration. We equate expressions up to α-renaming
of their polymorphic variables. In particular, when substituting an
expression e′ for a variable x in an expression e, we suppose the
polymorphic type variables of e to be distinct from the monomor-
phic and polymorphic type variables of e′ thus avoiding unwanted
captures. Detailed definitions are given in Appendix A.2.

In order to define both static and dynamic semantics for the
expressions above, we need to define the relabeling operation “@”
which takes an expression e and a set of type-substitutions [σj]j∈J
and pushes [σj]j∈J to all outermost λ-abstractions occurring in
e (and collects and composes with the sets of type-substitutions
it meets). Precisely, e@[σj]j∈J is defined for λ-abstractions and
(inductively) for applications of type-substitutions as:

(λ
∧i∈I ti→si
[σk]k∈K

x.e)@[σj]j∈J
def
= λ

∧i∈I ti→si
[σj]j∈J◦[σk]k∈K

x.e

(e[σi]i∈I)@[σj]j∈J
def
= e@([σj]j∈J ◦ [σi]i∈I)

where ◦ denotes the pairwise composition of all substitutions of the
two sets (see Definition 3.1). It erases the set of type-substitutions
when e is a variable and it is homomorphically applied on the
remaining expressions (see Definition A.11).

Formally the composition of two sets of type-substitutions is
defined as follows:

Definition 3.1. Given two sets of type-substitutions [σi]i∈I and
[σj]j∈J , we define their composition as

[σi]i∈I ◦ [σj]j∈J = [σi ◦ σj]i∈I,j∈J

where

σi ◦ σj(α) =


(σj(α))σi if α ∈ dom(σj)

σi(α) if α ∈ dom(σi) \ dom(σj)

α otherwise

Next, we formally define the relabeling of an expression e with
a set of type substitutions [σj]j∈J , which consists in propagating
the σj to the λ-abstractions in e if needed. We suppose that the
polymorphic type variables in e are distinct from the type variables
in the range of σj (this is always possible by using α-conversion).

Definition 3.2 (Relabeling). Given an expression e and a set
of type-substitutions [σj]j∈J , we define the relabeling of e with
[σj]j∈J , written e@[σj]j∈J , as e if tv(e) ∩

⋃
j∈J dom(σj) = ∅,

and otherwise as follows:
(e1 e2)@[σj]j∈J = (e1@[σj]j∈J) (e2@[σj]j∈J)

(e∈t ? e1 : e2)@[σj]j∈J = e@[σj]j∈J∈t ? e1@[σj]j∈J : e2@[σj]j∈J
(e[σi]i∈I)@[σj]j∈J = e@([σj]j∈J ◦ [σi]i∈I)

(λ
∧i∈I ti→si
[σk]k∈K

x.e)@[σj]j∈J = λ
∧i∈I ti→si
[σj]j∈J◦[σk]k∈K

x.e

The substitutions are not propagated if they do not affect the
variables of e (ie, if tv(e) ∩

⋃
j∈J dom(σj) = ∅). In particular,

constants and variables are left unchanged, as they do not contain
any type variable.

3.2 Operational semantics
The dynamic semantics is given by the following three notions of
reduction (where v ranges over values, that is, constants and λ-
abstractions), applied by a leftmost-outermost strategy:

e[σj]j∈J e@[σj]j∈J (17)

(λ
∧i∈I ti→si
[σj]j∈J

x.e)v (e@[σj]j∈P){v/x} (18)

v∈t ? e1 : e2
{
e1 if ` v : t
e2 otherwise (19)

where in (18) we have P def
= {j∈J | ∃i∈I,` v : tiσj}.

The first rule (17) performs relabeling, that is, it propagates
the sets of type-substitutions down into the decorations of the
outermost λ-abstractions. The second rule (18) states the semantics
of applications: this is standard call-by-value β-reduction, with the
difference that the substitution of the argument for the parameter
is performed on the relabeled body of the function. Notice that
relabeling depends on the type of the argument and keeps only
those substitutions that make the type of the argument v match
(at least one of) the input types defined in the interface of the
function (ie, the set P which contains all substitutions σj such that
the argument v has type tiσj for some i in I: the type system
will ensure that P is never empty). For instance, take the daffy
identity function, instantiate it as in (10) by both Int and Bool, and
apply it to 42 —ie, (λα→α[{Int/α},{Bool/α}]x.(λ

α→αy.x)x)42—, then it
reduces to (λα→α[{Int/α}]y.42)42, (which is observationally equivalent
to (λInt→Inty.42)42) since the reduction discards the {Bool/α}

substitution. Finally, the third rule (19) checks whether the value
returned by the expression in the type-case matches the specified
type and selects the branch accordingly.

The reader may think that defining a functional language in
which each β-reduction must perform an involved relabeling op-
eration, theoretically interesting though it may be, will result in
practice too costly and therefore unrealistic. This is not so. In Sec-
tion 5 we show that this reduction can be implemented as effi-
ciently as in CDuce. By a smart definition of closures it is pos-
sible to compute relabeling in a lazy way and materialize it only
in a very specific case for the reduction of the type-case (ie, to
perform a type-case reduction (19) where the value v is a func-
tion whose interface contains monomorphic type variables and it
is the result of the partial application of a polymorphic function)
while all other reductions for applications can be implemented as
plain classic β-reduction. For instance, to evaluate the expressions
(λα→α[{Int/α},{Bool/α}]x.(λ

α→αy.x)x)42 above, we can completely dis-
regard all type annotations and decorations and perform a couple
of standard β reductions that yield the result 42.

3.3 Type system
As expected in a calculus with a type-case expression, the dynamic
semantics depends on the static semantics —precisely, on the typ-
ing of values. The static semantics of our calculus is defined in
Figure 1. The judgments are of the form ∆ ; Γ ` e : t, where e is
an expression, t a type, Γ a type environment (ie, a finite mapping
from expression variables to types), and ∆ a finite set of type vari-
ables. The latter is the set of all monomorphic type variables, that
is, the variables that occur in the type of some outer λ-abstraction
and, as such, cannot be instantiated; it must contain all the type
variables occurring in Γ.

The rules for application and subsumption are standard. In the
latter, the subtyping relation is the one defined in [6]. We just
omitted the rule for constants (which states that c has type bc).

The rule for abstractions applies each substitution specified in
the decoration to each arrow type in the interface, adds all the
variables occurring in these types to the set of monomorphic type
variables ∆, and checks whether the function has all the resulting
types. Namely, it checks that for every possible input type, the
(relabeled) body has the corresponding output type. To that end,
it applies each substitution σj in the decoration to each input type
ti of the interface and checks that, under the hypothesis that x has
type tiσj , the function body relabeled with the substitution σj at
issue has type siσj (notice that all these checks are performed
under the same updated set of monomorphic type variables, that
is, ∆ ∪ var(∧i∈I,j∈J tiσj→siσj)). If the test succeeds, then the
rule infers for the function the type obtained by applying the set
of substitutions of the decoration to the type of the interface. For
example, in the case of the instance of the daffy identity function
given in (10), the ∆ is always empty and the rule checks whether
under the hypothesis x : α{Int/α} (ie, x : Int), it is possible
to deduce that (λα→αy.x)x@[{Int/α}] has type α{Int/α} (ie,
that (λInt→Inty.x)x : Int), and similarly for the substitution
{Bool/α}. The type deduced for the function is then (Int →
Int)∧(Bool→ Bool). The relabeling of the body in the premises
of the rule (abstr) is a key mechanism of the type system: had we
used e[σj] instead of e@[σj] in the premises of the (abstr) rule,
the expression (10) could not be typed. The reason is that e[σj] is
more demanding on typing than e@[σj], since the well typing of e
is necessary to the well-typing of the former but not to that of the
latter. Indeed while under the hypothesis x : Int we just showed
that ((λα→αy.x)x)@[{Int/α}] —ie, ((λInt→Inty.x)x)— is well-
typed, the term ((λα→αy.x)x)[{Int/α}] is not, for (λα→αy.x)
does not have type α→α. The rule for abstractions also justifies
the need for an explicit set ∆ for monomorphic type variables

while, for instance, in ML it suffices to consider monomorphic type
variables that occur in the image of Γ [20]: when checking an arrow
of the interface of a function, the variables occurring in the other
arrows must be considered monomorphic, too.

To type the applications of a set of type-substitutions to an ex-
pression, two different rules are used according to whether the set
contains one or more than one substitution. When a single substi-
tution is specified, the rule (inst) instantiates the type according to
the specified substitution, provided that σ does not substitute vari-
ables in ∆ (ie, dom(σ) ∩ ∆ = ∅, noted σ]∆). This condition is
necessary to the soundness of the system. Without it an expression
such as λ(α→β)x.x[{β/α}] could be typed as follows:

{α, β} ;{(x : α)} ` x : α

{α, β} ;{(x : α)} ` x[{β/α}] : β

` λ(α→β)x.x[{β/α}] : α→ β

which is unsound (by applying the above functions to any value it
is possible to create polymorphic values of type β, for every β). If
more than one substitution is specified, then the rule (inter) com-
poses them by an intersection. Notice that the type system com-
poses by intersection only different types of a same term obtained
by instantiation. This is not restrictive since different types obtained
by subsumption can be composed by intersection by applying just
subsumption (see Lemma B.2).

Finally, the (case) rule first infers the type t′ of the expression
whose type is tested. Then the type of each branch ei is checked
only if there is a chance that the branch can be selected. Here the
use of “6≤” is subtle but crucial (it allows us to existentially quantify
over type-substitutions). The branch, say, e1 can be selected (and
therefore its well-typedness must be checked) only if e can return
a value that is in t. But in order to cover all possible cases we
must also consider the case in which the type of e is instantiated
as a consequence of an outer application. A typical usage pattern
(followed also by our even function) is λα→...x. x∈Int ? e1 : e2:
the branch e1 is selected only if the function is applied to a value
of type Int, that is, if the type α of x is instantiated to Int (notice
that when typing the body of the function ∆ contains only α). More
generally, the branch e1 in e∈t ? e1 : e2 can be selected only if e
can return a value in t, that is to say, if there exists a substitution
σ for any type variables even those in ∆ such as the intersection
of t′σ and t is not empty (t is a closed, so tσ = t). Therefore,
in order to achieve maximum precision the rule (case) must check
∆ ; Γ ` e1 : s only if there exists σ such that t′σ∧t 6= 0. Since
t′≤ ¬t (strictly) implies that for all substitutions σ, t′σ≤¬t (recall
that t is a closed type), then by the contrapositive the existence
of a substitution σ such that t′σ 6≤ ¬t implies t′ 6≤¬t. The latter is
equivalent to t′∧ t 6= 0: the intersection of t and t′ is not empty.
So we slightly over-approximate the test of selection and check the
type of e1 under the weaker hypothesis t′∧t 6= 0 which ensures that
the typing will hold also under the stronger (and sought) hypothesis
that there exists σ such that t′σ∧ t 6= 0 (the difference only matters
with some specific cases involving indivisible types: see [6]).

Notice that explicit type-substitutions are only needed to type
applications of polymorphic functions. Since no such application
occurs in the bodies of map and even as defined in Section 2 (the
m and f inside the body of map are abstracted variables and, thus,
have monomorphic types), then they can be typed by this system
as they are (as long as they are not applied one to the other there
is no need to infer any set of type-substitutions). So we can al-
ready see that our language passes the second test, namely, that map
and even have the types declared in their signatures. Let us detail
just the most interesting case, that is, the typing of the term even
defined in equation (11) (even though the typing of the type-case
in (12), the term defining map, is interesting, as well). According to

the rule (abstr) we have to check that under the hypothesis x:Int
the expression x∈Int ? (x mod 2) = 0 :x has type Bool, and
that under the hypothesis x :α\Int the same expression has type
α\Int. So we have two distinct applications of the (case) rule. In
one x is of type Int, thus the check Int 6≤ Int fails, and therefore
only the first branch, (x mod 2) = 0, is type checked (the sec-
ond is skipped). Since under the hypothesis x : Int the expression
(x mod 2) = 0 has type Bool, then so has the whole type-case
expression. In the other application of (case), x is of type α\Int,
so the test α\Int 6≤ ¬Int clearly fails, and only the second branch
is checked (the first is skipped). Since this second branch is x, then
the whole type-case expression has type α\Int, as expected. This
example shows two important aspects of our typing rules. First, it
shows the importance of ∆ to record monomorphic variables, since
it may contain some variables that do not occur in Γ. For instance,
when typing the first branch of even, the type environment con-
tains only x : Int but ∆ is {α} and this forbids to consider α as
polymorphic (if we allowed to instantiate any variable that does not
occur in Γ, then the term obtained from the even function (11) by
replacing the first branch by (λα→αy.y)[{Bool/α}]true would be
well-typed, which is wrong since α is monomorphic in the body of
even). Second, this example shows why if in some application of
the (case) rule a branch is not checked, then the type checking of
the whole type-case expression must not necessarily fail: the well-
typing of this branch may be checked under different hypothesis
(typically when occurring in the body of an overloaded function).4

The reader can refer to Section 3.3 of [12] for a more detailed dis-
cussion on this point.

We conclude the presentation of the type system with two ob-
servations.

First, we said at the beginning that we consider only judgments
∆ ; Γ ` e : t where the type variables occurring in Γ are contained
in ∆. The intuition is that the types in Γ are the types of the formal
parameters of some outer functions and therefore any type variable
occurring in them must be considered monomorphic —ie, must be
contained in ∆. Without such a requirement it would be possible to
have a derivation such as the following one:

{α} ;(x : β) ` x : β {γ/β}] {α}
{α} ;(x : β) ` x[{γ/β}] : γ

which states that by assuming that x has (any) type β, we can infer
that it has also (any other) type γ, which is unsound. The condition
var(Γ) ⊆ ∆ is preserved by the typing rules (see Lemma B.1) and
we always start with Γ and ∆ satisfying the condition (typically,
when we type a closed expression we start by ∆ = Γ = ∅),
therefore, henceforth, we implicitly assume the condition var(Γ) ⊆
∆ to hold in all judgments we consider.

Second, the rule (subsum) makes the type system dependent
on the subtyping relation ≤ defined in [6]. It is important not to
confuse the subtyping relation ≤ of our system, which denotes
semantic subtyping (ie, set-theoretic inclusion of denotations), with
the one typically used in the type reconstruction systems for ML,
which stands for type variable instantiation. For example, in ML we
have α → α ≤ Int → Int (because Int → Int is an instance
of α → α). But this is not true in our system, as the relation must
hold for every possible instantiation of α, thus in particular for α
equal to Bool. In the companion paper [5] we define the preorder
v∆ which includes the type variable instantiation of the preorder
typically used for ML, so any direct comparison with constraint

4 From a programming language point of view it is important to check
that during type checking every branch of a given type-case expression
is checked —ie, it can be selected— at least once. This corresponds to
checking the absence of redundant cases in pattern matching. We omitted
this check since it is not necessary for formal development.

systems for ML types should focus on v∆ rather than ≤ and it can
be found in the companion paper [5].

3.4 Type soundness
Subject reduction and progress properties hold for this system.

Theorem 3.3 (Subject Reduction). For every term e and type t, if
Γ ` e : t and e e′, then Γ ` e′ : t.

Theorem 3.4 (Progress). Let e be a well-typed closed term. If e is
not a value, then there exists a term e′ such that e e′.

The proofs of both theorems, though unsurprising, are rather
long and technical and can be found in Appendix B.2. They allow
us to conclude that the type system is sound.

Corollary 3.5 (Type soundness). Let e be a well-typed closed
expression, that is, ` e : t for some t. Then either e diverges or
it returns a value of type t.

3.5 Expressing intersection type systems
We can now state the first stand-alone theoretical contribution of
our work. Consider the sub-calculus of our calculus in which type-
substitutions occur only in decorations and without constants and
type-case expressions, that is,

e ::= x | ee | λ∧i∈Isi→ti[σj]j∈J
x.e (20)

and whose types are inductively produced by the grammar
t ::= α | t→ t | t ∧ t

This calculus is closed with respect to β-reduction as defined by
the reduction rule (18) (without type-cases, union and negation
types are not needed). It constitutes an explicitly-typed λ-calculus
with intersection types whose expressive power subsumes that of
classic intersection type systems (without an universal element ω,
of course), as expressed by the following theorem.

Theorem 3.6. Let `BCD denote provability in the Barendregt,
Coppo, and Dezani system [1], and dee be the pure λ-calculus
term obtained from e by erasing all types occurring in it.

If `BCD m : t, then ∃e such that ` e : t and dee = m.

Therefore, this sub-calculus solves a longstanding open problem,
that is the definition of explicit type annotations for λ-terms in in-
tersection type systems, without any further syntactic modification.
See Section 7 on related work for an extensive comparison.

The proof of Theorem 3.6 is constructive (cf., Appendix B.3).
Therefore we can transpose decidability results of intersection
type systems to our system. In particular, type reconstruction5

for the subcalculus (20) is undecidable and this implies the un-
decidability of type reconstruction for the whole calculus without
recursive types (with recursive types type reconstruction is triv-
ially decidable since every λ-term can be typed by the recursive
type µX.(X→X)∨∗). In Section 4 we prove that type inference
for our system is decidable. The problem of reconstructing type-
substitutions (ie, given a term of grammar (3), deciding whether it
is possible to add sets of type-substitutions in it so that it becomes
a well-typed term of our calculus) is dealt with in the companion
paper [5].

3.6 Elimination of sets of type-substitutions
To compare with existing intersection type systems, the calculus
in (20) includes neither type-cases nor expressions of the form

5 We recall that type reconstruction is the problem of finding whether there
exists a type-annotation that makes a given expression well-typed; type
inference is the problem of checking whether an expression is well-typed,
and type checking is the problem of checking whether an expression has a
given type.

(ALG-VAR)

∆ ; Γ `A x : Γ(x)

(ALG-INST)
∆ ; Γ `A e : t

∆ ; Γ `A e[σj]j∈J :
∧
j∈J

tσj
σj] ∆

(ALG-APPL)
∆ ; Γ `A e1 : t ∆ ; Γ `A e2 : s

∆ ; Γ `A e1e2 : t · s
t ≤ 0→ 1
s ≤ dom(t)

(ALG-ABSTR)
∆ ∪∆′ ; Γ, (x : tiσj) `A e@[σj] : s′ij

∆ ; Γ `A λ
∧i∈I ti→si
[σj]j∈J

x.e :
∧

i∈I,j∈J

(tiσj → siσj)

∆′ = var(∧i∈I,j∈J tiσj→siσj)
s′ij ≤ siσj , i∈I, j∈J

(ALG-CASE-FST)
∆ ; Γ `A e : t′ ∆ ; Γ `A e1 : s1

∆ ; Γ `A (e∈t ? e1 : e2) : s1
t′≤t

(ALG-CASE-SND)
∆ ; Γ `A e : t′ ∆ ; Γ `A e2 : s2

∆ ; Γ `A (e∈t ? e1 : e2) : s2
t′≤¬t

(ALG-CASE-BOTH)
∆ ; Γ `A e : t′ ∆ ; Γ `A e1 : s1 ∆ ; Γ `A e2 : s2

∆ ; Γ `A (e∈t ? e1 : e2) : s1 ∨ s2

t′ 6≤¬t
t′ 6≤t

Figure 2. Typing algorithm

e[σj]j∈J . While it is clear that type-cases increase the expressive
power of the calculus, one may wonder whether the same is true
for e[σj]j∈J . In this section, we prove that the terms of the form
e[σj]j∈J are redundant insofar as their presence in the calculus
does not increase its expressive power. Consider the subcalculus
whose terms are

e ::= x | ee | λ∧i∈Isi→ti[σj]j∈J
x.e | e∈t ? e : e (21)

that is, the calculus in which sets of type-substitutions appear only
in decorations. Consider the embedding [.] of our calculus (16) into
this subcalculus, defined as

[e[σj]j∈J] = e@[σj]j∈J

as the identity for variables, and as its homomorphic propagation
for all the other expressions. Then it is easy to prove the following
theorem

Theorem 3.7. For every well-typed expression e:
1. e ∗ v ⇒ [e] ∗ [v],
2. [e] ∗ v ⇒ e ∗ v′ and v = [v′]

meaning that the subcalculus defined above is equivalent to the full
calculus. Although expressions of the form e[σj]j∈J do not bring
any further expressive power, they play a crucial role in local type
inference, which is why we included them in our calculus. As we
explain in details in the companion paper, for local type inference
we need to reconstruct sets of type-substitutions that are applied to
expressions but we must not reconstruct sets of type-substitutions
that are decorations of λ-expressions. The reason is pragmatic and
can be shown by considering the following two terms: (λα→αx.x)3
and (λα→αx.4)3. Every functional programmer will agree that
the first expression must be considered well-typed while the sec-
ond must not, for the simple reason that the constant function
(λα→αx.4) does not have type α → α. Indeed in the first case it
is possible to apply a set of type-substitutions that makes the term
well typed, namely (λα→αx.x)[{Int/α}]3, while no such applica-
tion exists for the second term. However, if we allowed reconstruc-
tion also for decorations, then the second term could be made well
typed by adding the following decoration (λα→α

[{Int/α}]
x.4)3. In con-

clusion, for type inference it is important to keep the expression
e[σj]j∈J , since well-typing of e@[σj]j∈J does not imply that of
e[σj]j∈J .

4. Typing algorithm
The rules in Figure 1 do not describe a typing algorithm since they
are not syntax directed. As customary the problem is the subsump-
tion rule, and the way to go is to eliminate this rule by embedding
appropriate checks of the subtyping relation into the rules that need
it. This results in the system formed by the rules of Figure 2. This
system is algorithmic (as stressed by `A): in every case at most one
rule applies, either because of the syntax of the term or because
of mutually exclusive side conditions. Subsumption is no longer

present and, instead, subtype checking has been pushed in all the
remaining rules.

The rule for type-cases has been split in three rules (plus a fourth
uninteresting rule we omitted that states that when e : 0 —ie, it
is the provably diverging expression— then the whole type-case
expression has type 0) according to whether one or both branches
can be selected. Here the only modification is in the case where
both branches can be selected: in the rule (case) in Figure1 the types
of the two branches were subsumed to a common type s, while
(ALG-CASE-BOTH) returns the least upper bound (ie, the union) of
the two types.

The rule for abstractions underwent a minor modification with
respect to the types returned for the body, which before were sub-
sumed to the type declared in the interface while now the subtyping
relation s′ij ≤ siσj is explicitly checked.

The elimination of the subsumption yields a simplification in
typing the application of type-substitutions, since in the system of
Figure 1 without subsumption every premise of an (inter) rule is
the consequence of an (inst) rule. The two rules can thus be merged
into a single one, yielding the (ALG-INST) rule (see Appendix C.1
and in particular Theorem C.1).

As expected, the core of the typing algorithm is the rule for
application. In the system of Figure 1, in order to apply the (appl)
rule, the type of the function had to be subsumed to an arrow type,
and the type of the argument had to be subsumed to the domain
of that arrow type; then the co-domain of the arrow is taken to
type the application. In the algorithmic rule (ALG-APPL), this is
done by the type meta-operator “·” which is formally defined as
follows: t · s def

= min{u | t ≤ s→u}. In words, if t is the type
of the function and s the type of the argument, this operator looks
for the smallest arrow type larger than t and with domain s, and it
returns its co-domain. More precisely, when typing e1e2, the rule
(ALG-APPL) checks that the type t of e1 is a functional one (ie,
t ≤ 0→1). It also checks that the type s of e2 is a subtype of
the domain of t (denoted by dom(t)). Because t is not necessarily
an arrow type (in general, it is equivalent to a disjunctive normal
form like the one of equation (15) in Section 3), the definition of
the domain is not immediate. The domain of a function whose type
is an intersection of arrows and negation of arrows is the union
of the domains of all positive literals. For instance the domain of
a function of type (Int→Int) ∧ (Bool→Bool) is Int ∨ Bool,
since it can be equally applied to integer or Boolean arguments,
while the domain of even as defined in (11) is Int ∨ (α\Int),
that is Int ∨ α. The domain of a union of functional types is the
intersection of each domain. For instance an expression of type
(s1→s2) ∨ (t1→t2) will return either a function of type s1→s2

or a function of type t1→t2, so this expression can be applied
only to arguments that fit both cases, that is, to arguments in
s1 ∧ t1. Formally, if t ≤ 0→1, then t '

∨
i∈I(

∧
p∈Pi(sp→tp) ∧∧

n∈Ni ¬(sn→tn) ∧
∧
q∈Qiαq ∧

∧
r∈Ri¬βr) (with all the Pi’s

not empty), and therefore dom(t)
def
=
∧
i∈I
∨
p∈Pi sp (here type

variables do not count since they are intersected and universally
quantified so the definition of the domain must hold also when their
intersection is 1). Finally, the type returned in (ALG-APP) is t · s,
which we recall is the smallest result type that can be obtained by
subsuming t to an arrow type compatible with s. We can prove
that for every type t such that t ≤ 0→1 and type s such that
s ≤ dom(t), the type t · s exists and can be effectively computed
(see Lemma C.12).

The algorithmic system is sound and complete with respect
to the type system of Figure 1 and satisfies the minimum typing
property (see Appendix C for the proofs).

Theorem 4.1 (Soundness). If ∆ ; Γ `A e : t, then ∆ ; Γ ` e : t.

Theorem 4.2 (Completeness). If ∆ ; Γ ` e : t, then there exists a
type s such that ∆ ; Γ `A e : s and s ≤ t.
Corollary 4.3 (Minimum typing). If ∆ ; Γ `A e : t, then t =
min{s | ∆ ; Γ ` e : s}.

Finally, it is quite easy to prove that type inference is decidable.
It suffices to define the size of an expression as follows:

size(x) = 1
size(e1e2) = size(e1) + size(e2) + 1

size(λ
∧i∈I ti→si
[σj]j∈J

x.e) = size(e) + 1

size(e∈t ? e1 : e2) = size(e) + size(e1) + size(e2) + 1
size(e[σj]j∈J) = size(e) + 1

and show that the expressions occurring in the premises of every
rule of the algorithm are strictly smaller than the expression in
its conclusion. We can then deduce the termination of the type
inference algorithm.

Theorem 4.4 (Termination). Let e be an expression. Then the type
inference algorithm for e terminates.

This system constitutes a further theoretical contribution of our
work since with this type system the language defined by gram-
mar (16), the one by grammar (21), and a fortiori the one by gram-
mar (20) are intersection type systems that all satisfy the Curry-
Howard isomorphism since there is a one-to-one correspondence
between terms and proofs of the algorithmic system.

5. Evaluation
In this section we define an efficient execution model for the
polymorphic calculus as a conservative extension of the execu-
tion model of the monomorphic calculus: by “efficient” we mean
that monomorphic expressions will be evaluated as efficiently as
in the original CDuce runtime. In fact, even polymorphic expres-
sions will be evaluated as efficiently as well (as if type variables
were basic monomorphic types) despite the fact that the formal re-
duction semantics of polymorphic expressions includes a run-time
relabeling operation. The key observation that allows us to define
an efficient execution model for the polymorphic calculus is that
relabeling can be implemented lazily so that the only case in which
relabeling is computed at run-time will correspond to testing the
type of a partial application of a polymorphic function. In practice,
this case is so rare —at least in the XML setting— that there is no
difference between monomorphic and polymorphic evaluation.

5.1 Monomorphic Language
Let us start by recalling the execution model of monomorphic
CDuce, which is a classic closure-based evaluation. Expressions
and values are defined as

e ::= c | x | λtx.e | ee | e ∈ s ? e : e
v ::= c | 〈λtx.e, E 〉

where t denotes an intersection of arrow types, s denotes a closed
type, and E denotes an environment, that is, a substitution mapping

expression variables into values. The big step semantics is:
(ME-CONST)
E `m c ⇓ c

(ME-VAR)
E `m x ⇓ E (x)

(ME-CLOSURE)
E `m λtx.e ⇓ 〈λtx.e, E 〉

(ME-APPLY)
E `m e1 ⇓ 〈λtx.e, E ′〉 E `m e2 ⇓ v0 E ′, x 7→ v0 `m e ⇓ v

E `m e1e2 ⇓ v
(ME-TYPE CASE T)
E `m e1 ⇓ v0 v0 ∈m t E `m e2 ⇓ v

E `m e1 ∈ t ? e2 : e3 ⇓ v
(ME-TYPE CASE F)
E `m e1 ⇓ v0 v0 6∈m t E `m e3 ⇓ v

E `m e1 ∈ t ? e2 : e3 ⇓ v

To complete the definition we define the relation v ∈m t, that is,
membership of a (monomorphic) value to a (monomorphic) type:

c ∈m t
def⇐⇒ bc ≤ t

〈λsx.e, E 〉 ∈m t
def⇐⇒ s ≤ t

where ≤ is the subtyping relation of CDuce [12].

5.2 Polymorphic Language
In the naive extension of this semantics to the explicitly-typed
polymorphic calculus of Section 3, we deal with type-substitutions
as we do for environments, that is, by storing them in closures. This
is reflected by the following definition where, for brevity, we write
σI to denote the set of type-substitutions [σi]i∈I :

e ::= c | x | λtσIx.e | ee | e ∈ t ? e : e | eσI
v ::= c | 〈λtσIx.e, E , σI〉

The big-step semantics is then defined as follows, where each ex-
pression is evaluated with respect to an environment E determining
the current value substitutions and a set of type-substitutions σI :

(PE-CONST)
σI ; E `p c ⇓ c

(PE-VAR)
σI ; E `p x ⇓ E (x)

(PE-CLOSURE)
σI ; E `p λtσJ x.e ⇓ 〈λ

t
σJ
x.e, E , σI〉

(PE-INSTANCE)
σI ◦ σJ ; E `p e ⇓ v
σI ; E `p eσJ ⇓ v

(PE-APPLY)
σI ; E `p e1 ⇓ 〈λ

∧l∈Lsl→tl
σK x.e, E ′, σH〉 σI ; E `p e2 ⇓ v0

σJ = σH ◦ σK P = {j ∈ J | ∃l ∈ L : v0 ∈p slσj}
σP ; E ′, x 7→ v0 `p e ⇓ v

σI ; E `p e1e2 ⇓ v
(PE-TYPE CASE T)
σI ; E `p e1 ⇓ v0 v0 ∈p t σI ; E `p e2 ⇓ v

σI ; E `p e1 ∈ t ? e2 : e3 ⇓ v
(PE-TYPE CASE F)
σI ; E `p e1 ⇓ v0 v0 6∈p t σI ; E `p e3 ⇓ v

σI ; E `p e1 ∈ t ? e2 : e3 ⇓ v

The membership relation v ∈p t for polymorphic values is induc-
tively defined as:

c ∈p t
def⇐⇒ bc ≤ t

〈λsσJx.e, E , σI〉 ∈p t
def⇐⇒ s(σI ◦ σJ) ≤ t

where ≤ is the subtyping relation of Castagna and Xu [6]. It is not
difficult to show that this big-step semantics is equivalent to the
small-step one of Section 3. Let (.) be the transformation that maps
values of the polymorphic language into corresponding values of
the calculus, that is

(c) = c and (〈λsσJx.e, E , σI〉) = λsσI◦σJx.(e(E)) (22)
where (E) applies (.) to all the values in the range of E . Let
i denote the singleton set containing the empty type-substitution
[{ }], which is the neutral element of the composition of sets of
type-substitutions. Then we have:

Theorem 5.1. Let e be a well-typed closed explicitly-typed expres-
sion (`A e : t). Then:

i;∅ `p e ⇓ v ⇐⇒ e ∗ (v)

This implementation has a significant computational burden
compared to that of the monomorphic language: first of all, each ap-
plication of (PE-APPLY) computes the set P , which requires to im-
plement several type-substitutions and membership tests; second,
each application of (PE-INSTANCE) computes the composition of
two sets of type-substitutions. In the next section we describe a dif-
ferent solution consisting in the compilation of the explicitly typed
calculus into an intermediate language so that these computations
are postponed as much as possible and are performed only if and
when they are really necessary.

5.3 Intermediate Language
The intermediate language into which we compile the explicitly-
typed polymorphic language is very similar to the monomorphic
version. The only difference is that λ-abstractions (both in expres-
sions and closures) may contain type variables in their interface
and have an extra decoration Σ which is a term denoting a set of
type-substitutions.

e ::= c | x | λtΣx.e | ee | e ∈ t ? e : e
v ::= c | 〈λtΣx.e, E 〉
Σ ::= σI | comp(Σ,Σ′) | sel(x, t,Σ)

Intuitively, a comp(Σ,Σ′) term corresponds to an application of
the ◦ composition operator to the sets of type substitutions denoted
by Σ and Σ′, while a sel(x, t,Σ) term selects the subset of type
substitutions σ denoted by Σ that are compatible with the fact that
(the value instantiating) x belongs to the domain of tσ.

The big step semantics for this intermediate language is:
(OE-CONST)
E `o c ⇓ c

(OE-VAR)
E `o x ⇓ E (x)

(OE-CLOSURE)
E `o λtΣx.e ⇓ 〈λtΣx.e, E 〉

(OE-APPLY)
E `o e1 ⇓ 〈λtΣx.e, E ′〉

E `o e2 ⇓ v0 E ′, x 7→ v0 `o e ⇓ v
E `o e1e2 ⇓ v

(OE-TYPE CASE T)
E `o e1 ⇓ v0 v0 ∈o t E `o e2 ⇓ v

E `o e1 ∈ t ? e2 : e3 ⇓ v
(OE-TYPE CASE F)
E `o e1 ⇓ v0 v0 6∈o t E `o e3 ⇓ v

E `o e1 ∈ t ? e2 : e3 ⇓ v
Notice that this semantics is structurally the same as that of the
monomorphic language. There are only two minor differences: (i)
λ-abstractions have an extra decoration Σ (which has no impact
on efficiency since it corresponds in the implementation to manip-
ulate descriptors with an extra field) and (ii) the corresponding
(_E-TYPE CASE) rules use a slightly different relation: ∈o instead
of ∈m. It is thus easy to see that in terms of steps of reduction the
two semantics have the same complexity. More precisely, if you
take a term of the monomorphic calculus and a term of the inter-
mediate language with the same erasure and that select the same
branches of the typecases, then they perform exactly the same re-
duction. What changes is the test of the membership relation (∈o

rather than ∈m) since, when the value to be tested is a closure, we
need to materialize relabelings. In other words, we have to evaluate
the Σ expression decorating the function and apply the resulting set
of substitutions to the interface of the function. Formally:

c ∈o t
def⇐⇒ bc ≤ t

〈λsΣx.e, E 〉 ∈o t
def⇐⇒ s(eval(E ,Σ)) ≤ t

where the evaluation of the symbolic set of type-substitutions is
inductively defined as

eval(E , σI) = σI
eval(E , comp(Σ,Σ′)) = eval(E ,Σ) ◦ eval(E ,Σ′)

eval(E , sel(x,
∧
i∈I ti→si,Σ)) =

[σj ∈ eval(E ,Σ) | ∃i∈I : E (x) ∈o tiσj]

Notice in the last rule the crucial role played by x and E : by
using an expression variable x in the symbolic representation of
type-substitutions and relying on its interpretation through E , we
have transposed to type-substitutions the same benefits that clo-
sures bring to value substitutions: just as closures allow value-
substitutions to be materialized only when a formal parameter is
used rather than at the moment of the reduction, so our technique
allows type-substitutions to be materialized only when a type vari-
able is effectively tested, rather than at the moment of the reduction.

It is easy to see that the only case in which the computation of
∈o is more expensive than that of ∈m is when the value whose type
is tested is a closure 〈λtΣx.e, E 〉 in which t is not closed and Σ is
not i.6 The Σ decoration is different from i only if the closure is the
result of a partial application of a curried function. The type t is not
closed only if such partial application yielded a polymorphic func-
tion. In conclusion, the evaluation of an expression in the polymor-
phic language is more expensive than the evaluation of a similar7

expression of the monomorphic language only if it tests the type
of a polymorphic function resulting from the partial application of
a polymorphic curried function. The additional overhead is limited
only to this particular test and in all the other cases the evaluation
is as efficient as in the monomorphic case. Finally, it is important
to stress that this holds true also if we add product types: the test
of a pair of values in the polymorphic case is as expensive as in the
monomorphic case and so is the rest of the evaluation. Since in the
XML setting the vast majority of the computation time is spent in
testing products (since they encode sequences, trees, and XML el-
ements), then the overhead brought by adding polymorphism —ie,
the overhead due to testing the type of a polymorphic partial appli-
cation of a polymorphic curried function— is negligible in practice.

All that remains to do is to define the compilation of the
explicitly-typed language into the intermediate language:

JxKΣ = x
JλtσIx.eKΣ = λtcomp(Σ,σI)x.JeKsel(x,t,comp(Σ,σI))

Je1e2KΣ = Je1KΣJe2KΣ

JeσIKΣ = JeKcomp(Σ,σI)

Je1 ∈ t ? e2 : e3KΣ = Je1KΣ ∈ t ? Je2KΣ : Je3KΣ

Given a closed program e we compile it in the intermediate lan-
guage as JeKi. In practice, the compilation will be even simpler
since we apply it only to expressions generated by local type in-
ference algorithm described in the companion paper where all λ’s
are decorated by i (cf. discussion at the end of Section 3.6). So the
second case of the definition simplifies to:

Jλtix.eKΣ = λtΣx.JeKsel(x,t,Σ)

The compilation is adequate:

Theorem 5.2. Let e be a well-typed closed explicitly-typed expres-
sion (`A e : t). Then

i;∅ `p e ⇓ v ⇐⇒ `o [e]i ⇓ v′

with (v) = (v′).

where (〈λtΣx.e, E 〉) evaluates all the symbolic expressions and
type-substitutions in the term (see (22)). By combining Theo-
rems 5.1 and 5.2 we obtain the adequacy of the compilation:

6 To be more precise, when there exists a substitution σ ∈ eval(E ,Σ) such
that var(t) ∩ dom(σ) 6= ∅. Notice that the tests of the subtyping relation
for monomorphic and polymorphic types have the same complexity [6].
7 By similar we intend with the same syntax tree but only closed types.

Corollary 5.3. Let e be a well-typed closed explicitly-typed expres-
sion (`A e : t). Then

`o [e]i ⇓ v ⇐⇒ e ∗ (v)

Finally, let us come back to the membership relation for function
types, namely:

〈λsΣx.e, E 〉 ∈o t
def⇐⇒ s(eval(E ,Σ)) ≤ t

In Footnote 6 we signalled that the only case in which this test is
more expensive than in the monomorphic case is when we have to
evaluate eval(E ,Σ) and that this may be necessary only if there ex-
ists σ ∈ eval(E ,Σ) such that var(s) ∩ dom(σ) 6= ∅ (this includes
the case of functions that are result of a partial application of a poly-
morphic function). Of course we cannot perform this test without
evaluating the eval expression. We can however overapproximate
the domains of the various σ produced by eval(E ,Σ) by using the
domain of Σ (the difference being that we consider also the sub-
stitutions σ that would be discarded by a selection). Notice that all
the expressions Σ denoting sets of substitutions are statically gen-
erated by our compilation and are not modified at run-time. This
means that for every function value we can statically decide whether
the condition var(s) ∩ dom(Σ) 6= ∅ is satisfied or not. This test
soundly approximates for every E the condition whether there ex-
ists σ ∈ eval(E ,Σ) such that var(s)∩dom(σ) 6= ∅where dom(Σ)
is defined as follows:

dom(σI) =
⋃
i∈I dom(σi)

dom(comp(Σ,Σ′)) = dom(Σ) ∪ dom(Σ′)

sel(x, t,Σ)) = dom(Σ)

In practice, we can modify our compilation technique to flag (eg,
by “λ̄”) the functions which may require the evaluation of eval(,),
as follows:

Jλtix.eKΣ =

{
λtΣx.JeKsel(x,t,Σ) if var(t) ∩ dom(Σ) = ∅
λ̄tΣx.JeKsel(x,t,Σ) otherwise

and then evaluate the symbolic substitutions only for marked func-
tions:

〈λsΣx.e, E 〉 ∈o t
def⇐⇒ s ≤ t

〈λ̄sΣx.e, E 〉 ∈o t
def⇐⇒ s(eval(E ,Σ)) ≤ t

5.4 Let-polymorphism
A function is polymorphic if it can be safely applied to arguments
of different types. The calculus presented supports a varied palette
of different forms of polymorphism: it uses subtype polymorphism
(a function can be applied to arguments whose types are subtypes
of its domain type), the combination of intersection types and type-
case expressions yields “ad hoc” polymorphism (aka overloading),
and finally the use of type variables in function interfaces provides
parametric polymorphism. Polymorphism is interesting when used
with bindings: instead of repeating the definition of a function ev-
ery time we need to apply it, it is more convenient to define the
function once, bind it to an expression variable, and use the vari-
able every time we need to apply the function. In the current system
it is possible to combine binding only with the first two kinds of
polymorphism: different occurrences of a variable bound to a func-
tion can be given different types —thus, be applied to arguments
of different types—, either by subsumption (ie, by assigning to the
variable a super-type of the type of the function it denotes) or by in-
tersection elimination (ie, by assigning to a variable one of the types
that form the intersection type of the function it denotes). However,
as it is well known in the languages of the ML-family, in the cur-
rent setting it is not possible to combine binding and parametric
polymorphism. Distinct occurrences of a variable cannot be given
different types by instantiation (ie, by assigning to the variable a
type which is an instance of the type of the function it denotes).

In other terms, all λ-abstracted variables have monomorphic types
(with respect to parametric polymorphism), which is why in ML
auto-application λx.xx is not typeable.

The solution is well known and consists in introducing let
bindings. This amounts to defining a new class of expression vari-
ables so that variables introduced by a let have polymorphic types,
that is, types that have been generalized at the moment of the def-
inition and can be instantiated in the body of the let. To sum up,
λ-abstracted variables have monomorphic types, while let-bound
variables (may) have polymorphic types and, thus, be given differ-
ent types obtained by instantiation. For short we call the former λ-
abstracted variables “monomorphic (expression) variables” and the
latter let-bound variables “polymorphic (expression) variables”.

In the explicitly-typed calculi of the previous sections we had
just λ-abstracted variables. That these variables have monomorphic
types is clearly witnessed by the fact that, operationally, xσI is
equivalent to (ie, reduces to) x. Clearly this property must not hold
for polymorphic type variables since

let x = (λα→αy.y) in (x[{α→α/α}])x (23)
is, intuitively, well typed, while the same term obtained by replac-
ing x[{α→ α/α}] with x is not (see the extension of the definition
of relabeling for polymorphic variables later on).

To enable the definition of polymorphic functions to our calcu-
lus we add a let expression. To ease the presentation and to stress
that the addition of let-bindings is a conservative extension of the
previous system, we syntactically distinguish the current monomor-
phic variables (ie, those abstracted by a λ) from polymorphic vari-
ables by underlining the latter ones.

e ::= · · · | x | let x = e in e

Reduction is as usual:
let x = v in e e{v/x}

Relabeling is extended by the following definitions
x@[σj]j∈J

def
= x[σj]j∈J

(let x=e′ine)@[σj]j∈J
def
= let x=(e′@[σj]j∈J)in(e@[σj]j∈J)

and the (algorithmic) typing rule is as expected:

(let)
∆ ; Γ `(A) e1 : t1 ∆ ; Γ, (x : t1) `(A) e2 : t2

∆ ; Γ `(A) let x = e1 in e2 : t2

Type environments Γ now map also polymorphic expression vari-
ables into types. Notice that for a polymorphic expression variable
x it is no longer true that var(Γ(x)) ⊆ ∆ (not adding var(Γ(x)) to
∆ corresponds to generalizing the type of x before typing e2 as in
the GEN rule of the Damas-Milner algorithm: cf. [20]). As before
we assume that polymorphic type variables of a let-expression (in
particular those generalized for let-polymorphism) are distinct from
monomorphic and polymorphic type variables of the context that
the let-expression occurs in.

Likewise, environments now map both monomorphic and poly-
morphic expression variables into values so that the rules for eval-
uation in Section 5.2 are extended with the following ones:

(PE-PVARc)
E (x) = c

σI ; E `p x ⇓ c

(PE-PVARf)

E (x) = 〈λty.e, E ′, σJ〉
σI ; E `p x ⇓ 〈λty.e, E ′, σI ◦ σJ〉

(PE-LET)
σI ; E `p e1 ⇓ v0 σI ; E , x 7→ v0 `p e2 ⇓ v

σI ; E `p let x = e1 in e2 ⇓ v
To compile let-expressions we have to extend the intermediate lan-
guage likewise: we will distinguish polymorphic expression vari-
ables by decorating them with sets of type-substitution formulæ Σ
that apply to that particular occurrence of the variable. So we add
to the productions of Section 5.3 the following ones:

e ::= · · · | xΣ | let x = e in e

while the big-step semantics of the new added expressions is
(OE-PVARc)

E (x) = c

E `o xΣ ⇓ c

(OE-PVARf)

E (x) = 〈λtΣ′y.e, E ′〉
E `o xΣ ⇓ 〈λtcomp(Σ,Σ′)y.e, E

′〉
(OE-LET)
E `o e1 ⇓ v0 E , x 7→ v0 `o e2 ⇓ v

E `o let x = e1 in e2 ⇓ v
Notice how rule (OE-PVARf) uses the Σ decoration on the variable
to construct the closure. The final step is the extension of the
compiler for the newly added terms:

JxKΣ = xΣ

Jlet x = e1 in e2KΣ = let x = Je1KΣ in Je2KΣ

As an example, the let-expression (23) is compiled into
let x = (λα→αy.y) in x[{α→α/α}]xi

where the substitution [{α→α/α}] that is applied to the leftmost oc-
currence of x is recorded in the variable and will be used to instanti-
ate the closure associated with x by the environment; the rightmost
occurrence of x is decorated by i and therefore the value bound to it
will not be instantiated. Theorems 5.1, 5.2, and Corollary 5.3 hold
also for these extensions (see Appendix D for the proofs).

In an actual programming language there will not be any syn-
tactic distinction between the two kinds of expression variables and
compilation can be optimized by transforming variables that are
let-bound to monomorphic values into monomorphic variables.
So, whenever e1 has a monomorphic type t1, the let-expression
should be compiled as

Jlet x = e1 in e2KΣ = J(λt1→t2x.e2{x/x})e1KΣ

where t2 is the type deduced for e2 under the hypothesis that x has
type t1. Notice that this optimization is compositional.

6. Design choices and extensions
For the sake of concision we omitted two key features in the pre-
sentation: recursive functions and pairs. Recursive functions can be
straightforwardly added with minor modifications. In particular, for
recursive functions, whose syntax is µf∧i∈I ti→si[σj]j∈J

x.e, it suffices to
add in the type environment Γ the recursion variable f associated
with the type obtained by applying the decoration to the interface,
that is, f : ∧i∈I,j∈J tiσj → siσj : the reader can refer to Section
7.5 in [12] for a discussion on how and why recursion is restricted
to functions.

The extension with product types, instead, is less straightfor-
ward but can be mostly done by using existing techniques. Syntac-
tically, we add pairs (e, e) and projections πie (for i=1, 2) to terms
and the product type constructor t×t to types. Reduction semantics
is standard: two notions of reduction πi(v1, v2) vi (for i=1, 2)
plus the usual context reduction rules. Typing rules are standard,
as well: a pair is typed by the product of the types of its compo-
nents and if e is of type t1×t2, then its i-th projection πie has type
ti. The rule for pairs in the algorithmic system `A is the same as
in the static semantics, while the rules for projections πie become
more difficult because the type inferred for e may not be of the
form t1×t2 but, in general, is (equivalent to) a union of intersec-
tions of types. We already met the latter problem for application
(where the function type may be different from an arrow) and there
we checked that the type deduced for the function in an application
is a functional type (ie, a subtype of 0→1). Similarly, for products
we must check that the type of e is a product type (ie, a subtype of
1×1). If the constraint is satisfied, then it is possible to define the
type of the projection (in a way akin to the definition of the domain
dom() for function types) using standard techniques of semantic
subtyping (see Section 6.11 in [12]). This is explained in details in
Appendix C.

Another concession to the sake of concision is the use of the re-
labeling operation ‘@’ in the premises of both “abstr” rules in Fig-
ures 1 and 2. A slightly different but better formulation would have
been to use as premises ... `∗ eσj : siσj instead of ... `∗ e@[σj] :
siσj , where eσ denotes the application of a substitution σ to a term
e and is roughly defined as the term obtained by applying σ to all in-
terfaces in e and by composing σ within the outermost sets of type-
substitutions in e. Both formulations are sound and the differences
are really minimalist, but this second formulation rules out few
anomalies of the current system. For instance, with the current for-
mulation λInt→Int

D y.(λα→α[] x.42)[{Int/α}]y) is well-typed if and
only if the decoration D is a non empty set of types-substitutions
(whatever they are). Indeed a non empty D triggers the use of ‘@’
in the premises of the “abstr” rule, and this “pushes” the type sub-
stitution [{Int/α}] into the decoration of the body, thus making
the body well typed (taken in isolation,λα→α

[{Int/α}]
x.42 is well typed

while (λα→α[] x.42)[{Int/α}] is not). Although the second formula-
tion rules out such kind of anomalies, we preferred to present the
first one since it does not need the introduction of such technically-
motivated new definitions.

For what concerns future extensions, in this work we dodged
the problem of the negation of arrow types. Notice indeed that
a value can have as type the negation of an arrow type just by
subsumption. This implies that no λ-abstraction can have a negated
arrow type. So while the type ¬(Bool→Bool) can be inferred
for, say, (3, 42), it is not possible to infer it for λInt→Intx.(x+1).
This problem was dealt in CDuce by deducing for a λ-abstraction
the type in its interface intersected with any negations of arrow
types that did not make the type empty. Technically, this was dealt
with “type schemas”: a function such as λInt→Intx.x + 1 has
type schema {{Int→Int}}, that is, it has every non empty type
of the form (Int→Int) ∧

∧
i∈I¬(si→ti) (thus, in particular,

(Int→Int) ∧ ¬(Bool→Bool)) [12]. In our context, however,
the presence of type variables makes a definition such as that of
schemas more difficult since a type schema should probably denote
only types that are not empty for every possible instantiation of
their variables (and it should probably be given at semantic level).
Dealing with this aspect is mainly of theoretical interest (it allows to
interpret types as sets of values, for instance in our case one could
study as a possible interpretation [t] = {v |` v : s, s v∅ t},
where v∆ is defined in the companion paper) as witnessed by the
fact that the CDuce compiler does not use type schemas. We prefer
to leave this study for future work.

For the semantics of the calculus we made few choices that re-
strict its generality. One of these, the use of a call-by-value reduc-
tion, is directly inherited from CDuce and it is required to ensure
subject reduction. If e is an expression of type Int∨Bool, then the
application (λ(Int→Int×Int)∧(Bool→Bool×Bool)x.(x, x))e has type
(Int×Int)∧(Bool×Bool). If we use call-by-name, then this re-
dex reduces to (e, e) whose type (Int∨Bool×Int∨Bool) is larger
than the type of the redex. Although the use of call-by-name would
not hinder the soundness of the type system (expressed in terms of
progress) we preferred to ensure subject reduction since it greatly
simplifies the theoretical development.

A second choice, to restrict type-cases to closed types, was
made by practical considerations: using open types in a type-case
would have been computationally prohibitive insofar as it demands
to solve at run-time the problem whether for two given types s and
t there exists a type-substitution σ such that sσ ≤ tσ (we study
this problem, that we call the tallying problems, in the companion
paper [5]). Our choice, instead, is compatible with the highly op-
timized (and provably optimal) pattern matching compilation tech-
nique of CDuce. We leave for future work the study of type-cases
on types with monomorphic variables (ie, those in ∆). This does
not require dynamic type tallying resolution and would allow the

programmer to test capabilities of arguments bound to polymorphic
type variables.

7. Related work
We focus on work related to this specific part of our work, namely,
existing explicitly-typed calculi with intersection types, and func-
tional languages to process XML data. Comparison with work on
local type inference and type reconstruction is done in the second
part of this work presented in the companion paper [5].

To compare the differences between the existing explicitly-typed
calculi for intersection type systems, we discuss how the term of our
daffy identity (λα→α[{Int/α},{Bool/α}]x.(λ

α→αy.x)x) is rendered.
In [23, 26], typing derivations are written as terms: different

typed representatives of the same untyped term are joined together
with an intersection∧. In such systems, the function in (7) relabeled
with [{Int/α}, {Bool/α}] is written (λInt→Intx.(λInt→Inty.x)x)∧
(λBool→Boolx.(λBool→Booly.x)x). Type checking verifies that both
λInt→Intx.(λInt→Inty.x)x and λBool→Boolx.(λBool→Booly.x)x are
well typed separately, which generates two very similar typing
derivations. The proposal of [16] follows the same idea, except that
a separation is kept between the computational and the logical con-
tents of terms. A term consists in the association of a marked term
and a proof term. The marked term is just an untyped term where
term variables are marked with integers. The proof term encodes
the structure of the typing derivation and relates marks to types.
The aforementioned example is written in this system as (λx :
0.(λy : 1.x)x)@((λ0Int.(λ1Int.0)0) ∧ (λ0Bool.(λ1Bool.0)0)). In
general, different occurrences of a same mark can be paired with
different types in the proof term. In [4], terms are duplicated (as in
[23, 26]), but the type checking of terms does not generate copies of
almost identical proofs. The type checking derivation for the term
((λInt→Intx.(λInt→Inty.x)x)‖λBool→Boolx.(λBool→Booly.x)x) ver-
ifies in parallel that the two copies are well typed.

The duplication of terms and proofs makes the definition of
beta reduction (and other transformations on terms) more diffi-
cult in the calculi presented so far, because it has to be performed
in parallel on all the typed instances that correspond to the same
untyped term. Branching types have been proposed in [27] to cir-
cumvent this issue. The idea is to represent different typing deriva-
tions for a same term into a compact piece of syntax. To this
end, the branching type which corresponds to a given intersection
type t records the branching shape (ie, the uses of the intersec-
tion introduction typing rule) of the typing derivation correspond-
ing to t. For example, the type (Int→Int) ∧ (Bool→Bool) has
only two branches, which is represented in [27] by the branching
shape join{i=∗, j=∗}. Our running example is then written as
Λjoin{i=∗, j=∗}.λx{i=Int,j=Bool}.(λy{i=Int,j=Bool}.x)x. Note
that the lambda term itself is not copied, and no duplication of
proofs happens during type checking either: the branches labeled i
and j are verified in parallel.

In [9], the authors propose an expressive refinement type sys-
tem with intersection, union, but also (a form of) dependent types,
making possible to define, eg, the type of integer lists of length n,
written [Int]n. The variable n can be quantified over either uni-
versally or existentially (using respectively Π and Σ). Thanks to
this it is possible to consider different instantiations of a depen-
dent type and, thus to type our daffy function by different instances
of [Int]n (rather than with any type, as for Int and Bool in our
example). Type checking requires type annotations to be decid-
able: to check that λx.(λy.x)x has type Πn.(([Int]2n→[Int]2n)∧
([Int]2n+1→[Int]2n+1)), the subterm λy.x has to be annotated.
This problem is similar to finding appropriate annotations for the
daffy function (7) in our language. In [9], terms are annotated with
a list of typings: for example, λy.x can be annotated with A =

(x : [Int]2n ` 1→[Int]2n, x : [Int]2n+1 ` 1→[Int]2n+1),
which says that if x : [Int]2n, then λy.x has type 1→[Int]2n

(and similarly if x : [Int]2n+1). The above annotation A is not
sound because when checking that λx.(λy.x : A)x has result type
Πn.(([Int]2n→[Int]2n)∧ ([Int]2n+1→[Int]2n+1)), one can see
that the occurrences of n in A escape their scope: they should be
bound by the quantifier Π in the result type. To fix this, typing
environments in annotations are extended with universally quanti-
fied variables, that can be instantiated at type checking. For exam-
ple, λy.x : (m : Nat, x : [Int]m ` 1 → [Int]m) means that
λy.x has type 1 → [Int]m, assuming x : [Int]m, where m can
be instantiated with any natural number. With this annotation, the
daffy function can be checked against Πn.(([Int]2n→[Int]2n) ∧
([Int]2n+1→[Int]2n+1)), by instantiating m with respectively 2n
and 2n+1. It is possible to find a similarity between the annotations
of [9] (the lists of typings) and our annotations (ie, the combination
of interface and decoration) although instantiation in the former is
much more harnessed. There is however a fundamental difference
between the two systems and it is that [9] does not include a type
case. Because of that annotations need not to be propagated at run-
time: in [9] they are just used statically to check soundness and then
erased at run-time. Without type-cases we could do the same, but it
is precisely the presence of type-cases that justifies our formalism.

For what concerns XML programming, let us cite polymorphic
XDuce [13] and the work by Vouillon [25]. In both, pattern match-
ing is designed so as not to break polymorphism, but both have to
give up something: higher-order functions for [13] and intersection,
negation, and local type inference in [25] (the type of function ar-
guments must be explicitly given). Furthermore, Vouillon’s work
suffers from the original sin of starting from a subtyping relation
that is given axiomatically by a deduction system. This makes the
intuition underlying subtyping very difficult to grasp (at least, for
us). Another route taken is the one of OCamlDuce [11], which jux-
taposes OCaml and CDuce’s type systems in the same language,
keeping them separated. This practical approach yields little theo-
retical problems but forces a value to be of one kind of type or an-
other, preventing the programmer from writing polymorphic XML
transformations. Lastly, XHaskell by Sulzmann et al. [24] mixes
Haskell type classes with XDuce regular expression types but has
two main drawbacks. First, every polymorphic variable must be
annotated wherever it is instantiated with an XML type. Second,
even without inference of explicit annotations (which they do not
address), their system requires several restrictions to be decidable
(while our system with explicit type-substitutions is decidable).

8. Conclusion
The work presented in this and in its companion paper [5] pro-
vides the theoretical basis and all the algorithmic tools needed to
design and implement polymorphic functional languages for semi-
structured data and, more generally, for functional languages with
recursive types and set-theoretic unions, intersections, and nega-
tions. In particular, our results pave the way to the polymorphic
extension of CDuce [2] and to the definition of a real type system
for XQuery 3.0 [10] (not just one in which all higher-order func-
tions have type “function()”). Thanks to local type inference and
type reconstruction defined in the second part of this work, these
languages can have a syntax and semantics very close to those of
OCaml or Haskell, but will include primitives (in particular, com-
plex patterns) to exploit the great expressive power of full-fledged
set-theoretic types.

Some problems are still open, notably the decidability of type-
substitution inference defined in the second part of this work, but
these are of theoretical nature and should not have any impact in
practice (as a matter of facts people program in Java and Scala even

though the decidability of their type systems is still an open ques-
tion). On the practical side, the most interesting directions of re-
search is to couple the efficient compilation of the polymorphic
calculus with techniques of static analysis that would perform par-
tial evaluation of relabeling so as to improve the efficiency of type-
case of functional values even in the rare cases in which it is more
expensive than in the monomorphic version of CDuce.
Acknowledgments. This work was partially supported by the
ANR TYPEX project n. ANR-11-BS02-007. Zhiwu Xu was also
partially supported by an Eiffel scholarship of French Ministry of
Foreign Affairs and by the grant n. 61070038 of the National Nat-
ural Science Foundation of China.

References
[1] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda

model and the completeness of type assignment. Journal of Symbolic
Logic, 48(4):931–940, 1983.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly
general purpose language. In ICFP ’03. ACM Press, 2003.

[3] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie,
J. Siméon, and M. Stefanescu. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, http://www.w3.org/TR/xquery/,
May 2003.

[4] V. Bono, B. Venneri, and L. Bettini. A typed lambda calculus with
intersection types. Theor. Comput. Sci., 398(1-3):95–113, 2008.

[5] G. Castagna, K. Nguyễn, and Z. Xu. Polymorphic functions
with set-theoretic types. Part 2: Local type inference and type re-
construction. Unpublished manuscript, available at http://hal.
archives-ouvertes.fr/hal-00880744, November 2013.

[6] G. Castagna and Z. Xu. Set-theoretic Foundation of Parametric Poly-
morphism and Subtyping. In ICFP ’11, 2011.

[7] J. Clark and M. Murata. Relax-NG, 2001. www.relaxng.org.
[8] M. Coppo, M. Dezani, and B. Venneri. Principal type schemes and

lambda-calculus semantics. In To H.B. Curry. Essays on Combinatory
Logic, Lambda-calculus and Formalism. Academic Press, 1980.

[9] J. Dunfield and F. Pfenning. Tridirectional typechecking. In
POPL ’04. ACM Press, 2004.

[10] J. Robie et al. Xquery 3.0: An XML query language (working draft
2010/12/14), 2010. http://www.w3.org/TR/xquery-30/.

[11] A. Frisch. OCaml + XDuce. In ICFP ’06, 2006.
[12] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: dealing

set-theoretically with function, union, intersection, and negation types.
The Journal of ACM, 55(4):1–64, 2008.

[13] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for
XML. ACM TOPLAS, 32(1):1–56, 2009.

[14] H. Hosoya and B.C. Pierce. XDuce: A statically typed XML process-
ing language. ACM Trans. Internet Techn., 3(2):117–148, 2003.

[15] C. Kirkegaard and A. Møller. XAct - XML transformations in Java. In
Programming Language Technologies for XML (PLAN-X), 2006.

[16] L. Liquori and S. Ronchi Della Rocca. Intersection-types à la Church.
Inf. Comput., 205(9):1371–1386, 2007.

[17] K. Zhuo Ming Lu and M. Sulzmann. An implementation of subtyping
among regular expression types. In Proc. of APLAS’04, volume 3302
of LNCS, pages 57–73. Springer, 2004.

[18] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, 1978.

[19] B.C. Pierce. Types and Programming Languages. MIT Press, 2002.
[20] F. Pottier and D. Rémy. The essence of ML type inference. In

B.C. Pierce, editor, Advanced Topics in Types and Programming Lan-
guages, chapter 10, pages 389–489. MIT Press, 2005.

[21] J.C. Reynolds. Design of the programming language Forsythe. Tech-
nical Report CMU-CS-96-146, Carnegie Mellon University, 1996.

[22] J.C. Reynolds. What do types mean?: from intrinsic to extrinsic
semantics. In Programming methodology. Springer, 2003.

[23] S. Ronchi Della Rocca. Intersection typed lambda-calculus. Electr.
Notes Theor. Comput. Sci., 70(1):163–181, 2002.

[24] M. Sulzmann, K. Zhuo, and M. Lu. XHaskell - Adding Regular
Expression Types to Haskell. In IFL, LNCS n. 5083. Springer, 2007.

[25] J. Vouillon. Polymorphic regular tree types and patterns. In POPL ’06,
pages 103–114, 2006.

[26] J.B. Wells, A. Dimock, R. Muller, and F.A. Turbak. A calculus
with polymorphic and polyvariant flow types. J. Funct. Program.,
12(3):183–227, 2002.

[27] J.B. Wells and C. Haack. Branching types. In ESOP ’02, volume 2305
of LNCS, pages 115–132. Springer, 2002.

[28] Z. Xu. Parametric Polymorphism for XML Processing Languages.
PhD thesis, Université Paris Diderot, 2013. Available at http://tel.
archives-ouvertes.fr/tel-00858744.

http://www.w3.org/TR/xquery/
http://hal.archives-ouvertes.fr/hal-00880744
http://hal.archives-ouvertes.fr/hal-00880744
www.relaxng.org
http://www.w3.org/TR/xquery-30/
http://tel.archives-ouvertes.fr/tel-00858744
http://tel.archives-ouvertes.fr/tel-00858744

Appendix

A. Explicitly-Typed Calculus
In this section, we define our explicitly-typed λ-calculus with sets of type-substitutions that we outlined in
Section 3.

A.1 Types
Definition A.1 (Types). Let V be a countable set of type variables ranged over by Greek letters α,β,γ,. . . ,
and B a finite set of basic (or constant) types ranged over by b. A type is a term co-inductively produced by
the following grammar

Types t ::= α type variable
| b basic
| t× t product
| t→ t arrow
| t ∨ t union
| ¬t negation
| 0 empty

that satisfies two additional requirements:

• (regularity) the term must have a finite number of different sub-terms.
• (contractivity) every infinite branch must contain an infinite number of occurrences of atoms (ie, either

a type variable or the immediate application of a type constructor: basic, product, arrow).

We use T to denote the set of all types.

We write t1\t2, t1∧t2, and 1 respectively as an abbreviation for t1∧¬t2, ¬(¬t1∨¬t2), and ¬0. The
condition on infinite branches bars out ill-formed types such as t = t ∨ t (which does not carry any
information about the set denoted by the type) or t = ¬t (which cannot represent any set). It also ensures
that the binary relationB⊆ T 2 defined by t1∨t2 B ti,¬t B t is Noetherian (that is, strongly normalizing).
This gives an induction principle on T that we will use without any further explicit reference to the relation.

Since types are infinite, the accessory definitions on them will be given either by using memoization
(eg, the definition of var(), the variables occurring in a type: Definition A.2), by co-inductive techniques
(eg, the definition or the application of type-substitutions: Definition A.5), or by induction on the relation
B, but only when induction does not traverse a type constructor (eg, the definition of tlv(), the variables
occurring at top-level of a type: Definition A.3).

Definition A.2 (Type variables). Let var0 and var1 be two functions from T ×P(T) to P(V) defined
as:

var0(t,i) =

{
∅ if t ∈ i
var1(t,i ∪ {t}) otherwise

var1(α,i) = {α}
var1(b,i) = ∅

var1(t1 × t2,i) = var0(t1,i) ∪ var0(t2,i)
var1(t1 → t2,i) = var0(t1,i) ∪ var0(t2,i)
var1(t1 ∨ t2,i) = var1(t1,i) ∪ var1(t2,i)

var1(¬t1,i) = var1(t1,i)
var1(0,i) = ∅

The set of type variables occurring in a type t, written var(t), is defined as var0(t, ∅). A type t is said to be
ground or closed if and only if var(t) is empty. We write T0 to denote the set of all the ground types.

Definition A.3 (Top-level variables). Let t be a type. The set tlv(t) of type variables that occur at top level
in t, that is, all the variables of t that have at least one occurrence not under a constructor, is defined as:

tlv(α) = {α}
tlv(b) = ∅

tlv(t1 × t2) = ∅
tlv(t1 → t2) = ∅
tlv(t1 ∨ t2) = tlv(t1) ∪ tlv(t2)

tlv(¬t1) = tlv(t1)
tlv(0) = ∅

Definition A.4 (Type substitution). A type-substitution σ is a total mapping of type variables to types
that is the identity everywhere but on a finite subset of V , which is called the domain of σ and denoted by
dom(σ). We use the notation {t1/α1, . . . , tn/αn} to denote the type-substitution that maps αi to ti for i =
1..n. Given a substitution σ, the range of σ is defined as the set of types ran(σ) = {σ(α) | α ∈ dom(σ)},
and the set of type variables occurring in the range is defined as tvran(σ) =

⋃
α∈dom(σ) var(σ(α)).

Definition A.5. Given a type t ∈ T and a type-substitution σ, the application of σ to t is co-inductively
defined as follows:

bσ = b
(t1 × t2)σ = (t1σ)× (t2σ)

(t1 → t2)σ = (t1σ)→ (t2σ)
(t1 ∨ t2)σ = (t1σ) ∨ (t2σ)

(¬t)σ = ¬(tσ)
0σ = 0
ασ = σ(α) if α ∈ dom(σ)
ασ = α if α 6∈ dom(σ)

Definition A.6. Let σ1 and σ2 be two substitutions such that dom(σ1)∩ dom(σ2) = ∅ (σ1] σ2 for short).
Their union σ1 ∪ σ2 is defined as

(σ1 ∪ σ2)(α) =


σ1(α) α ∈ dom(σ1)

σ2(α) α ∈ dom(σ2)

α otherwise

A.2 Expressions
Definition A.7 (Expressions). Let C be a set of constants ranged over by c and X a countable set
of expression variables ranged over by x,y,z,. . . . An expression e is a term inductively generated by the
following grammar:

Expressions e ::= c constant
| x expression variable
| (e, e) pair
| πi(e) projection(i ∈ {1, 2})
| λ∧i∈I ti→si[σj]j∈J

x.e abstraction
| e e application
| e∈t ? e : e type case
| e[σj]j∈J instantiation

where ti, si range over types, t ∈ T0 is a ground type and σj ranges over type-substitutions. We write E to
denote the set of all expressions.

A λ-abstraction comes with a non-empty sequence of arrow types (called its interface) and a possibly
empty set of type-substitutions (called its decorations). When the decoration is an empty set, we write
λ(∧i∈I ti→si)x.e for short.

Since expressions are inductively generated, the accessory definitions on them can be given by induction.
Given a set of type variables ∆ and a set of type-substitutions [σj]j∈J , for simplicity, we use the notation

∆[σj]j∈J to denote the set of type variables occurring in the applications ασj for all α ∈ ∆, j ∈ J , that is:

∆[σj]j∈J
def
=
⋃
j∈J

(
⋃
α∈∆

var(σj(α)))

Definition A.8. Let e be an expression. The set fv(e) of free variables of the expression e is defined by
induction as:

fv(x) = {x}
fv(c) = ∅

fv((e1, e2)) = fv(e1) ∪ fv(e2)
fv(πi(e)) = fv(e)

fv(λ
∧i∈I ti→si
[σj]j∈J

x.e) = fv(e) \ {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)

fv(e∈t ? e1 : e2) = fv(e) ∪ fv(e1) ∪ fv(e2)
fv(e[σj]j∈J) = fv(e)

The set bv(e) of bound variables of the expression e is defined by induction as:

bv(x) = ∅
bv(c) = ∅

bv((e1, e2)) = bv(e1) ∪ bv(e2)
bv(πi(e)) = bv(e)

bv(λ
∧i∈I ti→si
[σj]j∈J

x.e) = bv(e) ∪ {x}
bv(e1 e2) = bv(e1) ∪ bv(e2)

bv(e∈t ? e1 : e2) = bv(e) ∪ bv(e1) ∪ bv(e2)
bv(e[σj]j∈J) = bv(e)

The set tv(e) of type variables occurring in e is defined by induction as:
tv(x) = ∅
tv(c) = ∅

tv((e1, e2)) = tv(e1) ∪ tv(e2)
tv(πi(e)) = tv(e)

tv(λ
∧i∈I ti→si
[σj]j∈J

x.e) = tv(e[σj]j∈J) ∪ var(
∧
i∈I,j∈J tiσj → siσj)

tv(e1 e2) = tv(e1) ∪ tv(e2)
tv(e∈t ? e1 : e2) = tv(e) ∪ tv(e1) ∪ tv(e2)

tv(e[σj]j∈J) = (tv(e))[σj]j∈J

An expression e is closed if fv(e) is empty.

Note that the set of type variables in e[σj]j∈J is the set returned by the “application” of [σj]j∈J to the
set tv(e).

Next, we define expression substitutions. Recall that, as stated in Section 3.1, when substituting an
expression e for a variable y in an expression e′, we suppose the polymorphic type variables of e′ to be
distinct from the monomorphic and polymorphic type variables of e to avoid unwanted captures. In the
discussion in Section 3.1, the definitions of the notions of polymorphic and monomorphic variables remain
informal. To make them more formal, we would have to distinguish between the two by carrying around a set
of type variables ∆ which would contain the monomorphic variables that cannot be α-converted. Then all
definitions (such as expression substitutions, for example) would have to be parameterized with ∆, making
the definitions and technical developments difficult to read just because of α-conversion. Therefore, for the
sake of readability, we decided to keep the distinction between polymorphic and monomorphic variables
informal.

Definition A.9 (Expression substitution). An expression substitution % is a total mapping of expression
variables to expressions that is the identity everywhere but on a finite subset of X , which is called the
domain of % and denoted by dom(%). We use the notation {e1/x1, . . . , en/xn} to denote the expression
substitution that maps xi into ei for i = 1..n.

The definitions of free variables, bound variables, and type variables are extended to expression
substitutions as follows.

fv(%) =
⋃

x∈dom(%)

fv(%(x)), bv(%) =
⋃

x∈dom(%)

bv(%(x)), tv(%) =
⋃

x∈dom(%)

tv(%(x))

Next, we define the application of an expression substitution % to an expression e. To avoid unwanted
captures, we remind that we assume that the bound variables of e do not occur in the domain of % and that
the polymorphic type variables of e are distinct from the type variables occurring in % (using α-conversion
if necessary).

Definition A.10. Given an expression e ∈ E and an expression substitution %, the application of % to e is
defined as follows:

c% = c
(e1, e2)% = (e1%, e2%)
(πi(e))% = πi(e%)

(λ
∧i∈I ti→si
[σj]j∈J

x.e)% = λ
∧i∈I ti→si
[σj]j∈J

x.(e%)

(e1 e2)% = (e1%) (e2%)
(e∈t ? e1 : e2)% = e%∈t ? e1% : e2%

x% = %(x) if x ∈ dom(%)
x% = x if x 6∈ dom(%)

(e[σj]j∈J)% = (e%)[σj]j∈J

In the case for instantiation (e[σj]j∈J)%, the σj operate on the polymorphic type variables, which
we assume distinct from the variables in % (using α-conversion if necessary). As a result, we have
tv(%) ∩

⋃
j∈J dom(σj) = ∅. Similarly, in the abstraction case, we have x /∈ dom(%).

Next, we define the relabeling of an expression e with a set of type-substitutions [σj]j∈J , which consists
in propagating the σj to the λ-abstractions in e if needed. We suppose that the polymorphic type variables
in e are distinct from the type variables in the range of σj (this is always possible using α-conversion).

Definition A.11 (Relabeling). Given an expression e ∈ E and a set of type-substitutions [σj]j∈J , we define
the relabeling of e with [σj]j∈J , written e@[σj]j∈J , as e if tv(e) ∩

⋃
j∈J dom(σj) = ∅, and otherwise as

follows:
(e1, e2)@[σj]j∈J = (e1@[σj]j∈J , e2@[σj]j∈J)
(πi(e))@[σj]j∈J = πi(e@[σj]j∈J)
(e1 e2)@[σj]j∈J = (e1@[σj]j∈J) (e2@[σj]j∈J)

(e∈t ? e1 : e2)@[σj]j∈J = e@[σj]j∈J∈t ? e1@[σj]j∈J : e2@[σj]j∈J
(e[σi]i∈I)@[σj]j∈J = e@([σj]j∈J ◦ [σi]i∈I)

(λ
∧i∈I ti→si
[σk]k∈K

x.e)@[σj]j∈J = λ
∧i∈I ti→si
[σj]j∈J◦[σk]k∈K

x.e

The substitutions are not propagated if they do not affect the variables of e (i.e., if tv(e)∩
⋃
j∈J dom(σj) =

∅). In particular, constants and variables are left unchanged, as they do not contain any type variable. Sup-
pose now that tv(e) ∩

⋃
j∈J dom(σj) 6= ∅. In the abstraction case, the propagated substitutions are

composed with the decorations of the abstraction, without propagating them further down in the body.
Propagation in the body occurs, whenever is needed, that is, during either reduction (see (Rappl) in Section
A.4) or type-checking (see (abstr) in Section A.3). In the instantiation case e[σi]i∈I , we propagate the result
of the composition of [σi]i∈I with [σj]j∈J in e. The remaining cases are simple inductive cases. Finally
notice that in a type case e∈t ? e1 : e2, we do not apply [σj]j∈J to t, simply because t is ground.

A.3 Type System
Because of the type directed nature of our calculus (ie, the presence of the type-case expression), its dynamic
semantics is defined only for well-typed expressions. Therefore, we introduce the type system before giving
the reduction rules.

Definition A.12 (Typing environment). A typing environment Γ is a finite mapping from expression
variables X to types T , and written as a finite set of pairs {(x1 : t1), . . . , (xn : tn)}. The set of expression
variables defined in Γ is called the domain of Γ, denoted by dom(Γ). The set of type variables occurring
in Γ, that is,

⋃
(x:t)∈Γ var(t), is denoted by var(Γ). If Γ is a type environment, then Γ, (x : t) is the type

environment defined as

(Γ, (x : t))(y) =

{
t if y = x

Γ(y) otherwise

We extend the definition of type-substitution application to type environments by applying the type-
substitution to each type in the type environment as follows:

Γσ = {(x : tσ) | (x : t) ∈ Γ}
The typing judgment for expressions has the form ∆ ; Γ ` e : t, which states that under the set ∆ of

(monomorphic) type variables and the typing environment Γ the expression e has type t. When ∆ and Γ
are both empty, we write ` e : t for short. We assume that there is a basic type bc for each constant c. We
write σ]∆ as abbreviation for dom(σ)∩∆ = ∅. The typing rules are given in Figure 3 which are the same
as in Section 3 except for the rules for products.

∆ ; Γ ` c : bc
(const)

∆ ; Γ ` x : Γ(x)
(var)

∆ ; Γ ` e1 : t1 ∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : t1 × t2
(pair)

∆ ; Γ ` e : t1 × t2
∆ ; Γ ` πi(e) : ti

(proj)
∆ ; Γ ` e1 : t1 → t2 ∆ ; Γ ` e2 : t1

∆ ; Γ ` e1e2 : t2
(appl)

∆′ = ∆ ∪ var(
∧

i∈I,j∈J

tiσj → siσj)

∀i ∈ I, j ∈ J. ∆′ ; Γ, (x : tiσj) ` e@[σj] : siσj

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e :

∧
i∈I,j∈J

tiσj → siσj
(abstr)

∆ ; Γ ` e : t′
{
t′ 6≤ ¬t ⇒ ∆ ; Γ ` e1 : s
t′ 6≤ t ⇒ ∆ ; Γ ` e2 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s
(case)

∆ ; Γ ` e : t σ] ∆

∆ ; Γ ` e[σ] : tσ
(inst)

∀j ∈ J. ∆ ; Γ ` e[σj] : tj |J | > 1

∆ ; Γ ` e[σj]j∈J :
∧
j∈J

tj
(inter)

∆ ; Γ ` e : s s ≤ t
∆ ; Γ ` e : t

(subsum)

Figure 3. Typing rules

A.4 Operational Semantics
Definition A.13 (Values). An expression e is a value if it is closed, well-typed (ie, ` e : t for some type t),
and produced by the following grammar:

Values v ::= c | (v, v) | λ(∧i∈I ti→si)
[σj]j∈J

x.e

We write V to denote the set of all values.

Definition A.14 (Context). Let the symbol [_] denote a hole. A context C[_] is an expression with a hole:

Contexts C[_] ::= [_]
| (C[_], e) | (e, C[_])
| C[_] e | e C[_]
| C[_]∈t ? e : e | e∈t ?C[_] : e | e∈t ? e :C[_]
| πi(C[_])

An evaluation context E[_] is a context that implements outermost leftmost reduction:

Evaluation Contexts E[_] ::= [_]
| (E[_], e) | (v,E[_])
| E[_] e | v E[_]
| E[_]∈t ? e : e
| πi(E[_])

We use C[e] and E[e] to denote the expressions obtained by replacing e for the hole in C[_] and E[_],
respectively.

We define a small-step call-by-value operational semantics for the calculus. The semantics is given by
the relation , which is shown in Figure 4. There are four notions of reduction: one for projections, one
for applications, one for type cases, and one for instantiations, plus context closure. Henceforth we will
establish all the properties for the reduction using generic contexts but, of course, these holds also when the
more restrictive evaluation contexts are used.

Notions of reduction:
(Rproj) πi(v1, v2) vi

(Rappl) (λ
∧i∈I ti→si
[σj]j∈J

x.e′)v (e′@[σj]j∈P){v/x}
where P = {j∈J | ∃i∈I. ` v : tiσj}

(Rcase) (v∈t ? e1 : e2)

{
e1 if ` v : t
e2 otherwise

(Rinst) e[σj]j∈J e@[σj]j∈J

Context closure:

(Rctx)
e e′

C[e] C[e′]

Figure 4. Operational semantics of the calculus

The (Rproj) rule is the standard projection rule while the other notions of reduction have already been
explained in Section 3.3.

We used a call-by-value semantics for application to ensure the type soundness property: subject
reduction (or type preservation) and progress (closed and well-typed expressions which are not values can
be reduced), which are discussed in Section B.2. To understand why, consider each basic reduction rule in
turn.

The requirement that the argument of a projection must be a value is imposed to ensure that the property
of subject reduction holds. Consider the expression e = π1(e1, e2) where e1 is an expression of type t1
(different from 0) and e2 is a (diverging) expression of type 0. Clearly, the type system assigns the type
t1 × 0 to (e1, e2). In our system, a product type with an empty component is itself empty, and thus e has
type 0. Therefore the type of the projection as well has type 0 (since 0 ≤ 0 × 0, then by subsumption
(e1, e2) : 0× 0 and the result follows from the (proj) typing rule). If it were possible to reduce a projection
when the argument is not a value, then e could be reduced to e1, which has type t1: type preservation would
be violated.

Likewise, the reduction rule for applications requires the argument to be a value. Let us consider the
application (λ(t→t×t)∧(s→s×s)x.(x, x))(e), where ` e : t ∨ s. The type system assigns to the abstraction
the type (t→ t× t)∧ (s→ s× s), which is a subtype of (t∨ s)→ ((t× t)∨ (s× s)). By subsumption,
the abstraction has type (t∨ s)→ ((t× t)∨ (s× s)), and thus, the application has type (t× t)∨ (s× s). If
the semantics permits to reduce an application when the argument is not a value, then this application could
be reduced to the expression (e, e), which has type (t ∨ s)× (t ∨ s) but not (t× t) ∨ (s× s).

Finally, if we allowed (e∈t ? e1 : e2) to reduce to e1 when ` e : t but e is not a value, we could break
type preservation. For example, assume that ` e : 0. Then the type system would not check anything about
the branches e1 and e2 (see the typing rule (case) in Figure 3) and so e1 could be ill-typed.

Notice that in all these cases the usage of values ensures subject reduction but it is not a necessary
condition: in some cases weaker constraints could be used. For instance, in order to check whether an
expression is a list of integers, in general it is not necessary to fully evaluate the whole list: the head and
the type of the tail are all that is needed. Studying weaker conditions for the reduction rules is an interesting
topic, which we leave for future work, in particular, in the view of adapting our framework to lazy languages.

B. Properties of the Type System
In this section we present some properties of our type system. First, we study its syntactic meta-theory:
in particular, we prove admissibility of the intersection rule, a generation lemma for values, and that
substitutions preserve typing. These properties are needed to prove soundness, the fundamental property
which links every type system of a calculus with its operational counterpart: well-typed expressions do not
go wrong [18]. Next, we prove that the explicitly-typed calculus is able to derive the same typing judgments
as the BCD intersection type system defined by Barendregt, Coppo, and Dezani [1]. Finally, we prove that
the expressions of the form e[σj]j∈J are redundant insofar as their presence in the calculus does not increase
its expressive power.

B.1 Syntactic meta-theory
Lemma B.1. If ∆ ; Γ ` e : t and var(Γ) ⊆ ∆, then var(Γ′) ⊆ ∆′ holds for every judgment ∆′ ; Γ′ ` e′ : t′

in the derivation of ∆ ; Γ ` e : t.

Proof. By induction on the derivation of ∆ ; Γ ` e : t.

Lemma B.2 (Admissibility of intersection introduction). Let e be an expression. If ∆ ; Γ ` e : t and
∆ ; Γ ` e : t′, then ∆ ; Γ ` e : t ∧ t′.

Proof. The proof proceeds by induction on the two typing derivations. First, assume that these two
derivations end with an instance of the same rule corresponding to the top-level constructor of e.

(const): both derivations end with an instance of (const):

∆ ; Γ ` c : bc
(const)

∆ ; Γ ` c : bc
(const)

Trivially, we have bc ∧ bc ' bc, by subsumption, the result follows.
(var): both derivations end with an instance of (var):

∆ ; Γ ` x : Γ(x)
(var)

∆ ; Γ ` x : Γ(x)
(var)

Trivially, we have Γ(x) ∧ Γ(x) ' Γ(x), by subsumption, the result follows.
(pair): both derivations end with an instance of (pair):

. . .
∆ ; Γ ` e1 : t1

. . .
∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : (t1 × t2)
(pair)

. . .

∆ ; Γ ` e1 : t′1

. . .

∆ ; Γ ` e2 : t′2

∆ ; Γ ` (e1, e2) : (t′1 × t′2)
(pair)

By induction, we have ∆ ; Γ ` ei : (ti ∧ t′i). Then the rule (pair) gives us ∆ ; Γ ` (e1, e2) : (t1 ∧ t′1)×
(t2 ∧ t′2). Moreover, because intersection distributes over products, we have (t1 ∧ t′1) × (t2 ∧ t′2) '
(t1 × t2) ∧ (t′1 × t′2). Then by (subsum), we have ∆ ; Γ ` (e1, e2) : (t1 × t2) ∧ (t′1 × t′2).

(proj): both derivations end with an instance of (proj):
. . .

∆ ; Γ ` e′ : t1 × t2
∆ ; Γ ` πi(e′) : ti

(proj)

. . .

∆ ; Γ ` e′ : t′1 × t′2
∆ ; Γ ` πi(e′) : t′i

(proj)

By induction, we have ∆ ; Γ ` e′ : (t1×t2)∧(t′1×t′2). Since (t1∧t′1)×(t2∧t′2) ' (t1×t2)∧(t′1×t′2)
(see the case of (pair)), by (subsum), we have ∆ ; Γ ` e′ : (t1 ∧ t′1) × (t2 ∧ t′2). Then the rule (proj)
gives us ∆ ; Γ ` πi(e′) : ti ∧ t′i.

(appl): both derivations end with an instance of (appl):
. . .

∆ ; Γ ` e1 : t1 → t2

. . .
∆ ; Γ ` e2 : t1

∆ ; Γ ` e1 e2 : t2
(appl)

. . .

∆ ; Γ ` e1 : t′1 → t′2

. . .

∆ ; Γ ` e2 : t′1

∆ ; Γ ` e1 e2 : t′2
(appl)

By induction, we have ∆ ; Γ ` e1 : (t1 → t2) ∧ (t′1 → t′2) and ∆ ; Γ ` e2 : t1 ∧ t′1. Because
intersection distributes over arrows, we have (t1 → t2) ∧ (t′1 → t′2) ≤ (t1 ∧ t′1) → (t2 ∧ t′2). Then
by the rule (subsum), we get ∆ ; Γ ` e1 : (t1 ∧ t′1) → (t2 ∧ t′2). Finally, by applying (appl), we get
∆ ; Γ ` e1 e2 : t2 ∧ t′2 as expected.

(abstr): both derivations end with an instance of (abstr):

∀i ∈ I, j ∈ J.
. . .

∆′ ; Γ, (x : tiσj) ` e′@[σj] : siσj
∆′ = ∆ ∪ var(

∧
i∈I,j∈J tiσj → siσj)

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e′ :

∧
i∈I,j∈J tiσj → siσj

∀i ∈ I, j ∈ J.
. . .

∆′ ; Γ, (x : tiσj) ` e′@[σj] : siσj
∆′ = ∆ ∪ var(

∧
i∈I,j∈J tiσj → siσj)

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e′ :

∧
i∈I,j∈J tiσj → siσj

It is clear that
(
∧

i∈I,j∈J

tiσj → siσj) ∧ (
∧

i∈I,j∈J

tiσj → siσj) '
∧

i∈I,j∈J

tiσj → siσj

By subsumption, the result follows.
(case): both derivations end with an instance of (case):

. . .
∆ ; Γ ` e0 : t0


t0 6≤ ¬t ⇒

. . .
∆ ; Γ ` e1 : s

t0 6≤ t ⇒
. . .

∆ ; Γ ` e2 : s

∆ ; Γ ` (e0∈t ? e1 : e2) : s
(case)

. . .

∆ ; Γ ` e0 : t′0


t′0 6≤ ¬t ⇒

. . .

∆ ; Γ ` e1 : s′

t′0 6≤ t ⇒
. . .

∆ ; Γ ` e2 : s′

∆ ; Γ ` (e0∈t ? e1 : e2) : s′
(case)

By induction, we have ∆ ; Γ ` e0 : t0 ∧ t′0. Suppose t0 ∧ t′0 6≤ ¬t; then t0 6≤ ¬t and t′0 6≤ ¬t.
Consequently, the branch e1 has been type-checked in both cases, and we have ∆ ; Γ ` e1 : s ∧ s′ by
the induction hypothesis. Similarly, if t0 ∧ t′0 6≤ t, then we have ∆ ; Γ ` e2 : s ∧ s′. Consequently, we
have ∆ ; Γ ` (e0∈t ? e1 : e2) : s ∧ s′ by the rule (case).

(inst): both derivations end with an instance of (inst):
. . .

∆ ; Γ ` e′ : t σ] ∆

∆ ; Γ ` e′[σ] : tσ
(inst)

. . .

∆ ; Γ ` e′ : t′ σ] ∆

∆ ; Γ ` e′[σ] : t′σ
(inst)

By induction, we have ∆ ; Γ ` e′ : t ∧ t′. Since σ] ∆, the rule (inst) gives us ∆ ; Γ ` e′[σ] : (t ∧ t′)σ,
that is ∆ ; Γ ` e′[σ] : (tσ) ∧ (t′σ).

(inter): both derivations end with an instance of (inter):

∀j ∈ J.
. . .

∆ ; Γ ` e′[σj] : tj

∆ ; Γ ` e′[σj]j∈J :
∧
j∈J tj

(inter)
∀j ∈ J.

. . .

∆ ; Γ ` e′[σj] : t′j

∆ ; Γ ` e′[σj]j∈J :
∧
j∈J t

′
j

(inter)

where |J | > 1. By induction, we have ∆ ; Γ ` e′[σj] : tj ∧ t′j for all j ∈ J . Then the rule (inter) gives
us ∆ ; Γ ` e′[σj]j∈J :

∧
j∈J(tj ∧ t′j), that is, ∆ ; Γ ` e′[σj]j∈J : (

∧
j∈J tj) ∧ (

∧
j∈J t

′
j).

Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), for
instance,

. . .

∆ ; Γ ` e′ : s s ≤ t
∆ ; Γ ` e′ : t

(subsum)
. . .

∆ ; Γ ` e′ : t′

By induction, we have ∆ ; Γ ` e′ : s ∧ t′. Since s ≤ t, we have s ∧ t′ ≤ t ∧ t′. Then the rule (subsum)
gives us ∆ ; Γ ` e′ : t ∧ t′ as expected.

Lemma B.3 (Generation for values). Let v be a value. Then

1. If ∆ ; Γ ` v : b, then v is a constant c and bc ≤ b.
2. If ∆ ; Γ ` v : t1 × t2, then v has the form of (v1, v2) with ∆ ; Γ ` vi : ti.
3. If ∆ ; Γ ` v : t→ s, then v has the form of λ∧i∈I ti→si[σj]j∈J

x.e0 with
∧
i∈I,j∈J(tiσj → siσj) ≤ t→ s.

Proof. By a simple examination of the rules it is easy to see that a derivation for ∆ ; Γ ` v : t is always
formed by an instance of the rule corresponding to the kind of v (i.e., (const) for constants, (pair) for pairs,
and (abstr) for abstractions), followed by zero or more instances of (subsum). By induction on the depth of
the derivation it is then easy to prove that if ∆ ; Γ ` v : t is derivable, then t 6≡ 0. The lemma then follows

by induction on the number of the instances of the subsumption rule that end the derivation of ∆ ; Γ ` v : t.
The base cases are straightforward, while the inductive cases are:

∆ ; Γ ` v : b: v is by induction a constant c such that bc ≤ b.
∆ ; Γ ` v : t1 × t2: v is by induction a pair (v1, v2) and t′ is form of (t′1 × t′2) such that ∆ ; Γ ` vi : t′i.

Here we use the fact that the type of a value cannot be 0: since 0 6' (t′1× t′2) ≤ (t1× t2), then we have
t′i ≤ ti. Finally, by (subsum), we have ∆ ; Γ ` vi : ti.

∆ ; Γ ` v : t→ s: v is by induction an abstraction λ∧i∈I ti→si[σj]j∈J
x.e0 such that

∧
i∈I,j∈J(tiσj → siσj) ≤

t→ s.

Lemma B.4. Let e be an expression and [σj]j∈J , [σk]k∈K two sets of type substitutions. Then
(e@[σj]j∈J)@[σk]k∈K = e@([σk]k∈K ◦ [σj]j∈J)

Proof. By induction on the structure of e.

e = c:
(c@[σj]j∈J)@[σk]k∈K = c@[σk]k∈K

= c
= c@([σk]k∈K ◦ [σj]j∈J)

e = x:
(x@[σj]j∈J)@[σk]k∈K = x@[σk]k∈K

= x
= x@([σk]k∈K ◦ [σj]j∈J)

e = (e1, e2):
((e1, e2)@[σj]j∈J)@[σk]k∈K = (e1@[σj]j∈J , e2@[σj]j∈J)@[σk]k∈K

= ((e1@[σj]j∈J)@[σk]k∈K , (e2@[σj]j∈J)@[σk]k∈K) (by induction)
= (e1@([σk]k∈K ◦ [σj]j∈J), e2@([σk]k∈K ◦ [σj]j∈J))
= (e1, e2)@([σk]k∈K ◦ [σj]j∈J)

e = πi(e
′):

(πi(e
′)@[σj]j∈J)@[σk]k∈K = (πi(e

′@[σj]j∈J))@[σk]k∈K
= πi((e

′@[σj]j∈J)@[σk]k∈K) (by induction)
= πi(e

′@([σk]k∈K ◦ [σj]j∈J))
= πi(e

′)@([σk]k∈K ◦ [σj]j∈J)
e = e1e2:
((e1e2)@[σj]j∈J)@[σk]k∈K = ((e1@[σj]j∈J)(e2@[σj]j∈J))@[σk]k∈K

= ((e1@[σj]j∈J)@[σk]k∈K)((e2@[σj]j∈J)@[σk]k∈K) (by induction)
= (e1@([σk]k∈K ◦ [σj]j∈J))(e2@([σk]k∈K ◦ [σj]j∈J))
= (e1e2)@([σk]k∈K ◦ [σj]j∈J)

e = λ
∧i∈I ti→si
[σj′]j′∈J′

x.e′:

((λ
∧i∈I ti→si
[σj′]j′∈J′

x.e′)@[σj]j∈J)@[σk]k∈K = (λ
∧i∈I ti→si
[σj]j∈J◦[σj′]j′∈J′

x.e′)@[σk]k∈K

= (λ
∧i∈I ti→si
[σk]k∈K◦[σj]j∈J◦[σj′]j′∈J′

x.e′)

= (λ
∧i∈I ti→si
[σj′]j′∈J′

x.e′)@([σk]k∈K ◦ [σj]j∈J)

e = e0∈t ? e1 : e2: similar to e = (e1, e2)

e = e′[σi]i∈I :
((e′[σi]i∈I)@[σj]j∈J)@[σk]k∈K = (e′@([σj]j∈J ◦ [σi]i∈I))@[σk]k∈K

= e′@([σk]k∈K ◦ [σj]j∈J ◦ [σi]i∈I) (by induction)
= (e′[σi]i∈I)@([σk]k∈K ◦ [σj]j∈J)

Lemma B.5. Let e be an expression, % an expression substitution and [σj]j∈J a set of type substitutions
such that tv(%) ∩

⋃
j∈J dom(σj) = ∅. Then (e%)@[σj]j∈J = (e@[σj]j∈J)%.

Proof. By induction on the structure of e.

e = c:
(c%)@[σj]j∈J = c@[σj]j∈J

= c
= c%
= (c@[σj]j∈J)%

e = x: if x /∈ dom(%), then
(x%)@[σj]j∈J = x@[σj]j∈J

= x
= x%
= (x@[σj]j∈J)%

Otherwise, let %(x) = e′. As tv(%)∩
⋃
j∈J dom(σj) = ∅, we have tv(e′)∩

⋃
j∈J dom(σj) = ∅. Then

(x%)@[σj]j∈J = e′@[σj]j∈J
= e′

= x%
= (x@[σj]j∈J)%

e = (e1, e2):
((e1, e2)%)@[σj]j∈J = (e1%, e2%)@[σj]j∈J

= ((e1%)@[σj]j∈J , (e2%)@[σj]j∈J)
= ((e1@[σj]j∈J)%, (e2@[σj]j∈J)%) (by induction)
= (e1@[σj]j∈J , e2@[σj]j∈J)%
= ((e1, e2)@[σj]j∈J)%

e = πi(e
′):

(πi(e
′)%)@[σj]j∈J = (πi(e

′%))@[σj]j∈J
= πi((e

′%)@[σj]j∈J)
= πi((e1@[σj]j∈J)%) (by induction)
= πi(e

′@[σj]j∈J)%
= ((πi(e

′))@[σj]j∈J)%
e = e1e2:

((e1e2)%)@[σj]j∈J = ((e1%)(e2%))@[σj]j∈J
= ((e1%)@[σj]j∈J)((e2%)@[σj]j∈J)
= ((e1@[σj]j∈J)%)((e2@[σj]j∈J)%) (by induction)
= ((e1@[σj]j∈J)(e2@[σj]j∈J))%
= ((e1e2)@[σj]j∈J)%

e = λ
∧i∈I ti→si
[σk]k∈K

x.e′:

((λ
∧i∈I ti→si
[σk]k∈K

x.e′)%)@[σj]j∈J = (λ
∧i∈I ti→si
[σk]k∈K

x.(e′%))@[σj]j∈J

= λ
∧i∈I ti→si
[σj]j∈J◦[σk]k∈K

x.(e′%)

= (λ
∧i∈I ti→si
[σj]j∈J◦[σk]k∈K

x.e′)% (because tv(%) ∩
⋃
j∈J dom(σj) = ∅)

= ((λ
∧i∈I ti→si
[σk]k∈K

x.e′)@[σj]j∈J)%

e = e0∈t ? e1 : e2:
((e0∈t ? e1 : e2)%)@[σj]j∈J

= ((e0%)∈t ? (e1%) : (e2%))@[σj]j∈J
= ((e0%)@[σj]j∈J)∈t ? ((e1%)@[σj]j∈J) : ((e2%)@[σj]j∈J)
= ((e0@[σj]j∈J)%)∈t ? ((e1@[σj]j∈J)%) : ((e2@[σj]j∈J)%) (by induction)
= ((e0@[σj]j∈J)∈t ? (e1@[σj]j∈J) : (e2@[σj]j∈J))%
= ((e0∈t ? e1 : e2)@[σj]j∈J)%

e = e′[σk]k∈K : using α-conversion on the polymorphic type variables of e, we can assume tv(%) ∩⋃
k∈K dom(σk) = ∅. Consequently we have tv(%) ∩

⋃
j∈J,k∈K dom(σj ◦ σk) = ∅, and we deduce

((e′[σk]k∈K)%)@[σj]j∈J = ((e′%)[σk]k∈K)@[σj]j∈J
= (e′%)@([σj]j∈J ◦ [σk]k∈K)
= (e′%)@[σj ◦ σk]j∈J,k∈K
= (e′@[σj ◦ σk]j∈J,k∈K)% (by induction)
= (e′@([σj]j∈J ◦ [σk]k∈K))%
= ((e′[σk]k∈K)@[σj]j∈J)%

Lemma B.6 ([Expression] substitution lemma). Let e, e1, . . . , en be expressions, x1, . . . , xn distinct
variables, and t, t1, . . . , tn types. If ∆ ; Γ, (x1 : t1), . . . , (xn : tn) ` e : t and ∆ ; Γ ` ei : ti for all i, then
∆ ; Γ ` e{e1/x1, . . . , en/xn} : t.

Proof. By induction on the typing derivations for ∆ ; Γ, (x1 : t1), . . . , (xn : tn) ` e : t. We simply “plug”
a copy of the derivation for ∆ ; Γ ` ei : ti wherever the rule (var) is used for variable xi. For simplicity,
in what follows, we write Γ′ for Γ, (x1 : t1), . . . , (xn : tn) and % for {e1/x1, . . . , en/xn}. We proceed by a
case analysis on the last applied rule.

(const): straightforward.
(var): e = x and ∆ ; Γ′ ` x : Γ′(x).

If x = xi, then Γ′(x) = ti and x% = ei. From the premise, we have ∆ ; Γ ` ei : ti. The result follows.
Otherwise, Γ′(x) = Γ(x) and x% = x. Clearly, we have ∆ ; Γ ` x : Γ(x). Thus the result follows as
well.

(pair): consider the following derivation:
. . .

∆ ; Γ′ ` e1 : t1

. . .

∆ ; Γ′ ` e1 : t1

∆ ; Γ′ ` (e1, e2) : (t1 × t2)
(pair)

By applying the induction hypothesis twice, we have ∆ ; Γ ` ei% : ti. By (pair), we get ∆ ; Γ `
(e1%, e2%) : (t1 × t2), that is, ∆ ; Γ ` (e1, e2)% : (t1 × t2).

(proj): consider the following derivation:
. . .

∆ ; Γ′ ` e′ : t1 × t2
∆ ; Γ′ ` πi(e′) : ti

(proj)

By induction, we have ∆ ; Γ ` e′% : t1 × t2. Then the rule (proj) gives us ∆ ; Γ ` πi(e′%) : ti, that is
∆ ; Γ ` πi(e′)% : ti.

(abstr): consider the following derivation:
. . .

∀i ∈ I, j ∈ J. ∆′ ; Γ′, (x : tiσj) ` e′@[σj] : siσj
∆′ = ∆ ∪ var(

∧
i∈I,j∈J tiσj → siσj)

∆ ; Γ′ ` λ∧i∈I ti→si[σj]j∈J
x.e′ :

∧
i∈I,j∈J tiσj → siσj

(abstr)

By α-conversion, we can ensure that tv(%) ∩
⋃
j∈J dom(σj) = ∅. By induction, we have ∆′ ; Γ, (x :

tiσj) ` (e′@[σj])% : siσj for all i ∈ I and j ∈ J . Because tv(%) ∩ dom(σj) = ∅, by Lemma B.5,
we get ∆′ ; Γ, (x : tiσj) ` (e′%)@[σj] : siσj . Then by applying (abstr), we obtain ∆ ; Γ `
λ
∧i∈I ti→si
[σj]j∈J

x.(e′%) :
∧
i∈I,j∈J tiσj → siσj . That is, ∆ ; Γ ` (λ

∧i∈I ti→si
[σj]j∈J

x.e)% :
∧
i∈I,j∈J tiσj →

siσj (because tv(%) ∩
⋃
j∈J dom(σj) = ∅).

(case): consider the following derivation:

. . .

∆ ; Γ′ ` e0 : t′


t′ 6≤ ¬t ⇒

. . .

∆ ; Γ′ ` e1 : s

t′ 6≤ t ⇒
. . .

∆ ; Γ′ ` e2 : s

∆ ; Γ′ ` (e0∈t ? e1 : e2) : s
(case)

By induction, we have ∆ ; Γ ` e0% : t′ and ∆ ; Γ ` ei% : s (for i such that ∆ ; Γ′ ` ei : s has been
type-checked in the original derivation). Then the rule (case) gives us ∆ ; Γ ` (e0%∈t ? e1% : e2%) : s
that is ∆ ; Γ ` (e0∈t ? e1 : e2)% : s.

(inst):
. . .

∆ ; Γ′ ` e′ : s σ] ∆

∆ ; Γ′ ` e′[σ] : sσ
(inst)

Using α-conversion on the polymorphic type variables of e, we can assume tv(%) ∩ dom(σ) = ∅. By
induction, we have ∆ ; Γ ` e′% : s. Since σ] ∆, by applying (inst) we obtain ∆ ; Γ ` (e′%)[σ] : sσ,
that is, ∆ ; Γ ` (e′[σ])% : sσ because tv(%) ∩ dom(σ) = ∅.

(inter):

∀j ∈ J.
. . .

∆ ; Γ′ ` e′[σj] : tj

∆ ; Γ′ ` e′[σj]j∈J :
∧
j∈J tj

(inter)

By induction, for all j ∈ J we have ∆ ; Γ ` (e′[σj])% : tj , that is ∆ ; Γ ` (e′%)[σj] : tj . Then by
applying (inter) we get ∆ ; Γ ` (e′%)[σj]j∈J :

∧
j∈J tj , that is ∆ ; Γ ` (e′[σj]j∈J)% :

∧
j∈J tj .

(subsum): consider the following derivation:
. . .

∆ ; Γ′ ` e′ : s s ≤ t
∆ ; Γ′ ` e′ : t

(subsum)

By induction, we have ∆ ; Γ ` e′% : s. Then the rule (subsum) gives us ∆ ; Γ ` e′% : t.

Definition B.7. Given two typing environments Γ1,Γ2, we define their intersection as

(Γ1 ∧ Γ2)(x) =

{
Γ1(x) ∧ Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)

undefined otherwise

We define Γ2 ≤ Γ1 if Γ2(x) ≤ Γ1(x) for all x ∈ dom(Γ1), and Γ1 ' Γ2 if Γ1 ≤ Γ2 and Γ2 ≤ Γ1.

Given an expression e and a set ∆ of (monomorphic) type variables, we write e] ∆ if σj] ∆ for all the
type substitution σj that occur in a subterm of e of the form e′[σj]j∈J (in other terms, we do not consider
the substitutions that occur in the decorations of λ-abstractions).

Lemma B.8 (Weakening). Let e be an expression, Γ,Γ′ two typing environments and ∆′ a set of type
variables. If ∆ ; Γ ` e : t, Γ′ ≤ Γ and e] ∆′, then ∆ ∪∆′ ; Γ′ ` e : t.

Proof. By induction on the derivation of ∆ ; Γ ` e : t. We perform a case analysis on the last applied rule.

(const): straightforward.
(var): ∆ ; Γ ` x : Γ(x). It is clear that ∆∪∆′ ; Γ′ ` x : Γ′(x) by (var). Since Γ′(x) ≤ Γ(x), by (subsum),

we get ∆ ∪∆′ ; Γ′ ` x : Γ(x).
(pair): consider the following derivation:

. . .
∆ ; Γ ` e1 : t1

. . .
∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : t1 × t2
(pair)

By applying the induction hypothesis twice, we have ∆ ∪ ∆′ ; Γ′ ` ei : ti. Then by (pair), we get
∆ ∪∆′ ; Γ′ ` (e1, e2) : t1 × t2.

(proj): consider the following derivation:
. . .

∆ ; Γ ` e′ : t1 × t2
∆ ; Γ ` πi(e′) : ti

(proj)

By the induction hypothesis, we have ∆ ∪∆′ ; Γ′ ` e′ : t1 × t2. Then by (proj), we get ∆ ∪∆′ ; Γ′ `
πi(e

′) : ti.
(abstr): consider the following derivation:

∀i ∈ I, j ∈ J.
. . .

∆′′ ; Γ, (x : tiσj) ` e′@[σj] : siσj
∆′′ = ∆ ∪ var(

∧
i∈I,j∈J tiσj → siσj)

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e′ :

∧
i∈I,j∈J tiσj → siσj

(abstr)

By induction, we have ∆′′ ∪ ∆′ ; Γ′, (x : tiσj) ` e′@[σj] : siσj for all i ∈ I and j ∈ J . Then by
(abstr), we get ∆ ∪∆′ ; Γ′ ` λ∧i∈I ti→si[σj]j∈J

x.e′ :
∧
i∈I,j∈J tiσj → siσj .

(case): consider the following derivation:

. . .

∆ ; Γ ` e0 : t′


t′ 6≤ ¬t ⇒

. . .
∆ ; Γ ` e1 : s

t′ 6≤ t ⇒
. . .

∆ ; Γ ` e2 : s

∆ ; Γ ` (e0∈t ? e1 : e2) : s
(case)

By induction, we have ∆ ∪ ∆′ ; Γ′ ` e0 : t0 and ∆ ∪ ∆′ ; Γ′ ` ei : s (for i such that ei has been
type-checked in the original derivation). Then by (case), we get ∆ ∪∆′ ; Γ′ ` (e0∈t ? e1 : e2) : s.

(inst): consider the following derivation:
. . .

∆ ; Γ ` e′ : s σ] ∆

∆ ; Γ ` e′[σ] : sσ
(inst)

By induction, we have ∆ ∪ ∆′ ; Γ′ ` e′ : s. Since e] ∆′(i.e., e′[σ]] ∆′), we have σ] ∆′. Then
σ]∆ ∪∆′. Therefore, by applying (inst) we get ∆ ∪∆′ ; Γ′ ` e′[σ] : sσ.

(inter): consider the following derivation:

∀j ∈ J.
. . .

∆ ; Γ ` e′[σj] : tj

∆ ; Γ ` e′[σj]j∈J :
∧
j∈J tj

(inter)

By induction, we have ∆ ∪ ∆′ ; Γ′ ` e′[σj] : tj for all j ∈ J . Then the rule (inst) gives us
∆ ∪∆′ ; Γ′ ` e′[σj]j∈J :

∧
j∈J tj .

(subsum): there exists a type s such that
. . .

∆ ; Γ ` e′ : s s ≤ t
∆ ; Γ ` e′ : t

(subsum)

By induction, we have ∆ ∪∆′ ; Γ′ ` e′ : s. Then by applying the rule (subsum) we get ∆ ∪∆′ ; Γ′ `
e′ : t.

The next two lemmas are used to simplify sets of type-substitutions applied to expressions when they
are redundant or they work on variables that are not in the expressions.

Lemma B.9 (Useless Substitutions). Let e be an expression and [σk]k∈K , [σ′k]k∈K two sets of substitu-
tions such that dom(σ′k) ∩ dom(σk) = ∅ and dom(σ′k) ∩ tv(e) = ∅ for all k ∈ K. Then

∆ ; Γ ` e@[σk]k∈K : t⇐⇒ ∆ ; Γ ` e@[σk ∪ σ′k]k∈K : t

Proof. Straightforward.

Henceforth we use “]” to denote the union of multi-sets (e.g., {1, 2}] {1, 3} = {1, 2, 1, 3}).
Lemma B.10 (Redundant Substitutions). Let [σj]j∈J and [σj]j∈J′ be two sets of substitutions such that
J ′ ⊆ J . Then

∆ ; Γ ` e@[σj]j∈J]J′ : t⇐⇒ ∆ ; Γ ` e@[σj]j∈J : t

Proof. Similar to Lemma B.9.

Lemma B.9 states that if a type variable α in the domain of a type substitution σ does not occur in the
applied expression e, namely, α ∈ dom(σ) \ tv(e), then that part of the substitution is useless and can be
safely eliminated. Lemma B.10 states that although our [σj]j∈J are formally multisets of type-substitutions,
in practice they behave as sets, since repeated entries of type substitutions can be safely removed. Therefore,
to simplify an expression without altering its type (and semantics), we first eliminate the useless type
variables, yielding concise type substitutions, and then remove the redundant type substitutions. It explains
why we do not apply relabeling when the domains of the type substitutions do not contain type variables in
expressions in Definition A.11.

Moreover, Lemma B.10 also indicates that it is safe to keep only the type substitutions which are different
from each other when we merge two sets of substitutions (e.g. Lemmas B.13 and B.14). In what follows,
without explicit mention, we assume that there are no useless type variables in the domain of any type
substitution and no redundant type substitutions in any set of type substitutions.

Lemma B.11 (Relabeling). Let e be an expression, [σj]j∈J a set of type substitutions and ∆ a set of type
variables such that σj] ∆ for all j ∈ J . If ∆ ; Γ ` e : t, then

∆ ; Γ ` e@[σj]j∈J :
∧
j∈J

tσj

Proof. The proof proceeds by induction and case analysis on the structure of e. For each case we use an
auxiliary internal induction on the typing derivation. We label E the main (external) induction and I the
internal induction in what follows.

e = c: the typing derivation ∆ ; Γ ` e : t should end with either (const) or (subsum). Assume that the
typing derivation ends with (const). Trivially, we have ∆ ; Γ ` c : bc. Since c@[σj]j∈J = c and
bc '

∧
j∈J bcσj , by subsumption, we have ∆ ; Γ ` c@[σj]j∈J :

∧
j∈J bcσj .

Otherwise, the typing derivation ends with an instance of (subsum):
. . .

∆ ; Γ ` e : s s ≤ t
∆ ; Γ ` e : t

(subsum)

Then by I-induction, we have ∆ ; Γ ` e@[σj]j∈J :
∧
j∈J sσj . Since s ≤ t, we get

∧
j∈J sσj ≤∧

j∈J tσj . Then by applying the rule (subsum), we have ∆ ; Γ ` e@[σj]j∈J :
∧
j∈J tσj .

e = x: the typing derivation ∆ ; Γ ` e : t should end with either (var) or (subsum). Assume that
the typing derivation ends with (var). Trivially, by (var), we get ∆ ; Γ ` x : Γ(x). Moreover, we
have x@[σj]j∈J = x and Γ(x) =

∧
j∈J Γ(x)σj (as var(Γ) ⊆ ∆). Therefore, we deduce that

∆ ; Γ ` x@[σj]j∈J :
∧
j∈J Γ(x)σj .

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = (e1, e2): the typing derivation ∆ ; Γ ` e : t should end with either (pair) or (subsum). Assume that
the typing derivation ends with (pair):

. . .
∆ ; Γ ` e1 : t1

. . .
∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : t1 × t2
(pair)

By E-induction, we have ∆ ; Γ ` ei@[σj]j∈J :
∧
j∈J tiσj . Then by (pair), we get ∆ ; Γ `

(e1@[σj]j∈J , e2@[σj]j∈J) : (
∧
j∈J t1σj ×

∧
j∈J t2σj), that is, ∆ ; Γ ` (e1, e2)@[σj]j∈J :

∧
j∈J(t1 × t2)σj .

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = πi(e
′): the typing derivation ∆ ; Γ ` e : t should end with either (proj) or (subsum). Assume that the

typing derivation ends with (proj):
. . .

∆ ; Γ ` e′ : t1 × t2
∆ ; Γ ` πi(e′) : ti

(proj)

By E-induction, we have ∆ ; Γ ` e′@[σj]j∈J :
∧
j∈J(t1 × t2)σj , that is, ∆ ; Γ ` e′@[σj]j∈J :

(
∧
j∈J t1σj×

∧
j∈J t2σj). Then the rule (proj) gives us that ∆ ; Γ ` πi(e′@[σj]j∈J) :

∧
j∈J tiσj , that

is, ∆ ; Γ ` πi(e′)@[σj]j∈J :
∧
j∈J tiσj .

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e1e2: the typing derivation ∆ ; Γ ` e : t should end with either (appl) or (subsum). Assume that the
typing derivation ends with (appl):

. . .
∆ ; Γ ` e1 : t→ s

. . .
∆ ; Γ ` e2 : t

∆ ; Γ ` e1e2 : s
(pair)

By E-induction, we have ∆ ; Γ ` e1@[σj]j∈J :
∧
j∈J(t → s)σj and ∆ ; Γ ` e2@[σj] :

∧
j∈J tσj .

Since
∧
j∈J(t → s)σj ≤ (

∧
j∈J tσj) → (

∧
j∈J sσj), by (subsum), we have ∆ ; Γ ` e1@[σj]j∈J :

(
∧
j∈J tσj)→ (

∧
j∈J sσj). Then by (appl), we get

∆ ; Γ ` (e1@[σj]j∈J)(e2@[σj]j∈J) :
∧
j∈J

sσj

that is, ∆ ; Γ ` (e1e2)@[σj]j∈J :
∧
j∈J sσj .

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = λ
∧i∈I ti→si
[σk]k∈K

x.e′: the typing derivation ∆ ; Γ ` e : t should end with either (abstr) or (subsum).
Assume that the typing derivation ends with (abstr):

∀i ∈ I, k ∈ K.
. . .

∆′ ; Γ, (x : tiσk) ` e′@[σk] : siσk
∆′ = ∆ ∪ var(

∧
i∈I,k∈K tiσk → siσk)

∆ ; Γ ` λ∧i∈I ti→si[σk]k∈K
x.e′ :

∧
i∈I,k∈K tiσk → siσk

(abstr)

Using α-conversion, we can assume that σj] (var(
∧
i∈I,k∈K tiσk → siσk) \ ∆) for j ∈ J . Hence

σj] ∆′. By E-induction, we have

∆′ ; Γ, (x : (tiσk)) ` (e′@[σk])@[σj] : (siσk)σj

for all i ∈ I , k ∈ K and j ∈ J . By Lemma B.4, (e′@[σk])@[σj] = e′@([σj] ◦ [σk]). So

∆′ ; Γ, (x : (tiσk)) ` e′@([σj] ◦ [σk]) : (siσk)σj

Finally, by (abstr), we get

∆ ; Γ ` λ∧i∈I ti→si[σj◦σk]j∈J,k∈K
x.e′ :

∧
i∈I,j∈J,k∈K

ti(σj ◦ σk)→ si(σj ◦ σk)

that is,

∆ ; Γ ` (λ
∧i∈I ti→si
[σk]k∈K

x.e′)@[σj]j∈J :
∧
j∈J

(
∧

i∈I,k∈K

tiσk → siσk)σj

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e′∈t ? e1 : e2: the typing derivation ∆ ; Γ ` e : t should end with either (case) or (subsum). Assume
that the typing derivation ends with (case):

. . .

∆ ; Γ ` e′ : t′


t′ 6≤ ¬t ⇒

. . .
∆ ; Γ ` e1 : s

t′ 6≤ t ⇒
. . .

∆ ; Γ ` e2 : s

∆ ; Γ ` (e′∈t ? e1 : e2) : s
(case)

By E-induction, we have ∆ ; Γ ` e′@[σj]j∈J :
∧
j∈J t

′σj . Suppose
∧
j∈J t

′σj 6≤ ¬t; then we must
have t′ 6≤ ¬t, and the branch for e1 has been type-checked. By the E-induction hypothesis, we have
∆ ; Γ ` e1@[σj]j∈J :

∧
j∈J sσj . Similarly, if

∧
j∈J t

′σj 6≤ t, then the second branch e2 has been
type-checked, and we have ∆ ; Γ ` e2@[σj]j∈J :

∧
j∈J sσj by the E-induction hypothesis. By (case),

we have
∆ ; Γ ` (e′@[σj]j∈J∈t ? e1@[σj]j∈J : e2@[σj]j∈J) :

∧
j∈J

sσj

that is ∆ ; Γ ` (e′∈t ? e1 : e2)@[σj]j∈J :
∧
j∈J sσj .

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e′[σ]: the typing derivation ∆ ; Γ ` e : t should end with either (inst) or (subsum). Assume that the
typing derivation ends with (inst):

. . .

∆ ; Γ ` e′ : t σ] ∆

∆ ; Γ ` e′[σ] : tσ
(inst)

Consider the set of substitutions [σj ◦ σ]j∈J . It is clear that σj ◦ σ] ∆ for all j ∈ J . By E-induction,
we have

∆ ; Γ ` e′@[σj ◦ σ]j∈J :
∧
j∈J

t(σj ◦ σ)

that is, ∆ ; Γ ` (e′[σ])@[σj]j∈J :
∧
j∈J(tσ)σj .

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e′[σk]k∈K : the typing derivation ∆ ; Γ ` e : t should end with either (inter) or (subsum). Assume that
the typing derivation ends with (inter):

∀k ∈ K.
. . .

∆ ; Γ ` e′[σk] : tk

∆ ; Γ ` e′[σk]k∈K :
∧
k∈K tk

(inter)

As an intermediary result, we first prove that the derivation can be rewritten as

∀k ∈ K.

. . .

∆ ; Γ ` e′ : s σk] ∆

∆ ; Γ ` e′[σk] : sσk
(inst)

∆ ; Γ ` e′[σk]k∈K :
∧
k∈K sσk

(inter) ∧
k∈K sσk ≤

∧
k∈K tk

∆ ; Γ ` e′[σk]k∈K :
∧
k∈K tk

(subsum)

We proceed by induction on the original derivation. It is clear that each sub-derivation ∆ ; Γ ` e′[σk] :
tk ends with either (inst) or (subsum). If all the sub-derivations end with an instance of (inst), then for
all k ∈ K, we have

. . .

∆ ; Γ ` e′ : sk σk] ∆

∆ ; Γ ` e′[σk] : skσk
(inst)

By Lemma B.2, we have ∆ ; Γ ` e′ :
∧
k∈K sk. Let s =

∧
k∈K sk. Then by (inst), we get

∆ ; Γ ` e′[σk] : sσk. Finally, by (inter) and (subsum), the intermediary result holds. Otherwise, at
least one of the sub-derivations ends with an instance of (subsum); the intermediary result also holds by
induction.
Now that the intermediary result is proved, we go back to the proof of the lemma. Consider the set of
substitutions [σj ◦ σk]j∈J,k∈K . It is clear that σj ◦ σk] ∆ for all j ∈ J, k ∈ K. By E-induction on e′

(i.e., ∆ ; Γ ` e′ : s), we have

∆ ; Γ ` e′@[σj ◦ σk]j∈J,k∈K :
∧

j∈J,k∈K

s(σj ◦ σk)

that is, ∆ ; Γ ` (e′[σk]k∈K)@[σj]j∈J :
∧
j∈J(

∧
k∈K sσk)σj . As

∧
k∈K sσk ≤

∧
k∈K tk, we get∧

j∈J(
∧
k∈K sσk)σj ≤

∧
j∈J(

∧
k∈K tk)σj . Then by (subsum), the result follows.

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

Corollary B.12. If ∆ ; Γ ` e[σj]j∈J : t, then ∆ ; Γ ` e@[σj]j∈J : t.

Proof. Immediate consequence of Lemma B.11.

Lemma B.13. If ∆ ; Γ ` e@[σj]j∈J : t and ∆′ ; Γ′ ` e@[σj]j∈J′ : t′, then ∆ ∪ ∆′ ; Γ ∧ Γ′ `
e@[σj]j∈J∪J′ : t ∧ t′

Proof. The proof proceeds by induction and case analysis on the structure of e. For each case we use an
auxiliary internal induction on both typing derivations. We label E the main (external) induction and I the
internal induction in what follows.

e = c: e@[σj]j∈J = e@[σj]j∈J′ = c. Clearly, both typing derivations should end with either (const) or
(subsum). Assume that both derivations end with (const):

∆ ; Γ ` c : bc
(const)

∆′ ; Γ′ ` c : bc
(const)

Trivially, by (const) we have ∆ ∪∆′ ; Γ ∧ Γ′ ` c : bc, that is ∆ ∪∆′ ; Γ ∧ Γ′ ` e@[σj]j∈J∪J′ : bc. As
bc ' bc ∧ bc, by (subsum), the result follows.
Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), for
instance, . . .

∆ ; Γ ` e@[σj]j∈J : s s ≤ t
∆ ; Γ ` e@[σj]j∈J : t

(subsum)

Then by I-induction on ∆ ; Γ ` e@[σj]j∈J : s and ∆′ ; Γ′ ` e@[σj]j∈J′ : t′, we have
∆ ∪∆′ ; Γ ∧ Γ′ ` e@[σj]j∈J∪J′ : s ∧ t′

Since s ≤ t, we have s ∧ t′ ≤ t ∧ t′. By (subsum), the result follows as well.
e = x: e@[σj]j∈J = e@[σj]j∈J′ = x. Clearly, both typing derivations should end with either (var) or

(subsum). Assume that both derivations end with an instance of (var):

∆ ; Γ ` x : Γ(x)
(var)

∆′ ; Γ′ ` x : Γ′(x)
(var)

Since x ∈ dom(Γ) and x ∈ dom(Γ′), x ∈ dom(Γ ∧ Γ′). By (var), we have ∆ ∪ ∆′ ; Γ ∧ Γ′ ` x :
(Γ ∧ Γ′)(x), that is, ∆ ∪∆′ ; Γ ∧ Γ′ ` e@[σj]j∈J∪J′ : Γ(x) ∧ Γ′(x).
Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = (e1, e2): e@[σj]j∈J = (e1@[σj]j∈J , e2@[σj]j∈J) and
e@[σj]j∈J′ = (e1@[σj]j∈J′ , e2@[σj]j∈J′). Clearly, both typing derivations should end with either
(pair) or (subsum). Assume that both derivations end with an instance of (pair):

. . .
∆ ; Γ ` e1@[σj]j∈J : s1

. . .
∆ ; Γ ` e2@[σj]j∈J : s2

∆ ; Γ ` (e1@[σj]j∈J , e2@[σj]j∈J) : (s1 × s2)
(pair)

. . .

∆′ ; Γ′ ` e1@[σj]j∈J′ : s′1

. . .

∆′ ; Γ′ ` e2@[σj]j∈J′ : s′2

∆′ ; Γ′ ` (e1@[σj]j∈J′ , e2@[σj]j∈J′) : (s′1 × s′2)
(pair)

By E-induction, we have ∆ ∪ ∆′ ; Γ ∧ Γ′ ` ei@[σj]j∈J∪J′ : si ∧ s′i. Then by (pair), we get
∆∪∆′ ; Γ∧Γ′ ` (e1@[σj]j∈J∪J′ , e2@[σj]j∈J∪J′) : (s1 ∧ s′1)× (s2 ∧ s′2), that is ∆∪∆′ ; Γ∧Γ′ `
(e1, e2)@[σj]j∈J∪J′ : (s1 ∧ s′1)× (s2 ∧ s′2). Moreover, because intersection distributes over product,
we have (s1 ∧ s′1) × (s2 ∧ s′2) ' (s1 × s2) ∧ (s′1 × s′2). Finally, by applying (subsum), we have
∆ ∪∆′ ; Γ ∧ Γ′ ` (e1, e2)@[σj]j∈J∪J′ : (s1 × s2) ∧ (s′1 × s′2).
Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = πi(e
′): e@[σj]j∈J = πi(e

′@[σj]j∈J) and e@[σj]j∈J′ = πi(e
′@[σj]j∈J′), where i = 1, 2. Clearly,

both typing derivations should end with either (proj) or (subsum). Assume that both derivations end
with an instance of (proj):

. . .

∆ ; Γ ` e′@[σj]j∈J : s1 × s2

∆ ; Γ ` πi(e′@[σj]j∈J) : si
(proj)

. . .

∆′ ; Γ′ ` e′@[σj]j∈J′ : s′1 × s′2
∆′ ; Γ′ ` πi(e′@[σj]j∈J′) : s′i

(proj)

By E-induction, we have ∆ ∪ ∆′ ; Γ ∧ Γ′ ` e′@[σj]j∈J∪J′ : (s1 × s2) ∧ (s′1 × s′2). Since
(s1 × s2) ∧ (s′1 × s′2) ' (s1 ∧ s′1) × (s2 ∧ s′2) (See the case of e = (e1, e2)), by (subsum), we
have ∆ ∪ ∆′ ; Γ ∧ Γ′ ` e′@[σj]j∈J∪J′ : (s1 ∧ s′1) × (s2 ∧ s′2). Finally, by applying (proj), we get
∆ ∪∆′ ; Γ ∧ Γ′ ` πi(e@[σj]j∈J∪J′) : si ∧ s′i, that is ∆ ∪∆′ ; Γ ∧ Γ′ ` πi(e)@[σj]j∈J∪J′ : si ∧ s′i.
Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = e1e2: e@[σj]j∈J = (e1@[σj]j∈J)(e2@[σj]j∈J) and
e@[σj]j∈J′ = (e1@[σj]j∈J′)(e2@[σj]j∈J′). Clearly, both typing derivations should end with either
(appl) or (subsum). Assume that both derivations end with an instance of (appl):

. . .
∆ ; Γ ` e1@[σj]j∈J : s1 → s2

. . .
∆ ; Γ ` e2@[σj]j∈J : s1

∆ ; Γ ` (e1@[σj]j∈J) (e2@[σj]j∈J) : s2
(appl)

. . .

∆′ ; Γ′ ` e1@[σj]j∈J′ : s′1 → s′2

. . .

∆′ ; Γ′ ` e2@[σj]j∈J′ : s′1

∆′ ; Γ′ ` (e1@[σj]j∈J′) (e2@[σj]j∈J′) : s′2
(appl)

By E-induction, we have ∆ ∪ ∆′ ; Γ ∧ Γ′ ` e1@[σj]j∈J∪J′ : (s1 → s2) ∧ (s′1 → s′2) and
∆ ∪ ∆′ ; Γ ∧ Γ′ ` e2@[σj]j∈J∪J′ : s1 ∧ s′1. Because intersection distributes over arrows, we

have (s1 → s2) ∧ (s′1 → s′2) ≤ (s1 ∧ s′1) → (s2 ∧ s′2). Then by the rule (subsum), we get
∆∪∆′ ; Γ∧Γ′ ` e1@[σj]j∈J∪J′ : (s1∧s′1)→ (s2∧s′2). Finally by (appl), we have ∆∪∆′ ; Γ∧Γ′ `
(e1@[σj]j∈J∪J′)(e2@[σj]j∈J∪J′) : s2 ∧ s′2, that is, ∆ ∪∆′ ; Γ ∧ Γ′ ` (e1e2)@[σj]j∈J∪J′ : s2 ∧ s′2.
Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = λ
∧i∈I ti→si
[σk]k∈K

x.e′: e@[σj]j∈J = λ
∧i∈I ti→si
[σj]j∈J◦[σk]k∈K

x.e′ and e@[σj]j∈J′ = λ
∧i∈I ti→si
[σj]j∈J′◦[σk]k∈K

x.e′.
Clearly, both typing derivations should end with either (abstr) or (subsum). Assume that both derivations
end with an instance of (abstr):

∀i ∈ I, j ∈ J, k ∈ K.
. . .

∆1 ; Γ, (x : ti(σj ◦ σk)) ` e′@[σj ◦ σk] : si(σj ◦ σk)
∆1 = ∆ ∪ var(

∧
i∈I,j∈J,k∈K ti(σj ◦ σk)→ si(σj ◦ σk))

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J◦[σk]k∈K
x.e′ :

∧
i∈I,j∈J,k∈K ti(σj ◦ σk)→ si(σj ◦ σk)

∀i ∈ I, j ∈ J ′, k ∈ K.
. . .

∆2 ; Γ′, (x : ti(σj ◦ σk)) ` e′@[σj ◦ σk] : si(σj ◦ σk)
∆2 = ∆′ ∪ var(

∧
i∈I,j∈J′,k∈K ti(σj ◦ σk)→ si(σj ◦ σk))

∆′ ; Γ′ ` λ∧i∈I ti→si[σj]j∈J′◦[σk]k∈K
x.e′ :

∧
i∈I,j∈J′,k∈K ti(σj ◦ σk)→ si(σj ◦ σk)

Consider any expression e′@([σj]◦[σk]) and any e0[σj0]j0∈J0 in e′@([σj]◦[σk]), where j ∈ J∪J ′, k ∈
K. (Then e0[σj0]j0∈J0 must be from e′). All type variables in

⋃
j0∈J0 dom(σj0) must be polymorphic,

otherwise, e′@([σj] ◦ [σk]) is not well-typed under ∆1 or ∆2. Using α-conversion, we can assume that
these polymorphic type variables are different from ∆1∪∆2, that is (

⋃
j0∈J0 dom(σj0))∩(∆1∪∆2) =

∅. So we have e′@([σj] ◦ [σk])] ∆1 ∪∆2. According to Lemma B.8, we have
∆1 ∪∆2 ; Γ ∧ Γ′, (x : ti(σj ◦ σk)) ` e′@[σj ◦ σk] : si(σj ◦ σk)

for all i ∈ I , j ∈ J ∪ J ′ and k ∈ K. It is clear that

∆1 ∪∆2 = ∆ ∪∆′ ∪ var(
∧

i∈I,j∈J∪J′,k∈K

ti(σj ◦ σk)→ si(σj ◦ σk))

By (abstr), we have

∆ ∪∆′ ; Γ ∧ Γ′ ` λ∧i∈I ti→si[σj]j∈J∪J′◦[σk]k∈K
x.e′ :

∧
i∈I,j∈J∪J′,k∈K

ti(σj ◦ σk)→ si(σj ◦ σk)

that is, ∆ ∪∆′ ; Γ ∧ Γ′ ` e@[σj]j∈J∪J′ : t ∧ t′, where t =
∧
i∈I,j∈J,k∈K ti(σj ◦ σk)→ si(σj ◦ σk)

and t′ =
∧
i∈I,j∈J′,k∈K ti(σj ◦ σk)→ si(σj ◦ σk).

Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = (e0∈t ? e1 : e2): e@[σj]j∈J = (e0@[σj]j∈J∈t ? e1@[σj]j∈J : e2@[σj]j∈J) and e@[σj]j∈J′ =

(e0@[σj]j∈J′∈t ? e1@[σj]j∈J′ : e2@[σj]j∈J′). Clearly, both typing derivations should end with ei-
ther (case) or (subsum). Assume that both derivations end with an instance of (case):

. . .
∆ ; Γ ` e0@[σj]j∈J : t0


t0 6≤ ¬t ⇒

. . .
∆ ; Γ ` e1@[σj]j∈J : s

t0 6≤ t ⇒
. . .

∆ ; Γ ` e2@[σj]j∈J : s

∆ ; Γ ` (e0@[σj]j∈J∈t ? e1@[σj]j∈J : e2@[σj]j∈J) : s
(case)

. . .

∆′ ; Γ′ ` e0@[σj]j∈J′ : t′0


t′0 6≤ ¬t ⇒

. . .

∆′ ; Γ′ ` e1@[σj]j∈J′ : s′

t′0 6≤ t ⇒
. . .

∆′ ; Γ′ ` e2@[σj]j∈J′ : s′

∆′ ; Γ′ ` (e0@[σj]j∈J′∈t ? e1@[σj]j∈J′ : e2@[σj]j∈J′) : s′
(case)

By E-induction, we have ∆ ∪∆′ ; Γ ∧ Γ′ ` e0@[σj]j∈J∪J′ : t0 ∧ t′0. Suppose t0 ∧ t′0 6≤ ¬t, then we
must have t0 6≤ ¬t and t′0 6≤ ¬t, and the first branch has been checked in both derivations. Therefore
we have ∆∪∆′ ; Γ∧Γ′ ` e1@[σj]j∈J∪J′ : s∧s′ by the induction hypothesis. Similarly, if t0∧ t′0 6≤ t,
we have ∆ ∪∆′ ; Γ ∧ Γ′ ` e2@[σj]j∈J∪J′ : s ∧ s′. By applying the rule (case), we have

∆ ∪∆′ ; Γ ∧ Γ′ ` (e0@[σj]j∈J∪J′∈t ? e1@[σj]j∈J∪J′ : e2@[σj]j∈J∪J′) : s ∧ s′

that is, ∆ ∪∆′ ; Γ ∧ Γ′ ` (e0∈t ? e1 : e2)@[σj]j∈J∪J′ : s ∧ s′.
Otherwise, there exists at least one typing derivation which ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = e′[σi]i∈I : e@[σj]j∈J = e′@([σj ◦ σi](j,i)∈(J×I)) and e@[σj]j∈J′ = e′@([σj ◦ σi](j,i)∈(J′×I)). By
E-induction on e′, we have

∆ ∪∆′ ; Γ ∧ Γ′ ` e′@[σj ◦ σi](j,i)∈(J×I)∪(J′×I) : t ∧ t′

that is, ∆ ∪∆′ ; Γ ∧ Γ′ ` (e′[σi]i∈I)@[σj]j∈J∪J′ : t ∧ t′.

Corollary B.14. If ∆ ; Γ ` e@[σj]j∈J1 : t1 and ∆ ; Γ ` e@[σj]j∈J2 : t2, then ∆ ; Γ ` e@[σj]j∈J1∪J2 :
t1 ∧ t2

Proof. Immediate consequence of Lemmas B.13 and B.8.

B.2 Type soundness
In this section, we prove the soundness of the type system: well-typed expressions do not “go wrong”. We
proceed in two steps, commonly known as the subject reduction and progress theorems:

• Subject reduction: a well-typed expression keeps being well-typed during reduction.
• Progress: a well-typed expression can not be “stuck” (i.e., a well-typed expression which is not value

can be reduced).

Theorem B.15 (Subject reduction). Let e be an expression and t a type. If ∆ ; Γ ` e : t and e e′, then
∆ ; Γ ` e′ : t.

Proof. By induction on the derivation of ∆ ; Γ ` e : t. We proceed by a case analysis on the last rule used
in the derivation of ∆ ; Γ ` e : t.

(const): the expression e is a constant. It cannot be reduced. Thus the result follows.
(var): similar to the (const) case.
(pair): e = (e1, e2), t = t1× t2. We have ∆ ; Γ ` ei : ti for i = 1..2. There are two ways to reduce e, that

is
(1) (e1, e2) (e′1, e2): by induction, we have ∆ ; Γ ` e′1 : t1. Then the rule (pair) gives us
∆ ; Γ ` (e′1, e2) : t1 × t2.
(2) The case (e1, e2) (e1, e

′
2) is treated similarly.

(proj): e = πi(e0), t = ti, ∆ ; Γ ` e0 : t1 × t2.
(1) e0 e′0: e′ = πi(e

′
0). By induction, we have ∆ ; Γ ` e′0 : t1 × t2. Then the rule (proj) gives us

∆ ; Γ ` e′ : ti.
(2) e0 = (v1, v2): e′ = vi. By Lemma B.3, we get ∆ ; Γ ` e′ : ti.

(appl): e = e1 e2, ∆ ; Γ ` e1 : t→ s and ∆ ; Γ ` e2 : t.
(1) e1 e2 e′1 e2 or e1 e2 e1 e

′
2: similar to the case of (pair).

(2) e1 = λ
∧i∈I ti→si
[σj]j∈J

x.e0, e2 = v2, e′ = (e0@[σj]j∈P){v2/x} and P = {j ∈ J | ∃i ∈
I. ∆ ; Γ ` v2 : tiσj}: by Lemma B.3, we have

∧
i∈I,j∈J tiσj → siσj ≤ t → s. From the

subtyping for arrow types we deduce that t ≤
∨
i∈I,j∈J tiσj and that for any non-empty set P ⊆

I × J if t 6≤
∨

(i,j)∈I×J\P tiσj , then
∧

(i,j)∈P siσj ≤ s. Let P0 = {(i, j) | ∆ ; Γ ` v2 :

tiσj}. Since ∆ ; Γ ` v2 : t and t ≤
∨
i∈I,j∈J tiσj , P0 is non-empty. Also notice that t 6≤∨

(i,j)∈I×J\P0
tiσj , since otherwise there would exist some (i, j) /∈ P0 such that ∆ ; Γ ` v2 : tiσj .

As a consequence, we get
∧

(i,j)∈P0
siσj ≤ s. Moreover, since e1 is well-typed under ∆ and Γ, there

exists an instance of the rule (abstr) which infers a type
∧
i∈I,j∈J tiσj → siσj for e1 under ∆ and

Γ and whose premise is ∆′ ; Γ, (x : tiσj) ` e0@[σj] : siσj for all i ∈ I and j ∈ J , where
∆′ = ∆ ∪ var(

∧
i∈I,j∈J tiσj → siσj). By Lemma B.13, we get ∆′ ;

∧
(i,j)∈P0

(Γ, (x : tiσj)) `
e0@[σj]j∈P0 :

∧
(i,j)∈P0

siσj . Since Γ, (x :
∧

(i,j)∈P0
tiσj) '

∧
(i,j)∈P0

(Γ, (x : tiσj)), then from
Lemma B.8 we have ∆′ ; Γ, (x :

∧
(i,j)∈P0

tiσj) ` e0@[σj]j∈P0 :
∧

(i,j)∈P0
siσj and a fortiori

∆ ; Γ, (x :
∧

(i,j)∈P0
tiσj) ` e0@[σj]j∈P0 :

∧
(i,j)∈P0

siσj . Furthermore, by definition of P0 and the
admissibility of the intersection introduction (Lemma B.2) we have that ∆ ; Γ ` v2 :

∧
(i,j)∈P0

tiσj .
Thus by Lemma B.6, we get ∆ ; Γ ` e′ :

∧
(i,j)∈P0

siσj . Finally, by (subsum), we obtain ∆ ; Γ ` e′ : s
as expected.

(abstr): e = λ
∧i∈I ti→si
[σj]j∈J

x.e0. It cannot be reduced. Thus the result follows.
(case): e = e0∈s ? e1 : e2.

(1) e0 e′0 or e1 e′1 or e2 e′2: similar to the case of (pair).
(2) e0 = v0 and ` e0 : s: we have e′ = e1. The typing rule gives us ∆ ; Γ ` e1 : t, thus the result
follows.
(3) otherwise (e0 = v0): we have e′ = e2. Similar to the above case.

(inst): e = e1[σ], ∆ ; Γ ` e1 : s, σ] ∆ and e e1@[σ]. By applying Lemma B.11, we get
∆ ; Γ ` e1@[σ] : sσ.

(inter): e = e1[σj]j∈J , ∆ ; Γ ` e1[σj]j∈J :
∧
j∈J tj and e e1@[σj]j∈J . By applying Corollary B.12,

we get ∆ ; Γ ` e1@[σj]j∈J :
∧
j∈J tj .

(subsum): there exists a type s such that ∆ ; Γ ` e : s ≤ t and e e′. By induction, we have ∆ ; Γ ` e′ : s,
then by subsumption we get ∆ ; Γ ` e′ : t.

Theorem B.16 (Progress). Let e be a well-typed closed expression, that is, ` e : t for some t. If e is not a
value, then there exists an expression e′ such that e e′.

Proof. By induction on the derivation of ` e : t. We proceed by a case analysis of the last rule used in the
derivation of ` e : t.

(const): immediate since a constant is a value.
(var): impossible since a variable cannot be well-typed in an empty environment.
(pair): e = (e1, e2), t = t1 × t2, and ` ei : ti for i = 1..2. If one of the ei can be reduced, then e can also

be reduced. Otherwise, by induction, both e1 and e2 are values, and so is e.
(proj): e = πi(e0), t = ti, and ` e0 : t1 × t2. If e0 can be reduced to e′0, then e πi(e

′
0). Otherwise, e0

is a value. By Lemma B.3, we get e0 = (v1, v2), and thus e vi.
(appl): e = e1 e2, ` e1 : t → s and ` e2 : t. If one of the ei can be reduced, then e can also be reduced.

Otherwise, by induction, both e1 and e2 are values. By Lemma B.3, we get e1 = λ
∧i∈I ti→si
[σj]j∈J

x.e0

such that
∧
i∈I,j∈J tiσj → siσj ≤ t → s. By the definition of subtyping for arrow types, we have

t ≤
∨
i∈I,j∈J tiσj . Moreover, as ` e2 : t, the set P = {j ∈ J | ∃i ∈ I. ` e2 : tiσj} is non-empty.

Then e (e0@[σj]j∈P){e2/x}.
(abstr): the expression e is an abstraction which is well-typed under the empty environment. It is thus a

value.
(case): e = e0∈s ? e1 : e2. If e0 can be reduced, then e can also be reduced. Otherwise, by induction, e0 is

a value v. If ` v : s, then we have e e1. Otherwise, e e2.
(inst): e = e1[σ], t = sσ and ` e1 : s. Then e e1@[σ].
(inter): e = e1[σj]j∈J , t =

∧
j∈J tj and ` e1[σj] : tj for all j ∈ J . It is clear that e e1@[σj]j∈J .

(subsum): straightforward application of the induction hypothesis.

We now conclude that the type system is type sound.

Corollary B.17 (Type soundness). Let e be a well-typed closed expression, that is, ` e : t for some t. Then
either e diverges or it returns a value of type t.

Proof. Consequence of Theorems B.16 and B.15.

B.3 Expressing intersection types
We now prove that the calculus with explicit substitutions is able to derive the same typings as the
Barendregt, Coppo, Dezani (BCD) intersection type system [1] without the universal type ω. We remind
the BCD types (a strict subset of T), the BCD typing rules (without ω) and subtyping relation in Figure 5,
where we use m to range over pure λ-calculus expressions. To make the correspondence between the
systems easier, we adopt a n-ary version of the intersection typing rule. Henceforth, we use D to range
over BCD typing derivations. We first remark that the BCD subtyping relation is included in the one of this
work.

Lemma B.18. If t1 ≤BCD t2 then t1 ≤ t2.

Proof. All the BCD subtyping rules are admissible in [12] and, a fortiori, in our type system.

In this subsection, we restrict the grammar of expressions with explicit substitutions to

e ::= x | e e | λ∧i∈Isi→ti[σj]j∈J
x.e (24)

and we write dee for the pure λ-calculus expression obtained by removing all types references (i.e.,
interfaces and decorations) from e. Given a pure λ-calculus expression m and a derivation of a judgement
Γ `BCD m : t, we build an expression e such that dee = m and ∆ ; Γ ` e : t for some set ∆ of type
variables. With the restricted grammar of (24), the intersection typing rule is used only in conjunction with
the abstraction typing rule. We prove that it is possible to put a similar restriction on derivations of BCD
typing judgements.

Types:
t ::= α | t→ t | t ∧ t

Typing rules:

Γ `BCD x : Γ(x)
(BCD var)

Γ `BCD m1 : t1 → t2 Γ ` m2 : t1

Γ `BCD m1 m2 : t2
(BCD app)

Γ, x : t1 `BCD m : t2

Γ `BCD λx.m : t1 → t2
(BCD abstr)

Γ `BCD m : ti

Γ `BCD m :
∧
i∈I

ti

i ∈ I
|I| > 1

(BCD inter)

Γ `BCD m : t1 t1 ≤BCD t2

Γ ` m : t2
(BCD sub)

Subtyping relation:

t ≤BCD t t ≤BCD t ∧ t t1 ∧ t2 ≤BCD t1 (t1 → t2) ∧ (t1 → t3) ≤BCD t1 → (t2 ∧ t3)

t1 ≤BCD t2 t2 ≤BCD t3

t1 ≤BCD t3

t1 ≤BCD t3 t2 ≤BCD t4

t1 ∧ t2 ≤BCD t3 ∧ t4
t3 ≤BCD t1 t2 ≤BCD t4

t1 → t2 ≤BCD t3 → t4

Figure 5. The BCD type system

Definition B.19. Let D be a BCD typing derivation. We say D is in intersection-abstraction normal form
if (BCD inter) is used only immediately after (BCD abstr) in D, that is to say, all uses of (BCD inter) in D
are of the form

Di

Γ, x : ti `BCD m : si

Γ `BCD λx.m : ti → si
i ∈ I

Γ `BCD λx.m :
∧
i∈I

ti → si

Definition B.20. Let D be a (BCD) typing derivation. We define the size of D, denoted by |D|, as the
number of rules used in D.

We prove that any BCD typing judgement can be proved with a derivation in intersection-abstraction
normal form.

Lemma B.21. If Γ `BCD m : t, then there exists a derivation in intersection-abstraction normal form
proving this judgement.

Proof. LetD be the derivation proving Γ `BCD m : t. We proceed by induction on the size ofD. If |D| = 1
then the rule (BCD var) has been used, andD is in intersection-abstraction normal form. Otherwise, assume
that |D| > 1. We proceed by case analysis on the last rule used in D.

(BCD sub): D ends with (BCD sub):

D =
D′ t′ ≤ t
Γ `BCD m : t

where D′ proves a judgement Γ `BCD m : t′. By the induction hypothesis, there exists a derivation D′′

in intersection-abstraction normal form which proves the same judgement as D′. Then
D′′ t′ ≤ t
Γ `BCD m : t

is in intersection-abstraction normal form and proves the same judgement as D.
(BCD abstr): similar to the case of (BCD sub).
(BCD app): similar to the case of (BCD sub).
(BCD inter): D ends with (BCD inter):

D =
Di

Γ `BCD m : t
i ∈ I

where each Di proves a judgement Γ `BCD m : ti and t =
∧
i∈I ti. We distinguish several cases.

If one of the derivations ends with (BCD sub), there exists i0 ∈ I such that

Di0 =
D′i0 t′i0 ≤ ti0

Γ `BCD m : ti0
The derivation

D′ =
Di D′i0

Γ `BCD m :
∧

i∈I\{i0}

ti ∧ t′i0
i ∈ I \ {i0}

is smaller than D, so by the induction hypothesis, there exists D′′ in intersection-abstraction normal
form which proves the same judgement as D′. Then the derivation

D′′
∧

i∈I\{i0}

ti ∧ t′i0 ≤BCD

∧
i∈I

ti

Γ `BCD m : t

is in intersection-abstraction normal form, and proves the same judgement as D.
If one of the derivations ends with (BCD inter), there exists i0 ∈ I such that

Di0 =
Dj,i0

Γ `BCD m :
∧
j∈J

tj,i0
j ∈ J

with ti0 =
∧
j∈J tj,i0 . The derivation

D′ =
Di Dj,i0
Γ `BCD m : t

i ∈ I \ {i0}
j ∈ J

is smaller than D, so by the induction hypothesis, there exists D′′ in intersection-abstraction normal
form which proves the same judgement as D′, which is the same as the judgement of D.

If all the derivations are uses of (BCD var), then for all i ∈ I , we have
Di =

Γ `BCD x : Γ(x)

which implies t =
∧
i∈I Γ(x) and m = x. Then the derivation

Γ `BCD x : Γ(x) Γ(x) ≤BCD t

Γ `BCD x : t

is in intersection-abstraction normal form and proves the same judgement as D.
If all the derivations end with (BCD app), then for all i ∈ I , we have

Di =
D1
i D2

i

Γ `BCD m1 m2 : ti

where m = m1 m2, D1
i proves Γ `BCD m1 : si → ti, and D2

i proves Γ `BCD m2 : si for some si.
Let

D1 =
D1
i

Γ `BCD m1 :
∧
i∈I

si → ti
i ∈ I D2 =

D2
i

Γ `BCD m2 :
∧
i∈I

si
i ∈ I

Both D1 and D2 are smaller than D, so by the induction hypothesis, there exist D′1, D′2 in
intersection-abstraction normal form which prove the same judgements as D1 and D2 respectively.
Then the derivation

D′1
∧
i∈I

si → ti ≤BCD (
∧
i∈I

si)→ (
∧
i∈I

ti)

Γ `BCD m1 : (
∧
i∈I

si)→ (
∧
i∈I

ti)
D′2

Γ ` m1 m2 : t

is in intersection-abstraction normal form and proves the same derivation as D.
If all the derivations end with (BCD abstr), then for all i ∈ I , we have

Di =
D′i

Γ `BCD λx.m
′ : ti

(BCD abstr)

withm = λx.m′. For all i ∈ I ,D′i is smaller thanD, so by induction there existsD′′i in intersection-
abstraction normal form which proves the same judgement as D′i. Then the derivation

D′′i

Γ `BCD λx.m
′ : ti

Γ `BCD λx.m
′ :
∧
i∈I

ti
i ∈ I

is in intersection-abstraction normal form, and proves the same judgement as D.

We now sketch the principles behind the construction of e from D in intersection-abstraction normal
form. If D proves a judgement Γ `BCD λx.m : t → s, without any top-level intersection, then we simply
put t→ s in the interface of the corresponding expression λt→sx.e.

For a judgement Γ `BCD λx.m :
∧
i∈I ti → si, we build an expression λα→β[σi]i∈I

x.e where each σi
corresponds to the derivation which types λx.m with ti → si. For example, let m = λf.λx.f x, and
consider the judgement `BCD m : ((t1 → t2) → t1 → t2) ∧ ((s1 → s2) → s1 → s2). We first
annotate each abstraction in m with types αj → βj , where αj , βj are fresh, distinct variables, giving us
e = λα1→β1f.λα2→β2x.f x. Comparing λα2→β2x.f x to the judgement f : t1 → t2 `BCD λx.f x : t1 →
t2 and e to `BCD m : (t1 → t2) → t1 → t2, we compute σ1 = {t1 → t2/α1, t1 → t2/β1, t1/α2, t2/β2}. We
compute similarly σ2 from the derivation of `BCD m : (s1 → s2)→ s1 → s2, and we obtain finally

` λα1→β1
[σ1,σ2] f.λ

α2→β2x.f x : ((t1 → t2)→ t1 → t2) ∧ ((s1 → s2)→ s1 → s2)

as wished.
The problem becomes more complex when we have nested uses of the intersection typing rule. For

example, let m = λf.λg.g (λx.f (λy.x y)) and consider the judgement `BCD m : (tf → tg →
t4) ∧ (sf → sg → s7) with

tf = (t1 → t2)→ t3

tg = tf → t4

sf = ((s1 → s2)→ s3) ∧ ((s4 → s5)→ s6)

sg = sf → s7

Notice that, to derive `BCD m : sf → sg → s7, we have to prove f : sf , g : sg `BCD λx.f (λy.x y) :
sf , which requires the (BCD inter) rule. As before, we annotate m with fresh interfaces, obtaining
λα1→β1f.λα2→β2g.g (λα3→β3x.f (λα4→β4y.x y)). Because the intersection typing rule is used twice
(once to type m, and once to type m′ = λx.f (λy.x y)), we want to compute four substitutions
σ1, σ2, σ3, σ4 to obtain a decorated expression λα1→β1

[σ1,σ2] f.λ
α2→β2g.g (λα3→β3

[σ3,σ4] x.f (λα4→β4y.x y)).
The difficult part is in computing σ3 and σ4; in one case (corresponding to the branch `BCD m :
tf → tg → t4), we want σ3 = σ4 = {t1 → t2/α3, t3/β3, t1/α4, t2/β4} to obtain f : tf , g : tg `
λα3→β3

[σ3,σ4] x.f (λα4→β4y.x y) : tf , and in the other case (corresponding to the derivation `BCD m : sf →
sg → s7), we want σ3 = {s1 → s2/α3, s3/β3, s1/α4, s2/β4} and σ4 = {s4 → s5/α3, s6/β3, s4/α4, s5/β4} to
obtain f : sf , g : sg ` λα3→β3

[σ3,σ4] x.f (λα4→β4y.x y) : sf . To resolve this issue, we use intermediate fresh
variables α′3, β′3, α′4, β′4 and α′′3 , β′′3 , α′′4 , β′′4 in the definition of σ3 and σ4. We define

σ1 ={tf/α1, tg → t4/β1, tg/α2, t4/β2, t1 → t2/α′3,
t3/β′3,

t1/α′4,
t2/β′4,

t1 → t2/α′′3 ,
t3/β′′3 ,

t1/α′′4 ,
t2/β′′4 }

σ2 ={sf/α1, sg → s7/β1, sg/α2, s7/β2, s1 → s2/α′3,
s3/β′3,

s1/α′4,
s2/β′4,

s4 → s5/α′′3 ,
s6/β′′3 ,

s4/α′′4 ,
s5/β′′4 }

σ3 ={α′3/α3, β
′
3/β3,α

′
4/α4, β

′
4/β4}

σ4 ={α′′3/α3, β
′′
3/β3,α

′′
4/α4, β

′′
4/β4}

Because the substitutions compose themselves, we obtain

` λα1→β1
[σ1,σ2] f.λ

α2→β2g.g (λα3→β3
[σ3,σ4] x.f (λα4→β4y.x y)) : (tf → tg → t4) ∧ (sf → sg → s7)

as wished.
In the next lemma, given n derivations D1, . . . , Dn in intersection-abstraction normal form for a same

expression m, we construct an expression e containing fresh interfaces and decorations with fresh variables
if needed (as explained in the above example) and n substitutions σ1, . . . , σn corresponding toD1, . . . , Dn.
Let var(D1, . . . , Dn) denote the set of type variables occurring in the types in D1, . . . , Dn.

Lemma B.22. Let m be a pure λ-calculus expression, ∆ be a set of type variables, and D1, . . . , Dn be
derivations in intersection-abstraction normal form such that Di proves Γi `BCD m : ti for all i. Let ∆′

be a set of type variables such that var(D1, . . . , Dn) ⊆ ∆′. There exist e, σ1, . . . , σn such that dee = m,
dom(σ1) = . . . = dom(σn) ⊆ tv(e), tv(e) ∩ (∆ ∪∆′) = ∅, and ∆′ ; Γi ` e@[σi] : ti for all i.

Proof. We proceed by induction on the sum of the size of D1, . . . , Dn. If this sum is equal to n, then each
Di is a use of the (BCD var) rule, and we have m = x for some x. Let e = x and σi be the identity; we can
then easily check that the result holds. Otherwise, assume this sum is strictly greater than n. We proceed by
case analysis on D1, . . . , Dn.

Case 1: If one of the derivations ends with (BCD sub), there exists i0 such that

Di0 =
D′i0 t′i0 ≤BCD ti0

Γi0 `BCD m : ti0

Clearly, the sum of the size of D1, . . . , D
′
i0 , . . . , Dn is smaller than that of D1, . . . , Dn, and

var(D1, . . . , D
′
i0 , . . . , Dn) ⊆ ∆′. So by the induction hypothesis, we have

∃e, σ1, . . . , σn. dee = m
and dom(σ1) = . . . = dom(σn) ⊆ tv(e)
and tv(e) ∩ (∆ ∪∆′) = ∅
and ∀i ∈ {1, . . . , n} \ {i0}. ∆′ ; Γi ` e@[σi] : ti
and ∆′ ; Γi0 ` e@[σi0] : t′i0 .

Since t′i0 ≤BCD ti0 , by Lemma B.18, we have t′i0 ≤ ti0 . Therefore ∆′ ; Γi0 ` e@[σi0] : ti0 holds, and
for all i, we have ∆′ ; Γi ` e@[σi] : ti as wished.

Case 2: If all the derivations end with (BCD app), then we have m = m1 m2, and for all i

Di =
D1
i D2

i

Γi `BCD m1 m2 : ti

where D1
i proves Γi `BCD m1 : si → ti and D2

i proves Γi `BCD m2 : si for some si. Applying the
induction hypothesis on D1

1, . . . , D
1
n (with ∆ and ∆′), we have

∃e1, σ
1
1 , . . . , σ

1
n. dee1 = m1

and dom(σ1
1) = . . . = dom(σ1

n) ⊆ tv(e1)
and tv(e1) ∩ (∆ ∪∆′) = ∅
and ∀i ∈ {1, . . . , n}. ∆′ ; Γi ` e1@[σ1

i] : si → ti.

Similarly, by induction on D2
1, . . . , D

2
n (with ∆ ∪ tv(e1) and ∆′),

∃e2, σ
2
1 , . . . , σ

2
n. dee2 = m2

and dom(σ2
1) = . . . = dom(σ2

n) ⊆ tv(e2)
and tv(e2) ∩ (∆ ∪ tv(e1) ∪∆′) = ∅
and ∀i ∈ {1, . . . , n}. ∆′ ; Γi ` e2@[σ2

i] : si.

From tv(e2) ∩ (∆ ∪ tv(e1) ∪∆′) = ∅, we deduce tv(e1) ∩ tv(e2) = ∅. Let i ∈ {1, . . . , n}. Because
dom(σ1

i) ⊆ tv(e1) and dom(σ2
i) ⊆ tv(e2), we have dom(σ1

i)∩dom(σ2
i) = ∅, dom(σ1

i)∩tv(e2) = ∅,
and dom(σ2

i) ∩ tv(e1) = ∅. Consequently, by Lemma B.9, we have ∆′ ; Γi ` e1@[σ1
i ∪ σ2

i] : si → ti
and ∆′ ; Γi ` e2@[σ1

i ∪ σ2
i] : si. Therefore, we have ∆′ ; Γi ` (e1 e2)@[σ1

i ∪ σ2
i] : ti. So we have the

required result with e = e1 e2 and σi = σ1
i ∪ σ2

i .
Case 3: If all the derivations end with (BCD abstr), then m = λx.m1, and for all i,

Di =
D′i

Γi `BCD m : ti

where D′i proves Γi, x : t1i `BCD m1 : t2i and ti = t1i → t2i . By the induction hypothesis,

∃e1, σ
′
1, . . . , σ

′
n. dee1 = m1

and dom(σ′1) = . . . = dom(σ′n) ⊆ tv(e1)
and tv(e1) ∩ (∆ ∪∆′) = ∅
and ∀i ∈ {1, . . . , n}. ∆′ ; Γi, x : t1i ` e1@[σ′i] : t2i .

Let α, β be two fresh type variables. So {α, β} ∩ (∆ ∪ ∆′) = ∅ and {α, β} ∩ tv(e1) = ∅.
Take i ∈ {1, . . . , n}. Let σi = {t1i/α, t2i/β} ∪ σ′i, and e = λα→βx.e1. We have dom(σi) =
{α, β} ∪ dom(σ′i) ⊆ {α, β} ∪ tv(e1) = tv(e). Besides, we have tv(e) ∩ (∆ ∪ ∆′) = ∅. Because
tv(e1) ∩ {α, β} = ∅, we have dom(σ′i) ∩ {α, β} = ∅, and ∆′ ; Γi, x : t1i ` e1@[σi] : t2i by Lemma
B.9, which is equivalent to ∆′ ; Γi, x : ασi ` e1@[σi] : βσi. Because ∆′ ∪ var(t1i → t2i) = ∆′, by the
abstraction rule, we have ∆′ ; Γi ` λα→β[σi]

x.e1 : ti, i.e., ∆′ ; Γi ` (λα→β .e1)@[σi] : ti. Therefore, we
have the required result.

Case 4: If one of the derivations ends with (BCD inter), then m = λx.m1. The derivations end with either
(BCD inter) or (BCD abstr) (we omit the already treated case of (BCD sub)). For simplicity, we suppose
they all end with (BCD inter), as it is the same if some of them end with (BCD abstr) (note that Case 3
is a special case of Case 4). For all i, we have

Di =

Dj
i

Γi `BCD m : sji → tji

Γi `BCD m :
∧
j∈Ji

sji → tji
j ∈ Ji

where Dj
i proves Γi, x : sji `BCD m1 : tji for all j ∈ Ji and ti =

∧
j∈Ji s

j
i → tji for all i. By the

induction hypothesis on the sequence of Dj
i ,

∃e1, (σ
j
1)j∈J1 , . . . , (σ

j
n)j∈Jn . de1e = m1

and ∀i, i′, j, j′. dom(σji) = dom(σj
′

i′) and dom(σji) ⊆ tv(e1)
and tv(e1) ∩ (∆ ∪∆′) = ∅
and ∀i, j. ∆′ ; Γi, x : sji ` e1@[σji] : tji .

Let p = maxi∈{1,...,n}{|Ji|}. For all i, we complete the sequence of substitutions (σji) so that it
contains exactly p elements, by repeating the last one p − |Ji| times, and we number them from 1 to
p. All the σji have the same domain (included in tv(e1)), that we number from 1 to q. Then σji =⋃
k∈{1,...,q}{t

k
i,j/αk} for some types (tki,j). Let α, β, (αj,k)j∈{1,...,p},k∈{1,...,q}, (αj,0, βj,0)j∈{1,...,p}

be fresh pairwise distinct variables (which do not occur in ∆ ∪ ∆′ ∪ tv(e1)). For all j ∈ {1, . . . , p},
i ∈ {1, . . . , n}, we define:

σj =
⋃

k∈{1,...,q}

{αj,k/αk} ∪ {αj,0/α, βj,0/β}

e = λα→β[σj]j∈{1,...,p}
x.e1

σi =
⋃

j∈{1,...,p},k∈{1,...,q}

{tki,j/αj,k} ∪
⋃

j∈{1,...,p}

{sji/αj,0, t
j
i/βj,0}

For all i, j, k, we have by construction (αkσj)σi = αkσ
j
i , (ασj)σi = sji , and (βσj)σi = tji . Moreover,

since
tv(e) = tv(e1@[σj]j∈{1,...,p}) ∪

⋃
j∈{1,...,p} var((α→ β)σj)

= (tv(e1))[σj]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}
⊇ (dom(σji))[σj]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}
= ({αk}k∈{1,...,q})[σj]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}
= {αj,k, βj,k}j∈{1,...,p},k∈{1,...,q} ∪ {αj,0, βj,0}j∈{1,...,p}

and
tv(e) = (tv(e1))[σj]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}

⊆ tv(e1) ∪
⋃
j∈{1,...,p} tvran(σj) ∪ {αj,0, βj,0}j∈{1,...,p}

= tv(e1) ∪ {αj,k, βj,k}j∈{1,...,p},k∈{1,...,q} ∪ {αj,0, βj,0}j∈{1,...,p}
we have dom(σi) ⊆ tv(e) and tv(e)∩(∆∪∆′) = ∅. Because ∆′ ; Γi, x : sji ` e1@[σji] : tji , by Lemma
B.9, we have ∆′ ; Γi, x : sji ` e1@[σi◦σj] : tji , which is equivalent to ∆′ ; Γi, x : α(σi◦σj) ` e1@[σi◦
σj] : β(σi ◦σj) for all i, j. Since ∆′∪

⋃
j∈{1,...,p} var(sji → tji) = ∆′, for a given i, by the abstraction

typing rule we have ∆′ ; Γi ` λα→β[σi◦σj]j∈{1,...,p}
x.e1 :

∧
j∈{1,...,p} s

j
i → tji ≤

∧
j∈Ji s

j
i → tji = ti.

This is equivalent to ∆′ ; Γi ` λα→β[σj]j∈{1,...,p}
x.e1@[σi] : ti, hence ∆′ ; Γi ` e@[σi] : ti holds for all i,

as wished.

We are now ready to prove the main result of this subsection.

Theorem B.23. If Γ `BCD m : t, then there exist e, ∆ such that ∆ ; Γ ` e : t and dee = m.

Proof. By Lemma B.21, there exists D in intersection-abstraction normal form such that D proves Γ `BCD

m : t. Let ∆ be a set of type variables such that var(D) ⊆ ∆. We prove by induction on |D| that there
exists e such that ∆ ; Γ ` e : t and dee = m.

Case (BCD var): The expression m is a variable and the result holds with e = m.
Case (BCD sub): We have

D =
D′ t′ ≤BCD t

Γ `BCD m : t

whereD′ in intersection-abstraction normal form and proves Γ `BCD m : t′. Clearly we have |D′| < |D|
and var(D′) ⊆ ∆, so by the induction hypothesis, there exists e such that dee = m and ∆ ; Γ ` e : t′.
By Lemma B.18, we have t′ ≤ t, therefore we have ∆ ; Γ ` e : t, as wished.

Case (BCD app): We have

D =
D1 D2

Γ `BCD m : t

where D1 proves Γ `BCD m1 : s → t, D2 proves Γ `BCD m2 : s, m = m1 m2, and both D1

and D2 are in intersection-abstraction normal form. Since |Di| < |D| and var(Di) ⊆ ∆, by the
induction hypothesis, there exist e1 and e2 such that de1e = m1, de2e = m2, ∆ ; Γ ` e1 : s → t, and
∆ ; Γ ` e2 : s. Consequently we have ∆ ; Γ ` e1 e2 : t, with de1 e2e = m1 m2, as wished.

Case (BCD abstr) (or (BCD inter)): Because D is in intersection-abstraction normal form, we have

D =

Di

Γ `BCD λx.m
′ : si → ti

Γ `BCD m : t
i ∈ I

where each Di is in intersection-abstraction normal form and proves Γ, x : si `BCD m′ : ti,
t =

∧
i∈I si → ti, and m = λx.m′. Since

⋃
i∈I var(Di) ⊆ ∆, by Lemma B.22, there exist e′,

σ1, . . . , σn such that de′e = m′, dom(σ1) = . . . = dom(σn) ⊆ tv(e′), and ∆ ; Γ, x : si `
e′@[σi] : ti for all i ∈ I . Let α, β be two fresh type variables. We define σ′i = σi ∪ {si/α, ti/β}
for all i ∈ I . Because dom(σi) ∩ {α, β} = ∅ and tv(e′) ∩ {α, β} = ∅, by Lemma B.9 we have
∆ ; Γ, x : si ` e′@[σ′i] : ti, which is equivalent to ∆ ; Γ, x : ασ′i ` e′@[σ′i] : βσ′i. Note that
∆ ∪ var(

∧
i∈I(α→ β)σ′i) = ∆ ∪ var(

∧
i∈I si → ti) = ∆ by definition of ∆, so by rule (abstr),

we have ∆ ; Γ ` λα→β
[σ′
i]i∈I

x.e′ :
∧
i∈I si → ti. Hence we have the required result with e = λα→β

[σ′
i]i∈I

x.e′.

B.4 Elimination of sets of type-substitutions
In this section we prove that the expressions of the form e[σj]j∈J are redundant insofar as their presence in
the calculus does not increase its expressive power. For that we consider a subcalculus, called normalized
calculus, in which sets of type-substitutions appear only in decorations.

Definition B.24. A normalized expression e is an expression without any subterm of the form e[σj]j∈J ,
i.e., an expression respecting the following grammar:

e ::= c | x | (e, e) | πi(e) | e e | λ∧i∈Isi→ti[σj]j∈J
x.e | e∈t ? e : e

The set of all normalized expressions is denoted as EN .

We then define an embedding of the full calculus into this subcalculus as follows:

Definition B.25. The embedding emd(.) is mapping from E to EN defined as
emd(c) = c
emd(x) = x

emd((e1, e2)) = (emd(e1), emd(e2))
emd(πi(e)) = πi(emd(e))

emd(λ
∧i∈I ti→si
[σj]j∈J

x.e) = λ
∧i∈I ti→si
[σj]j∈J

x.emd(e)

emd(e1e2) = emd(e1)emd(e2)
emd(e∈t ? e1 : e2) = emd(e)∈t ? emd(e1) : emd(e2)

emd(e[σj]j∈J) = emd(e@[σj]j∈J)

We want to prove that the subcalculus has the same expressive power as the full calculus, namely, given
an expression and its embedding, they reduce to the same value. We proceed in several steps, using auxiliary
lemmas.

First we show that the embedding preserves values.

Lemma B.26. Let v ∈ V be a value. Then emd(v) ∈ V .

Proof. Straightforward.

Then we prove that values and their embeddings have the same types.

Lemma B.27. Let v ∈ V be a value. Then ` v : t ⇐⇒ ` emd(v) : t.

Proof. By induction and case analysis on v (note that emd(.) does not change the types in the interfaces).

We now want to prove the embedding preserves reduction, that is if an expression e reduces to e′ in
the full calculus, then its embedding emd(e) reduces to emd(e′) in the subcalculus. Before that we show a
substitution lemma.

Lemma B.28. Let e be an expression, x an expression variable and v a value. Then emd(e{v/x}) =
emd(e){emd(v)/x}.

Proof. By induction and case analysis on e.

c:
emd(c{v/x}) = emd(c)

= c
= c{emd(v)/x}
= emd(c){emd(v)/x}

y:
emd(y{v/x}) = emd(y)

= y
= y{emd(v)/x}
= emd(y){emd(v)/x}

x:
emd(x{v/x}) = emd(v)

= x{emd(v)/x}
= emd(x){emd(v)/x}

(e1, e2):

emd((e1, e2){v/x}) = emd((e1{v/x}, e2{v/x}))
= (emd(e1{v/x}), emd(e2{v/x}))
= (emd(e1){emd(v)/x}, emd(e2){emd(v)/x}) (by induction)
= (emd(e1), emd(e2)){emd(v)/x}
= emd((e1, e2)){emd(v)/x}

πi(e
′):

emd(πi(e
′){v/x}) = emd(πi(e

′{v/x}))
= πi(emd(e′{v/x}))
= πi(emd(e′){emd(v)/x}) (by induction)
= πi(emd(e′)){emd(v)/x}
= emd(πi(e

′)){emd(v)/x}
e1e2:

emd((e1e2){v/x}) = emd((e1{v/x})(e2{v/x}))
= emd(e1{v/x})emd(e2{v/x})
= (emd(e1){emd(v)/x})(emd(e2){emd(v)/x}) (by induction)
= (emd(e1)emd(e2)){emd(v)/x}
= emd(e1e2){emd(v)/x}

λ
∧i∈I ti→si
[σj]j∈J

y.e0: using α-conversion, we can assume that tv(v) ∩
⋃
j∈J dom(σj) = ∅.

emd((λ
∧i∈I ti→si
[σj]j∈J

y.e0){v/x}) = emd(λ
∧i∈I ti→si
[σj]j∈J

y.e0{v/x})
= λ

∧i∈I ti→si
[σj]j∈J

y.emd(e0{v/x})
= λ

∧i∈I ti→si
[σj]j∈J

y.(emd(e0){emd(v)/x}) (by induction)

= (λ
∧i∈I ti→si
[σj]j∈J

y.emd(e0)){emd(v)/x}
= (emd(λ

∧i∈I ti→si
[σj]j∈J

y.e0)){emd(v)/x}
e0∈t ? e1 : e2:

emd((e0∈t ? e1 : e2){v/x})
= emd((e0{v/x})∈t ? (e1{v/x}) : (e2{v/x}))
= emd(e0{v/x})∈t ? emd(e1{v/x}) : emd(e2{v/x})
= emd(e0){emd(v)/x}∈t ? (emd(e1){emd(v)/x}) : (emd(e2){emd(v)/x}) (by induction)
= (emd(e0)∈t ? emd(e1) : emd(e2)){emd(v)/x}
= emd(e0∈t ? e1 : e2){emd(v)/x}

e′[σj]j∈J : using α-conversion, we can assume that tv(v) ∩
⋃
j∈J dom(σj) = ∅

emd((e′[σj]j∈J){v/x}) = emd((e′{v/x})[σj]j∈J)
= emd((e′{v/x})@[σj]j∈J)
= emd((e′@[σj]j∈J){v/x}) (Lemma B.5)
= emd(e′@[σj]j∈J){emd(v)/x} (by induction)
= emd(e′[σj]j∈J){emd(v)/x}

Lemma B.29. Let e ∈ E be an expression. If e e′, then emd(e) ∗ emd(e′).

Proof. By induction and case analysis on e.

c, x: irreducible.
(e1, e2): there are two ways to reduce e:

(1) e1 e′1. By induction, emd(e1) ∗ emd(e′1). Then we have (emd(e1), emd(e2)) ∗

(emd(e′1), emd(e2)), that is, emd((e1, e2)) ∗ emd((e′1, e2)).
(2) e2 e′2. Similar to the subcase above.

πi(e0): there are two ways to reduce e:
(1) e0 e′0. By induction, emd(e0) ∗ emd(e′0). Then we have πi(emd(e0)) ∗ πi(emd(e′0)), that
is, emd(πi(e0)) ∗ emd(πi(e

′
0)).

(2) e0 = (v1, v2) and e vi. According to Lemma B.26, emd((v1, v2)) ∈ V . Moreover,
emd((v1, v2)) = (emd(v1), emd(v2)). Therefore, πi(emd(v1), emd(v2)) emd(vi), which is the
same as emd(πi(v1, v2)) emd(vi).

e1e2: there are three ways to reduce e:
(1) e1 e′1. Similar to the case of (e1, e2).
(2) e2 e′2. Similar to the case of (e1, e2).
(3) e1 = λ

∧i∈I ti→si
[σj]j∈J

x.e0, e2 = v2 and e1e2 (e0@[σj]j∈P){v2/x}, where P = {j ∈ J | ∃i ∈ I. `
v2 : tiσj}. According to Lemma B.27, we have ` v2 : tiσj ⇐⇒ ` emd(v2) : tiσj , thus we have

{j ∈ J | ∃i ∈ I. ` emd(v2) : tiσj} = {j ∈ J | ∃i ∈ I. ` v2 : tiσj}.
Therefore, emd(e1)emd(v2) emd(e0@[σj]j∈P){emd(v2)/x}. Moreover, by lemma B.28, we can get

emd(e0@[σj]j∈P){emd(v2)/x} = emd(e0@[σj]j∈P {v2/x}),
which proves this case.

λ
∧i∈I ti→si
[σj]j∈J

x.e0: It cannot be reduced. Thus the result follows.

e0∈t ? e1 : e2: there are three ways to reduce e:
(1) ei e′i. Similar to the case of (e1, e2).
(2) e0 = v0, ` v0 : t and e e1. According to Lemmas B.26 and B.27, emd(v0) ∈ V and
` emd(v0) : t. So we have emd(v0)∈t ? emd(e1) : emd(e2) emd(e1).
(3) e0 = v0, 0 v0 : t and e e2. According to Lemmas B.26 and B.27, emd(v0) ∈ V and
0 emd(v0) : t. Therefore, emd(v0)∈t ? emd(e1) : emd(e2) emd(e2).

e0[σj]j∈J : e e0@[σj]j∈J . By Definition B.25, emd(e0[σj]j∈J) = emd(e0@[σj]j∈J). Therefore, the
result follows.

Although the embedding preserves the reduction, it does not indicate that an expression and its embed-
ding reduce to the same value. This is because that there may be some subterms of the form e[σj]j∈J in the
body expression of an abstraction value. For example, the expression

(λInt→Int→Intz.λInt→Inty.((λα→αx.x)[{Int/α}]42))3

reduces to
λInt→Inty.((λα→αx.x)[{Int/α}]42),

while its embedding reduces to
λInt→Inty.((λα→α[{Int/α}]x.x)42).

However, the embedding of the value returned by an expression is the value returned by the embedding of
the expression. For instance, consider the example above again:

emd(λInt→Inty.((λα→αx.x)[{Int/α}]42)) = λInt→Inty.((λα→α[{Int/α}]x.x)42)

Next, we want to prove an inversion of Lemma B.29, that is, if the embedding emd(e) of an expression
e reduces to e′, then there exists e′′ such that its embedding is e′ and e reduces to e′′. Prior to that we prove
two auxiliary lemmas: the inversions for values and for relabeled expressions.

Lemma B.30. Let e ∈ E an expression. If emd(e) ∈ V , then there exists a value v ∈ V such that
e ∗(Rinst) v and emd(e) = emd(v). More specifically,

(1) if emd(e) = c, then e ∗(Rinst) c and emd(e) = c.
(2) if emd(e) = λ

∧i∈I ti→si
[σj]j∈J

x.e0, then there exists e′0 such that e ∗(Rinst) λ
∧i∈I ti→si
[σj]j∈J

x.e′0 and emd(e′0) =
e0.

(3) if emd(e) = (v1, v2), then there exist v1, v2 such that e ∗(Rinst) (v′1, v
′
2) and emd(v′i) = vi.

Proof. By induction and case analysis on emd(e).

c: according to Definition B.25, e should be the form of c[σj1]j1∈J1 . . . [σjn]jn∈Jn , where n ≥ 0. Clearly,
we have e ∗(Rinst) c and emd(e) = c.

λ
∧i∈I ti→si
[σj]j∈J

x.e0: according to Definition B.25, e should be the form of

(λ
∧i∈I ti→si
[σj0]j0∈J0

x.e′0)[σj1]j1∈J1 . . . [σjn]jn∈Jn

where emd(e′0) = e0, [σjn]jn∈Jn ◦ . . . ◦ [σj1]j1∈J1 ◦ [σj0]j0∈J0 = [σj]j∈J , and n ≥ 0. Moreover, it
is clear that e ∗(Rinst) λ

∧i∈I ti→si
[σj]j∈J

x.e′0. Let v = λ
∧i∈I ti→si
[σj]j∈J

x.e′0 and the result follows.

(v1, v2): according to Definition B.25, e should be the form of (e1, e2)[σj1]j1∈J1 . . . [σjn]jn∈Jn , where
emd(ei@[σj1]j1∈J1@ . . .@[σjn]jn∈Jn) = vi and n ≥ 0. Moreover, it is easy to get that

e ∗(Rinst) (e1@[σj1]j1∈J1@ . . .@[σjn]jn∈Jn , e2@[σj1]j1∈J1@ . . .@[σjn]jn∈Jn)

By induction on vi, there exists v′i such that ei@[σj1]j1∈J1@ . . .@[σjn]jn∈Jn ∗(Rinst) v′i and
emd(ei@[σj1]j1∈J1@ . . .@[σjn]jn∈Jn) = emd(v′i). Let v = (v′1, v

′
2). Then we have e ∗(Rinst) (v′1, v

′
2)

and emd(v) = (emd(v′1), emd(v′2)) = (v1, v2) = emd(e). Therefore, the result follows.

Lemma B.31. Let e ∈ E be an expression and [σj]j∈J a set of substitutions. If emd(e@[σj]j∈J) e′,
then there exists e′′ such that e@[σj]j∈J + e′′ and emd(e′′) = e′.

Proof. By induction and case analysis on e.

c, x: straightforward.
(e1, e2): emd(e@[σj]j∈J) = (emd(e1@[σj]j∈J), emd(e2@[σj]j∈J)). There are two ways to reduce

emd(e@[σj]j∈J):
(1) emd(e1@[σj]j∈J) e′1. By induction, there exists e′′1 such that e1@[σj]j∈J + e′′1 and
emd(e′′1) = e′1. Then we have (e1@[σj]j∈J , e2@[σj]j∈J) + (e′′1 , e2@[σj]j∈J) and
emd((e′′1 , e2@[σj]j∈J)) = (e′1, emd(e2@[σj]j∈J)).
(2) emd(e2@[σj]j∈J) e′2. Similar to the subcase above.

πi(e0): emd(e@[σj]j∈J) = πi(emd(e0@[σj]j∈J)). There are two ways to reduce emd(e@[σj]j∈J):
(1) emd(e0@[σj]j∈J) e′0. By induction, there exists e′′0 such that e0@[σj]j∈J + e′′0 and
emd(e′′0) = e′0. Then we have πi(e0@[σj]j∈J) + πi(e

′′
0) and emd(πi(e

′′
0)) = πi(e

′
0).

(2) emd(e0@[σj]j∈J) = (v1, v2) and emd(e@[σj]j∈J) vi. According to Lemma B.30, there exist
v′1 and v′2 such that e0@[σj]j∈J ∗(Rinst) (v′1, v

′
2) and emd(v′i) = vi. Then πi(e0@[σj]j∈J) + v′i. The

result follows.
e1e2: emd(e@[σj]j∈J) = emd(e1@[σj]j∈J)emd(e2@[σj]j∈J). There are three possible ways to reduce

emd(e@[σj]j∈J):
(1) emd(e1@[σj]j∈J) e′1. Similar to the case of (e1, e2).
(2) emd(e2@[σj]j∈J) e′2. Similar to the case of (e1, e2).
(3) emd(e1@[σj]j∈J) = λ

∧i∈I ti→si
[σk]k∈K

x.e0, emd(e2@[σj]j∈J) = v2 and

emd(e@[σj]j∈J) (e0@[σk]k∈P){v2/x},
where P = {k ∈ K | ∃i ∈ I. ` v2 : tiσk}. According to Lemma B.30, we have (i) there exists e′0
such that e1@[σj]j∈J ∗(Rinst) λ

∧i∈I ti→si
[σk]k∈K

x.e′0 and emd(e′0) = e0; and (ii) there exists v′2 such that
e2@[σj]j∈J ∗(Rinst) v

′
2 and emd(v′2) = v2. Moreover, by Lemma B.27, we get ` v2 : tiσk ⇐⇒

` v′2 : tiσk, thus {k ∈ K | ∃i ∈ I. ` v2 : tiσk} = {k ∈ K | ∃i ∈ I. ` v′2 : tiσk}.
Therefore, e@[σj]j∈J + (e′0@[σk]k∈P){v′2/x}. Finally, by lemma B.28, emd(e′0@[σk]k∈P {v′2/x}) =
emd(e′0)@[σk]k∈P {emd(v′2)/x} = e0@[σk]k∈P {v2/x}.

λ
∧i∈I ti→si
[σk]k∈K

x.e0: It cannot be reduced. Thus the result follows.

e0∈t ? e1 : e2: emd(e@[σj]j∈J) = emd(e0@[σj]j∈J)∈t ? emd(e1@[σj]j∈J) : emd(e2@[σj]j∈J). There
are three ways to reduce emd(e@[σj]j∈J):
(1) emd(ei@[σj]j∈J) e′i. Similar to the case of (e1, e2).
(2) emd(e0@[σj]j∈J) = v0, ` v0 : t and emd(e@[σj]j∈J) emd(e1@[σj]j∈J). According to Lemma
B.30, there exists v′0 such that e0@[σj]j∈J ∗(Rinst) v

′
0 and emd(v′0) = v0. Moreover, by Lemma B.27,

` v′0 : t. So e@[σj]j∈J e1@[σj]j∈J .
(3) emd(e0@[σj]j∈J) = v0, 0 v0 : t and emd(e@[σj]j∈J) emd(e2@[σj]j∈J). Similar to the
subcase above.

e0[σk]k∈K : emd(e@[σj]j∈J) = emd(e0@([σj]j∈J ◦ [σk]k∈K)). By induction, the result follows.

Lemma B.32. Let e ∈ E be an expression. If emd(e) e′, then there exists e′′ such that e + e′′ and
emd(e′′) = e′.

Proof. By induction and case analysis on e.

c, x: straightforward.
(e1, e2): emd(e) = (emd(e1), emd(e2)). There are two ways to reduce emd(e):

(1) emd(e1) e′1. By induction, there exists e′′1 such that e1 + e′′1 and emd(e′′1) = e′1. Then we have
(e1, e2) + (e′′1 , e2) and emd((e′′1 , e2)) = (e′1, emd(e2)).
(2) emd(e2) e′2. Similar to the subcase above.

πi(e0): emd(e) = πi(emd(e0)). There are two ways to reduce emd(e):
(1) emd(e0) e′0. By induction, there exists e′′0 such that e0 + e′′0 and emd(e′′0) = e′0. Then we have
πi(e0) + πi(e

′′
0) and emd(πi(e

′′
0)) = πi(e

′
0).

(2) emd(e0) = (v1, v2) and emd(e) vi. According to Lemma B.30, there exist v′1 and v′2 such that
e0 ∗(Rinst) (v′1, v

′
2) and emd(v′i) = vi. Then πi(e0) + v′i. The result follows.

e1e2: emd(e) = emd(e1)emd(e2). There are three ways to reduce emd(e):
(1) emd(e1) e′1. Similar to the case of (e1, e2).
(2) emd(e2) e′2. Similar to the case of (e1, e2).
(3) emd(e1) = λ

∧i∈I ti→si
[σj]j∈J

x.e0, emd(e2) = v2 and emd(e) (e0@[σj]j∈P){v2/x}, where P =

{j ∈ J | ∃i ∈ I. ` v2 : tiσj}. According to Lemma B.30, we have (i) there exists e′0 such that
e1 ∗(Rinst) λ

∧i∈I ti→si
[σk]k∈K

x.e′0 and emd(e′0) = e0; and (ii) there exists v′2 such that e2 ∗(Rinst) v
′
2 and

emd(v′2) = v2. Moreover, by Lemma B.27, we get ` v2 : tiσj ⇐⇒ ` v′2 : tiσj , thus {j ∈ J | ∃i ∈
I. ` v2 : tiσj} = {j ∈ J | ∃i ∈ I. ` v′2 : tiσj}. Therefore, e + (e′0@[σj]j∈P){v′2/x}. Finally, by
lemma B.28, emd(e′0@[σj]j∈P {v′2/x}) = emd(e′0)@[σj]j∈P {emd(v′2)/x} = e0@[σj]j∈P {v2/x}.

λ
∧i∈I ti→si
[σj]j∈J

x.e0: It cannot be reduced. Thus the result follows.

e0∈t ? e1 : e2: emd(e) = emd(e0)∈t ? emd(e1) : emd(e2). There are three ways to reduce emd(e):
(1) emd(ei) e′i. Similar to the case of (e1, e2).
(2) emd(e0) = v0, ` v0 : t and emd(e) emd(e1). According to Lemma B.30, there exists v′0 such
that e0 ∗(Rinst) v

′
0 and emd(v′0) = v0. Moreover, by Lemma B.27, ` v′0 : t. So e e1.

(3) emd(e0) = v0, 0 v0 : t and emd(e) emd(e2). Similar to the subcase above.
e0[σj]j∈J : emd(e0[σj]j∈J) = emd(e0@[σj]j∈J) and e0[σj]j∈J e0@[σj]j∈J . By Lemma B.31, the

result follows.

Thus we have the following theorem

Theorem B.33. Let e ∈ E be an expression.

(1) if e ∗ v, then emd(e) ∗ emd(v).
(2) if emd(e) ∗ v, then there exists v′ ∈ V such that e ∗ v′ and emd(v′) = v.

Proof. (1): By induction on the reduction and by Lemma B.29.
(2): By induction on the reduction and by Lemma B.32.

In addition, it is easy to prove that the subcalculus EN is closed under the reduction rules, and we can
safely disregard (Rinst) since it cannot be applied. Then the normalized calculus also possess, for example,
the soundness property.

C. Algorithmic Type Checking
The typing rules provided in Section A.3 are not syntax-directed because of the presence of the subsumption
rule. In this section we present an equivalent type system with syntax-directed rules. In order to define it we
consider the rules of Section A.3. First, we merge the rules (inst) and (inter) into one rule (since we prove
that intersection is interesting only to merge different instances of a same type), and then we consider where
subsumption is used and whether it can be postponed by moving it down the derivation tree.

C.1 Merging Intersection and Instantiation
Intersection is used to merge different types derived for the same term. In this calculus, we can derive
different types for a term because of either subsumption or instantiation. However, the intersection of
different super-types can be obtained by subsumption itself (if t ≤ t1 and t ≤ t2, then t ≤ t1 ∧ t2),
so intersection is really useful only to merge different instances of a same type, as we can see with rule
(inter) in Figure 3. Note that all the subjects in the premise of (inter) share the same structure e[σ], and
the typing derivations of these terms must end with either (inst) or (subsum). We show that we can in fact
postpone the uses of (subsum) after (inter), and we can therefore merge the rules (inst) and (inter) into one
rule (instinter) as follows:

∆ ; Γ ` e : t ∀j ∈ J. σj] ∆ |J | > 0

∆ ; Γ ` e[σj]j∈J :
∧
j∈J

tσj
(instinter)

Let ∆ ; Γ `m e : t denote the typing judgments derivable in the type system with the typing rule (instinter)
but not (inst) and (inter). The following theorem proves that the type system `m (m stands for “merged”) is
equivalent to the original one `.

Theorem C.1. Let e be an expression. Then ∆ ; Γ `m e : t⇐⇒ ∆ ; Γ ` e : t.

Proof. ⇒: It is clear that (inst) is a special case of (instinter) where |J | = 1. We simulate each instance
of (instinter) where |J | > 1 by using several instances of (inst) followed by one instance of (inter). In
detail, consider the following derivation

. . .

. . .

∆′ ; Γ′ ` e′ : t′ σj] ∆′

∆′ ; Γ′ ` e′[σj]j∈J :
∧
j∈J t

′σj
(instinter)

... . . .
∆ ; Γ ` e : t

We can rewrite this derivation as follows:

. . .

. . .

∆′ ; Γ′ ` e′ : t′ σ1] ∆′

∆′ ; Γ′ ` e′[σ1] : t′σ1

(inst)
. . .

. . .

∆′ ; Γ′ ` e′ : t′ σ|J|] ∆′

∆′ ; Γ′ ` e′[σ|J|] : t′σ|J|
(inst)

∆′ ; Γ′ ` e′[σj]j∈J :
∧
j∈J t

′σj
(inter)

... . . .
∆ ; Γ ` e : t

⇐: The proof proceeds by induction and case analysis on the structure of e. For each case we use an
auxiliary internal induction on the typing derivation. We label E the main (external) induction and I the
internal induction in what follows.
e = c: the typing derivation ∆ ; Γ ` e : t should end with either (const) or (subsum). If the typing

derivation ends with (const), the result follows straightforward.
Otherwise, the typing derivation ends with an instance of (subsum):

. . .
∆ ; Γ ` e : s s ≤ t

∆ ; Γ ` e : t
(subsum)

Then by I-induction, we have ∆ ; Γ `m e : s. Since s ≤ t, by subsumption, we get ∆ ; Γ `m e : t.
e = x: similar to the case of e = c.
e = (e1, e2): the typing derivation ∆ ; Γ ` e : t should end with either (pair) or (subsum). Assume that

the typing derivation ends with (pair):
. . .

∆ ; Γ ` e1 : t1

. . .
∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : t1 × t2
(pair)

By E-induction, we have ∆ ; Γ `m ei : ti. Then the rule (pair) gives us ∆ ; Γ `m (e1, e2) : t1× t2.
Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = πi(e
′): the typing derivation ∆ ; Γ ` e : t should end with either (proj) or (subsum). Assume that

the typing derivation ends with (proj):
. . .

∆ ; Γ ` e′ : (t1 × t2)

∆ ; Γ ` πi(e′) : ti
(proj)

By E-induction, we have ∆ ; Γ `m e′ : (t1× t2). Then the rule (proj) gives us ∆ ; Γ `m πi(e
′) : ti.

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e1e2: the typing derivation ∆ ; Γ ` e : t should end with either (appl) or (subsum). Assume that
the typing derivation ends with (appl):

. . .
∆ ; Γ ` e1 : t1 → t2

. . .
∆ ; Γ ` e2 : t1

∆ ; Γ ` e1e2 : t2
(appl)

By E-induction, we have ∆ ; Γ `m e1 : t1 → t2 and ∆ ; Γ `m e2 : t1. Then the rule (appl) gives
us ∆ ; Γ `m e1e2 : t2.
Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = λ
∧i∈I ti→si
[σj]j∈J

x.e′: the typing derivation ∆ ; Γ ` e : t should end with either (abstr) or (subsum).

Assume that the typing derivation ends with (abstr):

∀i ∈ I, j ∈ J.
. . .

∆′ ; Γ, (x : tiσj) ` e′@[σj] : siσj
∆′ = ∆ ∪ var(

∧
i∈I,j∈J(tiσj → siσj))

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e′ :

∧
i∈I,j∈J(tiσj → siσj)

(abstr)

By E-induction, for all i ∈ I and j ∈ J , we have ∆′ ; Γ, (x : tiσj) `m e′@[σj] : siσj . Then the
rule (abstr) gives us ∆ ; Γ `m λ

∧i∈I ti→si
[σj]j∈J

x.e′ :
∧
i∈I,j∈J(tiσj → siσj).

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e′∈t ? e1 : e2: the typing derivation ∆ ; Γ ` e : t should end with either (case) or (subsum).
Assume that the typing derivation ends with (case):

. . .

∆ ; Γ ` e′ : t′


t′ � ¬t ⇒

. . .
∆ ; Γ ` e1 : s

t′ � t ⇒
. . .

∆ ; Γ ` e2 : s

∆ ; Γ ` (e′∈t ? e1 : e2) : s
(case)

By E-induction, we have ∆ ; Γ `m e′ : t′ and ∆ ; Γ `m ei : s (for i such that ei has been effectively
type-checked). Then the rule (case) gives us ∆ ; Γm ` (e′∈t ? e1 : e2) : s.
Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e′[σ]: the typing derivation ∆ ; Γ ` e : t should end with either (inst) or (subsum). Assume that
the typing derivation ends with (inst):

. . .

∆ ; Γ ` e′ : t σ] ∆

∆ ; Γ ` e′[σ] : tσ
(inst)

By E-induction, we have ∆ ; Γ `m e′ : t. Since σ] ∆, applying (instinter) where |J | = 1, we get
∆ ; Γ `m e′[σ] : tσ.
Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

e = e′[σj]j∈J : the typing derivation ∆ ; Γ ` e : t should end with either (inter) or (subsum). Assume
that the typing derivation ends with (inter):

∀j ∈ J.
. . .

∆ ; Γ ` e′[σj] : tj |J | > 1

∆ ; Γ ` e′[σj]j∈J :
∧
j∈J tj

(inter)

As an intermediary result, we first prove that the derivation can be rewritten as

∀j ∈ J.

. . .

∆ ; Γ ` e′ : s σj] ∆

∆ ; Γ ` e′[σj] : sσj
(inst)

∆ ; Γ ` e′[σj]j∈J :
∧
j∈J sσj

(inter) ∧
j∈J sσj ≤

∧
j∈J tj

∆ ; Γ ` e′[σj]j∈J :
∧
j∈J tj

(subsum)

We proceed by induction on the original derivation. It is clear that each sub-derivation ∆ ; Γ `
e′[σj] : tj ends with either (inst) or (subsum). If all the sub-derivations end with an instance of
(inst), then for all j ∈ J , we have

. . .

∆ ; Γ ` e′ : sj σj] ∆

∆ ; Γ ` e′[σj] : sjσj
(inst)

By Lemma B.2, we have ∆ ; Γ ` e′ :
∧
j∈J sj . Let s =

∧
j∈J sj . Then by (inst), we get

∆ ; Γ ` e′[σj] : sσj . Finally, by (inter) and (subsum), the intermediary result holds. Otherwise,
there is at least one of the sub-derivations ends with an instance of (subsum), the intermediary result
also hold by induction.
Now that the intermediary result is proved, we go back to the proof of the lemma. By E-induction
on e′ (i.e., ∆ ; Γ ` e′ : s), we have ∆ ; Γ `m e′ : s. Since σj] ∆, applying (instinter), we get
∆ ; Γ `m e′[σj]j∈J :

∧
j∈J sσj . Finally, by subsumption, we get ∆ ; Γ `m e′[σ]j∈J :

∧
j∈J tj .

Otherwise, the typing derivation ends with an instance of (subsum), similar to the case of e = c, the
result follows by I-induction.

From now on we will use ` to denote `m, that is the system with the merged rule.

C.2 Algorithmic Typing Rules
In this section, we analyze the typing derivations produced by the rules of Section A.3 to see where
subsumption is needed and where it can be pushed down the derivation tree. We need first some preliminary
definitions and decomposition results about pair and function types to deal with the projection and
application rules.

C.2.1 Pair types
A type s is a pair type if s ≤ 1 × 1. If an expression e is typeable with a pair type s, we want

to compute from s a valid type for πi(e). In CDuce, a pair type s is a finite union of product types,
which can be decomposed into a finite set of pairs of types, denoted as πππ(s). For example, we decompose
s = (t1 × t2) ∨ (s1 × s2) as πππ(s) = {(t1, t2), (s1, s2)}. We can then compute easily a type πππi(s) for
πi(e) asπππi(s) = ti∨si (we used boldface symbols to distinguish these type operators from the projections
used in expressions). In the calculus considered here, the situation becomes more complex because of type
variables, especially top level ones. Let s be a pair type that contains a top-level variable α. Since α � 1×1
and s ≤ 1 × 1, then it is not possible that s ' s′ ∨ α. In other terms the top-level variable cannot appear
alone in a union: it must occur intersected with some product type so that it does not “overtake” the 1 × 1
bound. Consequently, we have s ' s′ ∧ α for some s′ ≤ 1 × 1. However, in a typing derivation starting
from ∆ ; Γ ` e : s and ending with ∆ ; Γ ` πi(e) : t, there exists an intermediary step where e is assigned
a type of the form (t1 × t2) (and that verifies s ≤ (t1 × t2)) before applying the projection rule. So it is
necessary to get rid of the top-level variables of s (using subsumption) before computing the projection.
The example above shows that α does not play any role since it is the s′ component that will be used to
subsume s to a product type. To say it otherwise, since e has type s for all possible assignment of α, then
the typing derivation must hold also for α = 1. In whatever way we look at it, the top-level type variables
are useless and can be safely discarded when decomposing s.

Given a type t, we write dnf(t) for a disjunctive normal form of t, which is defined in [6]. Formally, we
define the decomposition of a pair type as follows:

Definition C.2. Let τ be a disjunctive normal form such that τ ≤ 1 × 1. We define the decomposition of
τ as follows:

πππ(
∨
i∈I τi) =

⋃
i∈I πππ(τi)

πππ(
∧
j∈P (tj1 × t

j
2) ∧

∧
k∈N ¬(tk1 × tk2) ∧

∧
α∈PV

α ∧
∧
α′∈NV

¬α′) (|P | > 0)

= πππ(
∨
N′⊆N ((

∧
j∈P t

j
1 ∧
∧
k∈N′ ¬tk1)× (

∧
j∈P t

j
2 ∧
∧
k∈N\N′ ¬tk2)))

πππ((t1 × t2)) =

{
{(t1, t2)} t1 6' 0 and t2 6' 0
∅ otherwise

and the i-th projection as πππi(τ) =
∨

(s1,s2)∈πππ(τ) si.
For all type t such that t ≤ 1× 1, the decomposition of t is defined as

πππ(t) = πππ(dnf((1× 1) ∧ t))
and the i-th projection as πππi(t) =

∨
(s1,s2)∈πππ(dnf((1×1)∧t)) si

The decomposition of a union of pair types is the union of each decomposition. When computing the
decomposition of an intersection of product types and top-level type variables, we compute all the possible
distributions of the intersections over the products, and we discard the top-level variables, as discussed
above. Finally, the decomposition of a product is the pair of two components, provided that both components
are not empty.

We now prove that the top-level type variables can be safely eliminated in a well-founded (convex) model
with infinite support (see [6] for the definitions of model, convexity and infinite support).

Lemma C.3. Let ≤ be the subtyping relation induced by a well-founded (convex) model with infinite
support. Then ∧

p∈P

(tp × sp) ∧ α ≤
∨
n∈N

(tn × sn)⇐⇒
∧
p∈P

(tp × sp) ≤
∨
n∈N

(tn × sn)

Proof. The result trivially holds if
∧
p∈P (tp × sp) = 0 or |P | = 0 (ie,

∧
p∈P (tp × sp) = 1). Let us

examine the remaining cases:

⇐: straightforward.
⇒: Assume that

∧
p∈P (tp × sp) �

∨
n∈N (tn × sn). Let τ be the type

∧
p∈P (tp × sp)∧

∧
n∈N ¬(tn × sn).

Then there exists an assignment η such that [τ]η 6= ∅ (see the subtyping relation defined in [6]). Using
the procedure explore_pos defined in the proof of Lemma 3.23 in [6], we can generate an element d
belonging to [τ]η.8 The procedure explore_pos also generates an assignment η0 for the type variables
in var(τ). We define η′ such that η′(α) = η0(α) ∪ {d}, η′(¬α) = η0(¬α) \ {d}, and η′ = η0

otherwise. Then we have [τ ∧ α]η′ 6= ∅, which implies
∧
p∈P (tp × sp) ∧ α �

∨
n∈N (tn × sn). The

result follows by the contrapositive.

The decomposition of pair types defined above has the following properties:

8 Strictly speaking, the procedure explore_pos of Lemma 3.23 in [6] supposes τ contains only finite product types, but
it can be extended to infinite product types by Lemma 3.24 in [6]

Lemma C.4. Let ≤ be the subtyping relation induced by a well-founded (convex) model with infinite
support and t a type such that t ≤ 1× 1. Then

(1) For all (t1, t2) ∈ πππ(t), we have t1 6' 0 and t2 6' 0
(2) For all s1, s2, we have t ≤ (s1 × s2) ⇐⇒

∨
(t1,t2)∈πππ(t)(t1 × t2) ≤ (s1 × s2)

Proof.

(1): straightforward.
(2): Since t ≤ 1× 1, we have

t '
∨

(P,N)∈dnf(t)

((1× 1) ∧
∧

j∈P\V

(tj1 × t
j
2) ∧

∧
k∈N\V

¬(tk1 × tk2) ∧
∧

α∈P∩V

α ∧
∧

α′∈N∩V

¬α′)

If t ' 0, then πππ(t) = ∅, and the result holds. Assume that t 6' 0, |P | > 0 and each summand of dnf(t)
is not equivalent to 0 as well. Let ptq denote the type

∨
(P,N)∈dnf(t)(

∧
j∈P\V (tj1×t

j
2)∧
∧
k∈N\V ¬(tk1×

tk2)). Using the set-theoretic interpretation of types we have that ptq is equivalent to∨
(P,N)∈dnf(t)

(
∨

N′⊆N\V

((
∧

j∈P\V

tj1 ∧
∧
k∈N′

¬tk1)× (
∧

j∈P\V

tj2 ∧
∧

k∈(N\V)\N′

¬tk2)))

This means that, ptq is a equivalent to a union of product types. Let us rewrite this union more explicitly,
that is, ptq '

∨
i∈I(t

i
1 × ti2) obtained as follows

∨
(P,N)∈dnf(t)

(
∨

N′⊆N\V

(

ti1︷ ︸︸ ︷
(
∧

j∈P\V

tj1 ∧
∧
k∈N′

¬tk1) ×

ti2︷ ︸︸ ︷
(
∧

j∈P\V

tj2 ∧
∧

k∈(N\V)\N′

¬tk2)))

We have
πππ(t) = {(ti1, ti2) | i ∈ I and ti1 6' 0 and ti2 6' 0}

Finally, for all pair of types s1 and s2, we have
t ≤ (s1 × s2)

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × t
j
2) ∧

∧
k∈N\V

¬(tk1 × tk2) ∧
∧

α∈P∩V

α ∧
∧

α′∈N∩V

¬α′) ≤ (s1 × s2)

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × t
j
2) ∧

∧
k∈N\V

¬(tk1 × tk2) ∧
∧

α∈P∩V

α ∧
∧

α′∈N∩V

¬α′ ∧ ¬(s1 × s2)) ≤ 0

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × t
j
2) ∧

∧
k∈N\V

¬(tk1 × tk2) ∧ ¬(s1 × s2)) ≤ 0 (Lemma C.3)

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × t
j
2) ∧

∧
k∈N\V

¬(tk1 × tk2)) ≤ (s1 × s2)

⇐⇒ ptq ≤ (s1 × s2)

⇐⇒
∨

(t1,t2)∈πππ(t)

(t1 × t2) ≤ (s1 × s2)

Lemma C.5. Let s be a type such that s ≤ (t1 × t2). Then

(1) s ≤ (πππ1(s)×πππ2(s))
(2) πππi(s) ≤ ti

Proof. (1): according to the proof of Lemma C.4,
∨

(s1,s2)∈πππ(s)(s1×s2) is equivalent to the type obtained
from s by ignoring all the top-level type variables. Then it is trivial that s ≤

∨
(s1,s2)∈πππ(s)(s1 × s2)

and then s ≤ (πππ1(s)×πππ2(s)).
(2): since s ≤ (t1 × t2), according to Lemma C.4, we have

∨
(s1,s2)∈πππ(s)(s1 × s2) ≤ (t1 × t2). So for

all (s1, s2) ∈ πππ(s), we have (s1 × s2) ≤ (t1 × t2). Moreover, as si is not empty, we have si ≤ ti.
Therefore, πππi(s) ≤ ti.

Lemma C.6. Let t and s be two types such that t ≤ 1×1 and s ≤ 1×1. Thenπππi(t∧s) ≤ πππi(t)∧πππi(s).

Proof. Let t =
∨
j1∈J1 τj1 and s =

∨
j2∈J2 τj2 such that

τj = (t1j × t2j) ∧
∧
α∈Pj

α ∧
∧

α′∈Nj

¬α′

and τj 6' 0 for all j ∈ J1 ∪ J2. Then we have t ∧ s =
∨
j1∈J1,j2∈J2 τj1 ∧ τj2 . Let j1 ∈ J1 and j2 ∈ J2.

If τj1 ∧ τj2 ' 0, we have πππi(τj1 ∧ τj2) = 0. Otherwise, πππi(τj1 ∧ τj2) = tij1 ∧ t
i
j2 = πππi(τj1) ∧πππi(τj2).

For both cases, we have πππi(τj1 ∧ τj2) ≤ πππi(τj1) ∧πππi(τj2). Therefore
πππi(t ∧ s) '

∨
j1∈J1,j2∈J2 πππi(τj1 ∧ τj2)

≤
∨
j1∈J1,j2∈J2(πππi(τj1) ∧πππi(τj2))

' (
∨
j1∈J1 πππi(τj1)) ∧ (

∨
j2∈J2 πππi(τj2))

' πππi(t) ∧πππi(s)

For example, πππ1((Int× Int) ∧ (Int× Bool)) = πππ1(0) = 0, while πππ1((Int× Int)) ∧πππ1((Int×
Bool)) = Int ∧ Int = Int.

Lemma C.7. Let t be a type and σ be a type substitution such that t ≤ 1× 1. Then πππi(tσ) ≤ πππi(t)σ

Proof. We put t into its disjunctive normal form
∨
j∈J τj such that

τj = (t1j × t2j) ∧
∧
α∈Pj

α ∧
∧

α′∈Nj

¬α′

and τj 6' 0 for all j ∈ J . Then we have tσ =
∨
j∈J τjσ. So πππi(tσ) =

∨
j∈J πππi(τjσ). Let j ∈ J . If

τjσ ' 0, then πππi(τjσ) = 0 and trivially πππi(τjσ) ≤ πππi(τj)σ. Otherwise, we have τjσ = (t1jσ × t2jσ) ∧
(
∧
α∈Pj α∧

∧
α′∈Nj ¬α

′)σ. By Lemma C.6, we getπππi(τjσ) ≤ tijσ∧πππi((
∧
α∈Pj α∧

∧
α′∈Nj ¬α

′)σ) ≤
tijσ ' πππi(τj)σ. Therefore,

∨
j∈J πππi(τjσ) ≤

∨
j∈J πππi(τj)σ, that is, πππi(tσ) ≤ πππi(t)σ.

For example,πππ1(((Int×Int)∧α){(Int× Bool)/α}) = πππ1((Int×Int)∧ (Int×Bool)) = 0, while
(πππ1((Int× Int))){(Int× Bool)/α} = Int{(Int× Bool)/α} = Int.

Lemma C.8. Let t be a type such that t ≤ 1 × 1 and [σk]k∈K be a set of type substitutions. Then
πππi(
∧
k∈K tσk) ≤

∧
k∈K πππi(t)σk

Proof. Consequence of Lemmas C.6 and C.7.

C.2.2 Function types
A type t is a function type if t ≤ 0→ 1. In order to type the application of a function having a function

type t, we need to determine the domain of t, that is, the set of values the function can be safely applied to.
This problem has been solved for ground function types in [12]. Again, the problem becomes more complex
if t contains top-level type variables. Another issue is to determine what is the result type of an application
of a function type t to an argument of type s (where s belongs to the domain of t), knowing that both t and
s may contain type variables.

Following the same reasoning as with pair types, if a function type t contains a top-level variable α,
then t ' t′ ∧ α for some function type t′. In a typing derivation for a judgment ∆ ; Γ ` e1 e2 : t which
contains ∆ ; Γ ` e1 : t, there exists an intermediary step where we assign a type t1 → t2 to e1 (with
t ≤ t1 → t2) before using the application rule. It is therefore necessary to eliminate the top-level variables
from the function type t before we can type an application. Once more, the top-level variables are useless
when computing the domain of t and can be safely discarded.

Formally, we define the domain of a function type as follows:

Definition C.9 (Domain). Let τ be a disjunctive normal form such that τ ≤ 0 → 1. We define dom(τ),
the domain of τ , as:

dom(
∨
i∈I τi) =

∧
i∈I dom(τi)

dom(
∧
j∈P (tj1 → tj2) ∧

∧
k∈N ¬(tk1 → tk2) ∧

∧
α∈PV

α ∧
∧
α′∈NV

¬α′)

=

{
1 if

∧
j∈P (tj1 → tj2) ∧

∧
k∈N ¬(tk1 → tk2) ∧

∧
α∈PV

α ∧
∧
α′∈NV

¬α′ ' 0∨
j∈P t

j
1 otherwise

For any type t such that t ≤ 0→ 1, the domain of t is defined as
dom(t) = dom(dnf((0→ 1) ∧ t))

We also define a decomposition operator φφφ that —akin to the decomposition operator πππ for product
types— decomposes a function type into a finite set of pairs:

Definition C.10. Let τ be a disjunctive normal form such that τ ≤ 0 → 1. We define the decomposition
of τ as:

φφφ(
∨
i∈I τi) =

⋃
i∈I φφφ(τi)

φφφ(
∧
j∈P (tj1 → tj2) ∧

∧
k∈N ¬(tk1 → tk2) ∧

∧
α∈PV

α ∧
∧
α′∈NV

¬α′)

=

{
∅ if

∧
j∈P (tj1 → tj2) ∧

∧
k∈N ¬(tk1 → tk2) ∧

∧
α∈PV

α ∧
∧
α′∈NV

¬α′ ' 0

{(
∨
j∈P ′ t

j
1,
∧
j∈P\P ′ t

j
2) | P ′ (P} otherwise

For any type t such that t ≤ 0→ 1, the decomposition of tis defined as
φφφ(t) = φφφ(dnf((0→ 1) ∧ t)).

The set φφφ(t) satisfies the following fundamental property: for every arrow type s → s′, the constraint
t ≤ s→ s′ holds if and only if s ≤ dom(t) holds and for all (t1, t2) ∈ φφφ(t), either s ≤ t1 or t2 ≤ s′ hold
(see Lemma C.12). As a result, the minimum type

t · s = min{s′ | t ≤ s→ s′}
exists, and it is defined as the union of all t2 such that s � t1 and (t1, t2) ∈ φφφ(t) (see Lemma C.13). The
type t · s is used to type the application of an expression of type t to an expression of type s.

As with pair types, in a well-founded (convex) model with infinite support, we can safely eliminate the
top-level type variables.

Lemma C.11. Let ≤ be the subtyping relation induced by a well-founded (convex) model with infinite
support. Then∧

p∈P

(tp → sp) ∧ α ≤
∨
n∈N

(tn → sn)⇐⇒
∧
p∈P

(tp → sp) ≤
∨
n∈N

(tn → sn)

Proof. Similar to the proof of Lemma C.3.

Lemma C.12. Let ≤ be the subtyping relation induced by a well-founded (convex) model with infinite
support and t a type such that t ≤ 0→ 1. Then

∀s1, s2 . (t ≤ s1 → s2)⇐⇒

{
s1 ≤ dom(t)

∀(t1, t2) ∈ φφφ(t) . (s1 ≤ t1) or (t2 ≤ s2)

Proof. Since t ≤ 0→ 1, we have

t '
∨

(P,N)∈dnf(t)

((0→ 1) ∧
∧

j∈P\V

(tj1 → tj2) ∧
∧

k∈N\V

¬(tk1 → tk2) ∧
∧

α∈P∩V

α ∧
∧

α′∈N∩V

¬α′)

If t ' 0, then dom(t) = 1, φφφ(t) = ∅, and the result holds. If t ' t1 ∨ t2, then t1 ≤ 0→ 1, t2 ≤ 0→ 1,
dom(t) = dom(t1) ∧ dom(t2) and φφφ(t) = φφφ(t1) ∪φφφ(t2). So the result follows if it also holds for t1 and
t2. Thus, without loss of generality, we can assume that t has the following form:

t '
∧
j∈P

(tj1 → tj2) ∧
∧
k∈N

¬(tk1 → tk2) ∧
∧

α∈PV

α ∧
∧

α′∈NV

¬α′

where P 6= ∅ and t 6' 0. Then dom(t) =
∨
j∈P t

j
1 and φφφ(t) = {(

∨
j∈P ′ t

j
1,
∧
j∈P\P ′ t

j
2) | P ′ (P}. For

every pair of types s1 and s2, we have
t ≤ (s1 → s2)

⇐⇒
∧
j∈P

(tj1 → tj2) ∧
∧
k∈N

¬(tk1 → tk2) ∧
∧

α∈PV

α ∧
∧

α′∈NV

¬α′ ≤ (s1 → s2)

⇐⇒
∧
j∈P

(tj1 → tj2) ∧
∧
k∈N

¬(tk1 → tk2) ≤ (s1 → s2) (Lemma C.11)

⇐⇒
∧
j∈P

(tj1 → tj2) ≤ s1 → s2 (ptq 6' 0 and Lemma 3.12 in [6])

⇐⇒ ∀P ′ ⊆ P.

s1 ≤
∨
j∈P ′

tj1

 ∨

P 6= P ′ ∧
∧

j∈P\P ′

tj2 ≤ s2


where ptq =

∧
j∈P (tj1 → tj2) ∧

∧
k∈N ¬(tk1 → tk2).

Lemma C.13. Let t and s be two types. If t ≤ s→ 1, then t ≤ s→ s′ has a smallest solution s′, which is
denoted as t · s.

Proof. Since t ≤ s → 1, by Lemma C.12, we have s ≤ dom(t). Then the assertion t ≤ s → s′ is
equivalent to:

∀(t1, t2) ∈ φφφ(t). (s ≤ t1)or(t2 ≤ s′)
that is:  ∨

(t1,t2)∈φφφ(t) s.t. (s 6≤t1)

t2

 ≤ s′
Thus the type

∨
(t1,t2)∈φφφ(t) s.t. (s 6≤t1)

t2 is a lower bound for all the solutions.

By the subtyping relation on arrows it is also a solution, so it is the smallest one. To conclude, it suffices
to take it as the definition for t · s.

We now prove some properties of the operators dom(_) and “_ · _”.

Lemma C.14. Let t be a type such that t ≤ 0→ 1 and t′, s, s′ be types. Then

(1) if s′ ≤ s ≤ dom(t), then t · s′ ≤ t · s.
(2) if t′ ≤ t, s ≤ dom(t′) and s ≤ dom(t), then t′ · s ≤ t · s.

Proof. (1) Since s′ ≤ s, we have s → t · s ≤ s′ → t · s. By definition of t · s, we have t ≤ s → t · s,
therefore t ≤ s′ → t · s holds. Consequently, we have t · s′ ≤ t · s by definition of t · s′.

(2) By definition, we have t ≤ s → t · s, which implies t′ ≤ s → t · s. Therefore, t · s is a solution to
t′ ≤ s→ s′, hence we have t′ · s ≤ t · s.

Lemma C.15. Let t and s be two types such that t ≤ 0 → 1 and s ≤ 0 → 1. Then dom(t) ∨ dom(s) ≤
dom(t ∧ s).

Proof. Let t =
∨
i1∈I1 τi1 and s =

∨
i2∈I2 τi2 such that τi 6' 0 for all i ∈ I1 ∪ I2. Then we have

t∧s =
∨
i1∈I1,i2∈I2 τi1∧τi2 . Let i1 ∈ I1 and i2 ∈ I2. If τi1∧τi2 ' 0, then dom(τi1∧τi2) = 1. Otherwise,

dom(τi1 ∧ τi2) = dom(τi1)∨ dom(τi2). In both cases, we have dom(τi1 ∧ τi2) ≥ dom(τi1)∨ dom(τi2).
Therefore

dom(t ∧ s) '
∧
i1∈I1,i2∈I2 dom(τi1 ∧ τi2)

≥
∧
i1∈I1,i2∈I2(dom(τi1) ∨ dom(τi2))

'
∧
i1∈I1(

∧
i2∈I2(dom(τi1) ∨ dom(τi2)))

'
∧
i1∈I1(dom(τi1) ∨ (

∧
i2∈I2 dom(τi2)))

≥
∧
i1∈I1(dom(τi1))

' dom(t)

Similarly, dom(t ∧ s) ≥ dom(s). Therefore dom(t) ∨ dom(s) ≤ dom(t ∧ s).

For example, dom((Int → Int) ∧ ¬(Bool → Bool)) ∨ dom(Bool → Bool) = Int ∨ Bool, while
dom(((Int→ Int) ∧ ¬(Bool→ Bool)) ∧ (Bool→ Bool)) = dom(0) = 1.

Lemma C.16. Let t be a type and σ be a type substitution such that t ≤ 0→ 1. Then dom(t)σ ≤ dom(tσ)

Proof. We put t into its disjunctive normal form
∨
i∈I τi such that τi 6' 0 for all i ∈ I . Then we have

tσ =
∨
i∈I τiσ. So dom(tσ) =

∧
i∈I dom(τiσ). Let i ∈ I . If τiσ ' 0, then dom(τiσ) = 1. Otherwise,

let τi =
∧
j∈P (tj1 → tj2) ∧

∧
k∈N ¬(tk1 → tk2) ∧

∧
α∈PV

α ∧
∧
α′∈NV

¬α′. Then dom(τi) =
∨
j∈P t

j
1

and dom(τiσ) =
∨
j∈P t

j
1σ ∨ dom((

∧
α∈PV

α ∧
∧
α′∈NV

¬α′)σ ∧ 0 → 1). In both cases, we have
dom(τi)σ ≤ dom(τiσ). Therefore,

∧
i∈I dom(τi)σ ≤

∧
i∈I dom(τiσ), that is, dom(t)σ ≤ dom(tσ).

For example, dom((Int → Int) ∧ ¬α){(Int→ Int)/α} = Int{(Int→ Int)/α} = Int, while
dom(((Int→ Int) ∧ ¬α){(Int→ Int)/α}) = dom((Int→ Int) ∧ ¬(Int→ Int)) = 1.

Lemma C.17. Let t be a type such that t ≤ 0 → 1 and [σk]k∈K be a set of type substitutions. Then∧
k∈K dom(t)σk ≤ dom(

∧
k∈K tσk)

Proof. ∧
k∈K dom(t)σk ≤

∧
k∈K dom(tσk) (by Lemma C.16)

≤
∨
k∈K dom(tσk)

≤ dom(
∧
k∈K tσk) (by Lemma C.15)

Lemma C.18. Let t1, s1, t2 and s2 be types such that t1 · s1 and t2 · s2 exists. Then (t1 ∧ t2) · (s1 ∧ s2)
exists and (t1 ∧ t2) · (s1 ∧ s2) ≤ (t1 · s1) ∧ (t2 · s2).

Proof. According to Lemma C.13, we have si ≤ dom(ti) and ti ≤ si → (ti · si). Then by Lemma
C.15, we get s1 ∧ s2 ≤ dom(t1) ∧ dom(t2) ≤ dom(t1 ∧ t2). Moreover, t1 ∧ t2 ≤ (s1 → (t1 · s1)) ∧
(s2 → (t2 · s2)) ≤ (s1 ∧ s2) → ((t1 · s1) ∧ (t2 · s2)). Therefore, (t1 ∧ t2) · (s1 ∧ s2) exists and
(t1 ∧ t2) · (s1 ∧ s2) ≤ (t1 · s1) ∧ (t2 · s2).

For example, ((Int→ Bool) ∧ (Bool→ Bool)) · (Int ∧ Bool) = 0, while ((Int→ Bool) · Int) ∧
((Bool→ Bool) · Bool) = Bool ∧ Bool = Bool.

Lemma C.19. Let t and s be two types such that t · s exists and σ be a type substitution. Then (tσ) · (sσ)
exists and (tσ) · (sσ) ≤ (t · s)σ.

Proof. Because t · s exists, we have s ≤ dom(t) and t ≤ s → (t · s). Then sσ ≤ dom(t)σ and
tσ ≤ sσ → (t · s)σ. By Lemma C.16, we get dom(t)σ ≤ dom(tσ). So sσ ≤ dom(tσ). Therefore,
(tσ) · (sσ) exists. Moreover, since (t · s)σ is a solution to tσ ≤ sσ → s′, by definition, we have
(tσ) · (sσ) ≤ (t · s)σ.

For example, (((Int→ Int)∧¬α)σ) · (Intσ) = 0 ·Int = 0, while (((Int→ Int)∧¬α) ·Int)σ =
Intσ = Int, where σ = {(Int→ Int)/α}.

Lemma C.20. Let t and s be two types and [σk]k∈K be a set of type substitutions such that t ·s exists. Then
(
∧
k∈K tσk) · (

∧
k∈K sσk) exists and (

∧
k∈K tσk) · (

∧
k∈K sσk) ≤

∧
k∈K(t · s)σk.

Proof. According to Lemmas C.19 and C.18, (
∧
k∈K tσk) · (

∧
k∈K sσk) exists. Moreover,∧

k∈K(t · s)σk ≥
∧
k∈K(tσk · sσk) (Lemma C.19)

≥ (
∧
k∈K tσk) · (

∧
k∈K sσk) (Lemma C.18)

C.2.3 Syntax-Directed Rules
Because of subsumption, the typing rules provided in Section A.3 are not syntax-directed and so they

do not yield a type-checking algorithm directly. In simply type λ-calculus, subsumption is used to bridge
gaps between the types expected by functions and the actual types of their arguments in applications [19]. In
our calculus, we identify four situations where the subsumption is needed, namely, the rules for projections,
abstractions, applications, and type cases. To see why, we consider a typing derivation ending with each
typing rule whose immediate sub-derivation ends with (subsum). For each case, we explain how the use of
subsumption can be pushed through the typing rule under consideration, or how the rule should be modified
to take subtyping into account.

First we consider the case where a typing derivation ends with (subsum) whose immediate sub-derivation
also ends with (subsum). The two consecutive uses of (subsum) can be merged into one, because the
subtyping relation is transitive.

Lemma C.21. If ∆ ; Γ ` e : t, then there exists a derivation for ∆ ; Γ ` e : twhere there are no consecutive
instances of (subsum).

Proof. Assume that there exist two consecutive instances of (subsum) occurring in a derivation of ∆ ; Γ `
e : t, that is,

. . .

. . .

∆′ ; Γ′ ` e′ : s′2 s′2 ≤ s′1
∆′ ; Γ′ ` e′ : s′1

(subsum)
s′1 ≤ t′

∆′ ; Γ′ ` e′ : t′
(subsum)

... . . .
∆ ; Γ ` e : t

Since s′2 ≤ s′1 and s′1 ≤ t′, we have s′2 ≤ t′. So we can rewrite this derivation as follows:

. . .

. . .

∆′ ; Γ′ ` e′ : s′2 s′2 ≤ t′

∆′ ; Γ′ ` e′ : t′
(subsum)

... . . .
∆ ; Γ ` e : t

Therefore, the result follows.

Next, consider an instance of (pair) such that one of its sub-derivations ends with an instance of
(subsum), for example, the left sub-derivation:

. . .
∆ ; Γ ` e1 : s1 s1 ≤ t1

∆ ; Γ ` e1 : t1
(subsum)

. . .
∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : (t1 × t2)
(pair)

As s1 ≤ t1, we have s1 × t2 ≤ t1 × t2. Then we can move subsumption down through the rule (pair),
giving the following derivation:

. . .
∆ ; Γ ` e1 : s1

. . .
∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : (s1 × t2)
(pair)

s1 × t2 ≤ t1 × t2
∆ ; Γ ` (e1, e2) : (t1 × t2)

(subsum)

The rule (proj) is a little trickier than (pair). Consider the following derivation:
. . .

∆ ; Γ ` e : s s ≤ t1 × t2
∆ ; Γ ` e : (t1 × t2)

(subsum)

∆ ; Γ ` πi(e) : ti
(proj)

As s ≤ t1 × t2, s is a pair type. According to the decomposition of s and Lemma C.5, we can rewrite the
previous derivation into the following one:

. . .
∆ ; Γ ` e : s s ≤ 1× 1

∆ ; Γ ` πi(e) : πππi(s) πππi(s) ≤ ti
∆ ; Γ ` πi(e) : ti

Note that the subtyping check s ≤ 1× 1 ensures that s is a pair type.
Next consider an instance of (abstr) (where ∆′ = ∆ ∪ var(

∧
i∈I,j∈J(tiσj → siσj)). All the sub-

derivations may end with (subsum):

∀i ∈ I, j ∈ J.

. . .

∆′ ; Γ, (x : tiσj) ` e@[σj] : s′ij s′ij ≤ siσj
∆′ ; Γ, (x : tiσj) ` e@[σj] : siσj

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e :

∧
i∈I,j∈J(tiσj → siσj)

(abstr)

Without subsumption, we would assign the type
∧
i∈I,j∈J(tiσj → s′ij) to the abstraction, while we want

to assign the type
∧
i∈I,j∈J(tiσj → siσj) to it because of the type annotations. Consequently, we have to

keep the subtyping checks s′ij ≤ siσj as side-conditions of an algorithmic typing rule for abstractions.
∀i ∈ I, j ∈ J. ∆′ ; Γ, (x : tiσj) ` e@[σj] : s′ij s′ij ≤ siσj

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e :

∧
i∈I,j∈J(tiσj → siσj)

In (appl) case, suppose that both sub-derivations end with (subsum):
. . .

∆ ; Γ ` e1 : t t ≤ t′ → s′

∆ ; Γ ` e1 : t′ → s′

. . .
∆ ; Γ ` e1 : s s ≤ t′

∆ ; Γ ` e2 : t′

∆ ; Γ ` e1 e2 : s′
(appl)

Since s ≤ t′, then by the contravariance of arrow types we have t′ → s′ ≤ s→ s′. Hence, such a derivation
can be rewritten as . . .

∆ ; Γ ` e1 : t t ≤ t′ → s′

∆ ; Γ ` e1 : t′ → s′ t′ → s′ ≤ s→ s′

∆ ; Γ ` e1 : s→ s′
. . .

∆ ; Γ ` e1 : s

∆ ; Γ ` e1 e2 : s′
(appl)

Applying Lemma C.21, we can merge the two adjacent instances of (subsum) into one:
. . .

∆ ; Γ ` e1 : t t ≤ s→ s′

∆ ; Γ ` e1 : s→ s′
. . .

∆ ; Γ ` e1 : s

∆ ; Γ ` e1 e2 : s′
(appl)

A syntax-directed typing rule for applications can then be written as follows
∆ ; Γ ` e1 : t ∆ ; Γ ` e2 : s t ≤ s→ s′

∆ ; Γ ` e1e2 : s′

where subsumption is used as a side condition to bridge the gap between the function type and the argument
type.

This typing rule is not algorithmic yet, because the result type s′ can be any type verifying the side
condition. Using Lemma C.12, we can equivalently rewrite the side condition as t ≤ 0 → 1 and
s ≤ dom(t) without involving the result type s′. The first condition ensures that t is a function type
and the second one that the argument type s can be safely applied by t. Moreover, we assign the type t · s
to the application, which is by definition the smallest possible type for it. We obtain then the following
algorithmic typing rule.

∆ ; Γ ` e1 : t ∆ ; Γ ` e2 : s t ≤ 0→ 1 s ≤ dom(t)

∆ ; Γ ` e1e2 : t · s
Next, let us discuss the rule (case):

∆ ; Γ ` e : t′
{
t′ 6≤ ¬t ⇒ ∆ ; Γ ` e1 : s
t′ 6≤ t ⇒ ∆ ; Γ ` e2 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s
(case)

The rule covers four different situations, depending on which branches of the type-cases are checked: (i) no
branch is type-checked, (ii) the first branch e1 is type-checked, (iii) the second branch e2 is type-checked,
and (iv) both branches are type-checked. Each case produces a corresponding algorithmic rule.

In case (i), we have simultaneously t′ ≤ t and t′ ≤ ¬t, which means that t′ = 0. Consequently, e does
not reduce to a value (otherwise, subject reduction would be violated), and neither does the whole type case.

Consequently, we can assign type 0 to the whole type.
. . .

∆ ; Γ ` e : 0

∆ ; Γ ` (e∈t ? e1 : e2) : 0

Suppose we are in case (ii) and the sub-derivation for the first branch e1 ends with (subsum):

∆ ; Γ ` e : t′ t′ ≤ t

. . .
∆ ; Γ ` e1 : s1 s1 ≤ s

∆ ; Γ ` e1 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s
(case)

Such a derivation can be rearranged as:

∆ ; Γ ` e : t′ t′ ≤ t
. . .

∆ ; Γ ` e1 : s1

∆ ; Γ ` (e∈t ? e1 : e2) : s1 s1 ≤ s
∆ ; Γ ` (e∈t ? e1 : e2) : s

Moreover, (subsum) might also be used at the end of the sub-derivation for e:
. . .

∆ ; Γ ` e : t′′ t′′ ≤ t′

∆ ; Γ ` e : t′ t′ ≤ t ∆ ; Γ ` e1 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s
(case)

From t′′ ≤ t′ and t′ ≤ t, we deduce t′′ ≤ t by transitivity. Therefore this use of subtyping can be merged
with the subtyping check of the type case rule. We then obtain the following algorithmic rule.

. . .

∆ ; Γ ` e : t′′ t′′ ≤ t ∆ ; Γ ` e1 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s

We obtain a similar rule for case (iii), except that e2 is type-checked instead of e1, and t′′ is tested against
¬t.

Finally, consider case (iv). We have to type-check both branches and each typing derivation may end
with (subsum):

∆ ; Γ ` e : t′


t′ 6≤ ¬t and

. . .
∆ ; Γ ` e1 : s1 s1 ≤ s

∆ ; Γ ` e1 : s

t′ 6≤ t and

. . .
∆ ; Γ ` e2 : s2 s2 ≤ s

∆ ; Γ ` e2 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s
(case)

Subsumption is used there just to unify s1 and s2 into a common type s, which is used to type the whole
type case. Such a common type can also be obtained by taking the least upper-bound of s1 and s2, i.e.,
s1 ∨ s2. Because s1 ≤ s and s2 ≤ s, we have s1 ∨ s2 ≤ s, and we can rewrite the derivation as follows:

∆ ; Γ ` e : t′


t′ 6≤ ¬t and

. . .
∆ ; Γ ` e1 : s1

t′ 6≤ t and
. . .

∆ ; Γ ` e2 : s2

∆ ; Γ ` (e∈t ? e1 : e2) : s1 ∨ s2

(case)
s1 ∨ s2 ≤ s

∆ ; Γ ` (e∈t ? e1 : e2) : s

Suppose now that the sub-derivation for e ends with (subsum):
. . .

∆ ; Γ ` e : t′′ t′′ ≤ t′

∆ ; Γ ` e : t′
{
t′ 6≤ ¬t and ∆ ; Γ ` e1 : s1

t′ 6≤ t and ∆ ; Γ ` e2 : s2

∆ ; Γ ` (e∈t ? e1 : e2) : s1 ∨ s2

(case)

The relations t′′ ≤ t′, t′ � ¬t do not necessarily imply t′′ 6≤ ¬t, and t′′ ≤ t′, t′ � t do not necessarily
imply t′′ 6≤ ¬t. Therefore, by using the type t′′ instead of t′ for e, we may type-check less branches. If so,
then we would be in one of the cases (i)− (iii), and the result type (i.e., a type among 0, s1 or s2) for the
whole type case would be smaller than s1 ∨ s2. It would then be possible to type the type case with s1 ∨ s2

by subsumption. Otherwise, we type-check as many branches with t′′ as with t′, and we can modify the rule
into

. . .

∆ ; Γ ` e : t′′
{
t′′ 6≤ ¬t and ∆ ; Γ ` e1 : s1

t′′ 6≤ t and ∆ ; Γ ` e2 : s2

∆ ; Γ ` (e∈t ? e1 : e2) : s1 ∨ s2

Finally, consider the case where the last rule in a derivation is (instinter) and all its sub-derivations end
with (subsum):

. . .
∆ ; Γ ` e : s s ≤ t

∆ ; Γ ` e : t
(subsum) ∀j ∈ J. σj] ∆

∆ ; Γ ` e[σj]j∈J :
∧
j∈J tσj

(instinter)

Since s ≤ t, we have
∧
j∈J sσj ≤

∧
j∈J tσj . So such a derivation can be rewritten into

. . .
∆ ; Γ ` e : s ∀j ∈ J. σj] ∆

∆ ; Γ ` e[σj]j∈J :
∧
j∈J sσj

(instinter) ∧
j∈J sσj ≤

∧
j∈J tσj

∆ ; Γ ` e[σj]j∈J :
∧
j∈J tσj

(subsum)

In conclusion, by applying the aforementioned transformations repeatedly, we can rewrite an arbitrary
typing derivation into a special form where subsumption are used at the end of sub-derivations of projec-
tions, abstractions or applications, in the conditions of type cases and at the very end of the whole derivation.
Thus, this transformations yields a set of syntax-directed typing rules, given in Figure 6. Let ∆ ; Γ `A e : t
denote the typing judgments derivable by the set of syntax-directed typing rules.

∆ ; Γ `A c : bc
(ALG-CONST)

∆ ; Γ `A x : Γ(x)
(ALG-VAR)

∆ ; Γ `A e1 : t1 ∆ ; Γ `A e2 : t2

∆ ; Γ `A (e1, e2) : t1 × t2
(ALG-PAIR)

∆ ; Γ `A e : t t ≤ 1× 1

∆ ; Γ `A πi(e) : πππi(t)
(ALG-PROJ)

∆ ; Γ `A e1 : t ∆ ; Γ `A e2 : s t ≤ 0→ 1 s ≤ dom(t)

∆ ; Γ `A e1e2 : t · s (ALG-APPL)

∆′ = ∆ ∪ var(
∧

i∈I,j∈J

(tiσj → siσj))

∀i ∈ I, j ∈ J. ∆′ ; Γ, (x : tiσj) `A e@[σj] : s′ij s′ij ≤ siσj
∆ ; Γ `A λ

∧i∈I ti→si
[σj]j∈J

x.e :
∧

i∈I,j∈J

(tiσj → siσj)
(ALG-ABSTR)

∆ ; Γ `A e : 0

∆ ; Γ `A (e∈t ? e1 : e2) : 0
(ALG-CASE-NONE)

∆ ; Γ `A e : t′ t′ ≤ t t′ 6≤ ¬t ∆ ; Γ `A e1 : s1

∆ ; Γ `A (e∈t ? e1 : e2) : s1
(ALG-CASE-FST)

∆ ; Γ `A e : t′ t′ ≤ ¬t t′ 6≤ t ∆ ; Γ `A e2 : s2

∆ ; Γ `A (e∈t ? e1 : e2) : s2
(ALG-CASE-SND)

∆ ; Γ `A e : t′
{
t′ 6≤ ¬t and ∆ ; Γ `A e1 : s1

t′ 6≤ t and ∆ ; Γ `A e2 : s2

∆ ; Γ `A (e∈t ? e1 : e2) : s1 ∨ s2
(ALG-CASE-BOTH)

∆ ; Γ `A e : t ∀j ∈ J. σj] ∆ |J | > 0

∆ ; Γ `A e[σj]j∈J :
∧
j∈J

tσj
(ALG-INST)

Figure 6. Syntax-directed typing rules

Theorem C.22 (Soundness). Let e be an expression. If Γ `A e : t, then Γ ` e : t.

Proof. By induction on the typing derivation of ∆ ; Γ `A e : t. We proceed by a case analysis on the last
rule used in the derivation.

(ALG-CONST): straightforward.

(ALG-VAR): straightforward.
(ALG-PAIR): consider the derivation

. . .
∆ ; Γ `A e1 : t1

. . .
∆ ; Γ `A e2 : t2

∆ ; Γ `A (e1, e2) : t1 × t2
Applying the induction hypothesis twice, we get ∆ ; Γ ` ei : ti. Then by applying the rule (pair), we
have ∆ ; Γ ` (e1, e2) : t1 × t2.

(ALG-PROJ): consider the derivation
. . .

∆ ; Γ `A e : t t ≤ 1× 1

∆ ; Γ `A πi(e) : πππi(t)

By induction, we have ∆ ; Γ ` e : t. According to Lemma C.5, we have t ≤ (πππ1(t)×πππ2(t)). Then by
(subsum), we get ∆ ; Γ ` e : (πππ1(t)×πππ2(t)). Finally, the rule (proj) gives us ∆ ; Γ ` πi(e) : πππi(t).

(ALG-APPL): consider the derivation
. . .

∆ ; Γ `A e1 : t
. . .

∆ ; Γ `A e2 : s t ≤ 0→ 1 s ≤ dom(t)

∆ ; Γ `A e1e2 : t · s
By induction, we have ∆ ; Γ ` e1 : t and ∆ ; Γ ` e2 : s. According to Lemma C.13, we have

t · s = min{s′ | t ≤ s→ s′}
Note that the conditions t ≤ 0 → 1 and s ≤ dom(t) ensure that such a type exists. It is clear
t ≤ s → (t · s). Then by (subsum), we get ∆ ; Γ ` e1 : s → (t · s). Finally, the rule (appl) gives
us ∆ ; Γ ` e1e2 : t · s.

(ALG-ABSTR): consider the derivation

∀i ∈ I, j ∈ J.
. . .

∆′ ; Γ, (x : tiσj) `A e@[σj] : s′ij s′ij ≤ siσj
∆ ; Γ `A λ

∧i∈I ti→si
[σj]j∈J

x.e :
∧
i∈I,j∈J(tiσj → siσj)

with ∆′ = ∆ ∪ var(
∧
i∈I,j∈J(tiσj → siσj)). By induction, for all i ∈ I and j ∈ J , we have

∆′ ; Γ, (x : tiσj) ` e@[σj] : s′ij . Since s′ij ≤ siσj , by (subsum), we get ∆′ ; Γ, (x : tiσj) ` e@[σj] :

siσj . Finally, the rule (abstr) gives us ∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e :

∧
i∈I,j∈J(tiσj → siσj).

(ALG-CASE-NONE): consider the derivation
. . .

∆ ; Γ `A e : 0

∆ ; Γ `A (e∈t ? e1 : e2) : 0

By induction, we have ∆ ; Γ ` e : 0. No branch is type-checked by the rule (case), so any type can be
assigned to the type case expression, and in particular we have ∆ ; Γ ` (e∈t ? e1 : e2) : 0

(ALG-CASE-FST): consider the derivation
. . .

∆ ; Γ `A e : t′ t′ ≤ t
. . .

∆ ; Γ `A e1 : s1

∆ ; Γ `A (e∈t ? e1 : e2) : s1

By induction, we have ∆ ; Γ ` e : t′ and ∆ ; Γ ` e1 : s1. As t′ ≤ t, then we only need to type-check
the first branch. Therefore, by the rule (case), we have ∆ ; Γ ` (e∈t ? e1 : e2) : s1.

(ALG-CASE-SND): similar the case of (ALG-CASE-FST).
(ALG-CASE-BOTH): consider the derivation

. . .

∆ ; Γ `A e : t′


t′ 6≤ ¬t and

. . .
∆ ; Γ `A e1 : s1

t′ 6≤ t and
. . .

∆ ; Γ `A e2 : s2

∆ ; Γ `A (e∈t ? e1 : e2) : s1 ∨ s2

By induction, we have ∆ ; Γ ` e : t′, ∆ ; Γ ` e1 : s1 and ∆ ; Γ ` e2 : s2. It is clear that s1 ≤ s1 ∨ s2

and s2 ≤ s1 ∨ s2. Then by (subsum), we get ∆ ; Γ ` e1 : s1 ∨ s2 and ∆ ; Γ ` e2 : s1 ∨ s2.
Moreover, as t′ 6≤ ¬t and t′ 6≤ t, we have to type-check both branches. Finally, by the rule (case), we
get ∆ ; Γ ` (e∈t ? e1 : e2) : s1 ∨ s2.

(ALG-INST): consider the derivation
. . .

∆ ; Γ `A e : t ∀j ∈ J. σj] ∆

∆ ; Γ `A e[σj]j∈J :
∧
j∈J tσj

By induction, we have ∆ ; Γ ` e : t. As ∀j ∈ J. σj] ∆, by (instinter), we get ∆ ; Γ ` e[σj]j∈J :∧
j∈J tσj .

Theorem C.23 (Completeness). Let ≤ be a subtyping relation induced by a well-founded (convex) model
with infinite support and e an expression. If ∆ ; Γ ` e : t, then there exists a type s such that ∆ ; Γ `A e : s
and s ≤ t.

Proof. By induction on the typing derivation of ∆ ; Γ ` e : t. We proceed by case analysis on the last rule
used in the derivation.

(const): straightforward (take s as bc).
(var): straightforward (take s as Γ(x)).
(pair): consider the derivation

. . .
∆ ; Γ ` e1 : t1

. . .
∆ ; Γ ` e2 : t2

∆ ; Γ ` (e1, e2) : t1 × t2
(pair)

Applying the induction hypothesis twice, we have ∆ ; Γ `A ei : si where si ≤ ti. Then the rule
(ALG-PAIR) gives us ∆ ; Γ `A (e1, e2) : s1 × s2. Since si ≤ ti, we deduce (s1 × s2) ≤ (t1 × t2).

(proj): consider the derivation
. . .

∆ ; Γ ` e : (t1 × t2)

∆ ; Γ ` πi(e) : ti
(proj)

By induction, there exists s such that ∆ ; Γ `A e : s and s ≤ (t1 × t2). Clearly we have s ≤ 1 × 1.
Applying (ALG-PROJ), we have ∆ ; Γ `A πi(e) : πππi(s). Moreover, as s ≤ (t1 × t2), according to
Lemma C.5, we have πππi(s) ≤ ti. Therefore, the result follows.

(appl): consider the derivation
. . .

∆ ; Γ ` e1 : t1 → t2

. . .
∆ ; Γ ` e2 : t1

∆ ; Γ ` e1e2 : t2
(appl)

Applying the induction hypothesis twice, we have ∆ ; Γ `A e1 : t and ∆ ; Γ `A e2 : s where
t ≤ t1 → t2 and s ≤ t1. Clearly we have t ≤ 0 → 1 and t ≤ s → t2 (by contravariance
of arrows). From Lemma C.12, we get s ≤ dom(t). So, by applying the rule (ALG-APPL), we have
∆ ; Γ `A e1e2 : t · s. Moreover, it is clear that t2 is a solution for t ≤ s → s′. Consequently, it is a
super type of t · s, that is t · s ≤ t2.

(abstr): consider the derivation

∀i ∈ I, j ∈ J.
. . .

∆′ ; Γ, (x : tiσj) ` e@[σj] : siσj

∆ ; Γ ` λ∧i∈I ti→si[σj]j∈J
x.e :

∧
i∈I,j∈J(tiσj → siσj)

(abstr)

where ∆′ = ∆ ∪ var(
∧
i∈I,j∈J(tiσj → siσj)). By induction, for all i ∈ I and j ∈ J , there exists

s′ij such that ∆′ ; Γ, (x : tiσj) `A e@[σj] : s′ij and s′ij ≤ siσj . Then the rule (ALG-ABSTR) gives us
∆ ; Γ `A λ

∧i∈I ti→si
[σj]j∈J

x.e :
∧
i∈I,j∈J(tiσj → siσj)

(case): consider the derivation

. . .

∆ ; Γ ` e : t′


t′ � ¬t ⇒

. . .
∆ ; Γ ` e1 : s

t′ � t ⇒
. . .

∆ ; Γ ` e2 : s

∆ ; Γ ` (e∈t ? e1 : e2) : s
(case)

By induction hypothesis on ∆ ; Γ ` e : t′, there exists a type t′′ such that ∆ ; Γ `A e : t′′ and
t′′ ≤ t′. If t′′ ' 0, by (ALG-CASE-NONE), we have ∆ ; Γ `A (e∈t ? e1 : e2) : 0. The result follows
straightforwardly. In what follows, we assume that t′′ 6' 0.
Assume that t′′ ≤ t. Because t′′ ≤ t′, we have t′ � ¬t (otherwise, t′′ ' 0). Therefore the first branch
is type-checked, and by induction, there exists a type s1 such that ∆ ; Γ `A e1 : s1 and s1 ≤ s. Then
the rule (ALG-CASE-FST) gives us ∆ ; Γ `A (e∈t ? e1 : e2) : s1.
Otherwise, t′′ � t. In this case, we have t′ � t (otherwise, t′′ ≤ t). Then the second branch is type-
checked. By induction, there exists a type s2 such that ∆ ; Γ `A e2 : s2 and s2 ≤ s. If t′′ ≤ ¬t, then
by the rule (ALG-CASE-SND), we have ∆ ; Γ `A (e∈t ? e1 : e2) : s2. The result follows. Otherwise, we
also have t′′ � ¬t. Then we also have t′ � ¬t (otherwise, t′′ ≤ ¬t). So the first branch should
be type-checked as well. By induction, we have ∆ ; Γ `A e1 : s1 where s1 ≤ s. By applying
(ALG-CASE-BOTH), we get ∆ ; Γ `A (e∈t ? e1 : e2) : s1 ∨ s2. Since s1 ≤ s and s2 ≤ s, we deduce
that s1 ∨ s2 ≤ s. The result follows as well.

(instinter): consider the derivation
. . .

∆ ; Γ ` e : t ∀j ∈ J. σj] ∆

∆ ; Γ ` e[σj]j∈J :
∧
j∈J tσj

(instinter)

By induction, there exists a type s such that ∆ ; Γ `A e : s and s ≤ t. Then the rule (ALG-INST) gives
us that ∆ ; Γ `A e[σj]j∈J :

∧
j∈J sσj . Since s ≤ t, we have

∧
j∈J sσj ≤

∧
j∈J tσj . Therefore, the

result follows.

Corollary C.24 (Minimum typing). Let e be an expression. If ∆ ; Γ `A e : t, then t = min{s | ∆ ; Γ `
e : s}.

Proof. Consequence of Theorems C.22 and C.23.

To prove the termination of the type-checking algorithm, we define the size of an expression e as follows.

Definition C.25. Let e be an expression. We define the size of e as:
size(c) = 1
size(x) = 1

size((e1, e2)) = size(e1) + size(e2) + 1
size(πi(e)) = size(e) + 1
size(e1e2) = size(e1) + size(e2) + 1

size(λ
∧i∈I ti→si
[σj]j∈J

x.e) = size(e) + 1

size(e∈t ? e1 : e2) = size(e) + size(e1) + size(e2) + 1
size(e[σj]j∈J) = size(e) + 1

The relabeling does not enlarge the size of the expression.

Lemma C.26. Let e be an expression and [σj]j∈J a set of type substitutions. Then

size(e@[σj]j∈J) ≤ size(e).

Proof. By induction on the structure of e.

Theorem C.27 (Termination). Let e be an expression. Then the type-inference algorithm for e terminates.

Proof. By induction on the sizes of the expressions to be checked.

(ALG-CONST): it terminates immediately.
(ALG-VAR): it terminates immediately.
(ALG-PAIR): size(e1) + size(e2) < size((e1, e2)).
(ALG-PROJ): size(e′) < size(π1(e′)).
(ALG-APPL): size(e1) + size(e2) < size(e1e2).
(ALG-ABSTR): by Lemma C.26, we have size(e′@[σj]) ≤ size(e′). Then we get

size(e′@[σj]) < size(λ
∧i∈I ti→si
[σj]j∈J

x.e′).

(ALG-CASE): size(e′) + size(e1) + size(e2) < size(e′∈t ? e1 : e2).
(ALG-INST): size(e′) < size(e′[σj]j∈J).

D. Evaluation
As described in Section 3, below we assume that polymorphic variables are pairwise distinct and distinct
from any monomorphic variables in the expressions under consideration. In particular, when substituting
an expression e for a variable x in an expression e′, we assume the polymorphic type variables of e′ to be
distinct from the monomorphic and polymorphic type variables of e. Furthermore, we assume that there are
no useless type variables in the domain of any type-substitution and no redundant type-substitutions in any
set of type-substitutions (Lemmas B.9 and B.10).

D.1 Equivalence between small-step semantics and big-step semantics
In this section, we prove the equivalence between the small-step semantics in Section A.4 and the big-step
semantics for the polymorphic language in Section 5.2 (extended with let-polymorphism in Section 5.4).
For clarity, we use v for the values for the small-step semantics and vp for those of the big-step semantics.

Definition D.1 (Polymorphic language).
e ::= c | x | x | λtσIx.e | ee | e ∈ t ? e : e

| eσI | let x = e in e
v ::= c | λtσIx.e (for the small-step semantics)
vp ::= c | 〈λtσIx.e, E , σI〉 (for the big-step semantics)

Definition D.2 (Membership). The membership relation vp ∈p t for polymorphic values is inductively
defined as follows:

c ∈p t
def
= bc ≤ t

〈λsσIx.e, E , σJ〉 ∈p t
def
= s(σJ ◦ σI) ≤ t

Definition D.3. We define a transformation function (.) from vp to v as follows:

(c)
def
= c

(〈λsσIx.e, E , σJ〉)
def
= λsσJ◦σIx.e(E)

where (E) is defined as follows:

(∅)
def
= ∅

(E , x 7→ vp)
def
= (E) ∪ {(vp)/x}

(E , x 7→ vp)
def
= (E) ∪ {(vp)/x}

In the definition of (〈λsσIx.e, E , σJ〉), to avoid unwanted captures, we assume that the polymorphic type
variables of λsσJ◦σIx.e are distinct from the monomorphic and polymorphic type variables in E , ie, tv(E)
as precisely defined in Definition D.4. This is guaranteed by the assumption we impose on variables.

Definition D.4. The sets tv(vp) and tv(E) of type variables respectively occurring in vp and E are defined
as follows:

tv(vp)
def
= tv((vp))

tv(E)
def
=

⋃
x∈dom(E) tv(E (x)) ∪

⋃
x∈dom(E) tv(E (x))

Definition D.5. Let e be an expression and E an environment. We write e] E to mean that the polymorphic
type variables in e are distinct from tv(E). Moreover, we define]vp and]E recursively as follows:

]〈λtσIx.e, E , σJ〉
def
=]E and ∃t′, ` (〈λtσIx.e, E , σJ〉) : t′ and (λtσJ◦σIx.e)] E

]c
def
= true

]E
def
= ∀x ∈ dom(E),](E (x)) and ∀x ∈ dom(E),](E (x))

Definition D.6. Let i denote a singleton set made of the empty type-substitution [{ }], which is the neutral
element of the composition of sets of type-substitutions. We define a transformation function clos(·) from
(v, E , σI) to vp as follows:

clos(c, E , σI)
def
= c

clos(λtσJx.e, E , σI)
def
= 〈λtσJx.e, E , σI〉

For simplicity, we write clos(v) for clos(v,∅, i).

Definition D.7. We define the reflexive and transitive closure ∗ of a single-step reduction by the
following two rules:

e ∗ e
(refl)

e1 e2 e2
∗ e3

e1
∗ e3

(trans)

Lemma D.8. Suppose e1 ∗ e′1. Then:
(1) e1e2 ∗ e′1e2.
(2) e0e1 ∗ e0e

′
1.

(3) e1 ∈ t ? e2 : e3 ∗ e′1 ∈ t ? e2 : e3.
(4) let x = e1 in e2 ∗ let x = e′1 in e2.

Proof. By induction on a derivation of e1 ∗ e′1.

Lemma D.9. If e1 ∗ e2 and e2 ∗ e3, then e1 ∗ e3.

Proof. By induction on a derivation of e1 ∗ e2.

Lemma D.10. Let vp be a polymorphic value. The following properties hold:
(1) Suppose vp ∈p t. If there exists some type t′ such that ` (vp) : t′, then ` (vp) : t.
(2) ` (vp) : t implies vp ∈p t.

Proof. (1) By induction on a derivation of ` (vp) : t′. There are three cases to consider.

(const): vp = c and t′ = bc. By definition D.2, bc ≤ t and by the rule (subsum), we have ` c : t.
(abstr): vp = 〈λsσIx.e, E , σJ〉, (vp) = λsσJ◦σIx.e(E), and t′ = s(σJ ◦ σI).

By Definition D.2, s(σJ ◦ σI) ≤ t and by the rule (subsum), we have ` (vp) : t.
(subsum): We have as assumptions ` (vp) : s and s ≤ t′. By induction hypothesis, we have ` (vp) : t.

(2) By induction on a derivation of ` (vp) : t.

Lemma D.11. Let vp be a polymorphic value.
(1) Suppose vp 6∈p t. If there exists some type t′ such that ` (vp) : t′, then ` (vp) : ¬t.
(2) ` (vp) : ¬t implies vp 6∈p t.

Proof. (1) By induction on a derivation of ` (vp) : t′. (2) The proof is by contradiction. Suppose vp ∈p t.
Then, by Lemma D.10, we have ` (vp) : t, which is absurd.

Lemma D.12. Suppose (1) e] E and]E ; (2) ` (e@σI)(E) : t; and (3) σI ; E `p e ⇓ vp. Then (4)]vp and
(5) (e@σI)(E) ∗ (vp).

Proof. By induction on a derivation of σI ; E `p e ⇓ vp.

(PE-CONST): σI ; E `p c ⇓ c where e = c.
•]c and (c@σI)(E) = c ∗ c.

(PE-VAR): σI ; E `p x ⇓ E (x) where e = x.
• From (1), we have](E (x)).
• By Definition D.3, (x@σI)(E) = x(E) = x{(E (x))/x} = (E (x)) ∗ (E (x)).

(PE-CLOSURE): σI ; E `p λsσJx.e0 ⇓ 〈λsσJx.e0, E , σI〉 where e = λsσJx.e0.
• By Definition D.3, ((λsσJx.e0)@σI)(E) = λsσI◦σJx.e0(E) = (〈λsσJx.e0, E , σI〉) ∗ (〈λsσJx.e0, E , σI〉).
• Moreover, from (1) and (2), we have]〈λsσJx.e0, E , σI〉.

(PE-APPLY): e = e1e2.

(a) σI ; E `p e1 ⇓ 〈λsσKx.e0, E
′, σH〉 s = ∧l∈Lsl → s′l (b) σI ; E `p e2 ⇓ vp0

σJ = σH ◦ σK (c) P = {j ∈ J | ∃l ∈ L : vp0 ∈p slσj} (d) σP ; E ′, x 7→ vp0 `p e0 ⇓ vp
σI ; E `p e1e2 ⇓ vp

• From (2), (e1@σI)(E) and (e2@σI)(E) are also well-typed.
• By IH on (a),]〈λsσKx.e0, E

′, σH〉 and (e1@σI)(E) ∗ (〈λsσKx.e0, E
′, σH〉) = λsσH◦σKx.e0(E ′) =

λsσJx.e0(E ′) where dom(σJ) ∩ tv(E ′) = ∅.
• By IH on (b),]vp0 and (e2@σI)(E) ∗ (vp0).
• By Lemmas D.8 and D.9, ((e1e2)@σI)(E) = ((e1@σI)(E))((e2@σI)(E)) ∗ (λsσJx.e0(E ′))(vp0)

((e0(E ′))@σP ′){(vp0)/x} where
(e) P ′ = {j ∈ J | ∃l ∈ L, ` (vp0) : slσj}

Furthermore, by Theorem B.15 with (2), ((e0(E ′))@σP ′){(vp0)/x} is also well-typed.
• By]E ′ and]vp0, we have](E ′x 7→ vp0) and by assuming α-conversion, we have e0] (E ′x 7→ vp0).
• By Lemma D.10 with (c) and (e), P = P ′. Moreover, by Lemma B.5 with dom(σJ) ∩ tv(E ′) = ∅,

we have (e0(E ′))@σP ′ = (e0(E ′))@σP = (e0@σP)(E ′).
• By IH on (d), (e0@σP)(E ′, x 7→ vp0) = (e0@σP)(E ′){(vp0)/x} = ((e0(E ′))@σP){(vp0)/x} ∗

(vp) and] vp.
• Finally, by Lemma D.9, ((e1e2)@σI)(E) ∗ (vp).

(PE-TYPE CASE T): e = e1 ∈ s ? e2 : e3.

(a) σI ; E `p e1 ⇓ vp0 (b) vp0 ∈p s (c) σI ; E `p e2 ⇓ vp
σI ; E `p e1 ∈ s ? e2 : e3 ⇓ vp

• By definition, ((e1 ∈ s ? e2 : e3)@σI)(E) = (e1@σI)(E) ∈ s ? (e2@σI)(E) : (e3@σI)(E), and
each sub-expression (ei@σI)(E) (i = 1, 2, 3) is well-typed from the assumption (2).
• By IH on (a), (e1@σI)(E) ∗ (vp0) and]vp0.
• Then, by Lemma D.10 with (b), we have ` (vp0) : s.
• By IH on (c), (e2@σI)(E) ∗ (vp) and]vp.
• Finally, by Lemmas D.8 and D.9, we have (e1@σI)(E) ∈ s ? (e2@σI)(E) : (e3@σI)(E) ∗

(vp0) ∈ s ? (e2@σI)(E) : (e3@σI)(E) (e2@σI)(E) ∗ (vp), thus proving (5).

(PE-TYPE CASE F): Similar to the case for the rule (PE-TYPE CASE T), except that we exploit Lemma D.11
instead of Lemma D.10.

(PE-INSTANCE): e = e0σJ .
(a) σI ◦ σJ ; E `p e0 ⇓ v

σI ; E `p e0σJ ⇓ v
• By the assumption (1), we have e0] E .
• By IH on (a), (e0@(σI ◦ σJ))(E) ∗ (vp) and]vp.
• Finally, by definition, we have ((eσJ)@σI)(E) = (e@(σI ◦ σJ))(E) ∗ (vp), thus proving (5).

(PE-PVARc): e = x.
E (x) = c

σI ; E `p x ⇓ c
•]c and (x@σI)(E) = c ∗ c.

(PE-PVARf): e = x.

E (x) = 〈λsσKy.e0, E
′, σJ〉

σI ; E `p x ⇓ 〈λsσKy.e0, E
′, σI ◦ σJ〉

• (x@σI)(E) = (x[σi]i∈I)(E) = (E (x))[σi]i∈I = (〈λsσKy.e0, E
′, σJ〉)[σi]i∈I ∗ λsσI◦(σJ◦σK)y.e0(E ′) =

(〈λsσKy.e0, E
′, σI ◦ σJ〉).

(PE-LET): e = let x = e1 in e2.

(a) σI ; E `p e1 ⇓ vp0 (b) σI ; E , x 7→ vp0 `p e2 ⇓ vp
σI ; E `p let x = e1 in e2 ⇓ vp

• By IH on (a), (e1@σI)(E) ∗ (vp0).
• By IH on (b), (e2@σI)(E , x 7→ vp0) = (e2@σI)(E){(vp0)/x} ∗ (vp).
• By Lemmas D.8 and D.9, ((let x = e1 in e2)@σI)(E) = let x = (e1@σI)(E) in (e2@σI)(E) ∗

let x = (vp0) in (e2@σI)(E) (e2@σI)(E){(vp0)/x} ∗ vp.

Definition D.13. vp ≡c vp
′ if and only if (vp) = (vp′).

Lemma D.14. Suppose vp ≡c vp
′. Then vp ∈p t if and only if vp′ ∈p t.

Proof. Suppose vp = c. Then vp′ = c, which completes the proof. Now suppose vp = 〈λsσIx.e, E , σJ〉.
Then vp′ = 〈λsσKx.e

′, E ′, σH〉 where σJ ◦ σI = σH ◦ σK and e(E) = e′(E ′). By the definition of ∈p, we
complete the proof.

Lemma D.15. Suppose (1) (e1@σI)(E1) = (e2@σI)(E2) and (2) σI ; E1 `p e1 ⇓ vp. Then, there exists vp′

such that σI ; E2 `p e2 ⇓ vp′ and vp ≡c vp
′.

Proof. By induction on a derivation of σI ; E1 `p e1 ⇓ vp.

(PE-CONST): e1 = vp = c.
• From (1), e2 is either c, x, or x. If e2 = c, then the proof is easy.
• If e2 = x, then vp′ = E2(x). From (1) we have (e2@σI)(E2) = (x@σI)(E2) = (E2(x)) = c, thus

completing the proof. The proof for e2 = x is similar.
(PE-VAR): e1 = x and vp = E1(x).

• From (1), e2 is either y, c, λsσK z.e, or x.
• If e2 = c, then vp′ = c. Moreover, from (1) we have (e1@σI)(E1) = (x@σI)(E1) = (E1(x)) = c,

thus completing the proof.
• If e2 = y, then vp′ = E2(y). From (1) we have E1(x) = E2(y), thus completing the proof.
• If e2 = λsσK z.e, then vp′ = 〈e2, E2, σI〉. From (1) we have E1(x) = (e2@σI)(E2) = (vp′), thus

completing the proof.
• Now assume e2 = x. If E2(x) = c, then from (1) we also have E1(x) = c, thus completing the

proof. Otherwise, E2(x) = 〈λsσK z.e, E
′, σH〉 and vp′ = 〈λsσK z.e, E

′, σI ◦ σH〉. From (1), we have
E1(x) = (x@σI)(E2) = (E2(x))@σI = (vp′), thus completing the proof.

(PE-CLOSURE): e1 = λsσK z.e and vp = 〈e1, E1, σI〉.
• From (1), e2 is either x, λsσJ z.e

′, or x.
• If e2 = x, then the proof is similar to the third case for (PE-VAR).
• If e2 = λsσJ z.e

′, then vp′ = 〈λsσJ z.e
′, E2, σI〉. From (1), we have (vp) = (vp′), thus completing the

proof.
• If e2 = x, then E2(x) = 〈λsσJ z.e

′, E ′, σH〉 and vp′ = 〈λsσJ z.e
′, E ′, σI ◦ σH〉. From (1), we have

(vp) = (e1@σI)(E1) = (x@σI)(E2) = (E2(x))@σI = (vp′), thus completing the proof.
(PE-APPLY): e1 = e11e12.

• From (1), we have e2 = e21e22 and (e1l@σI)(E1) = (e2l@σI)(E2) where l ∈ {1, 2}.
• From (2), we have the following assumptions:

(a) σI ; E1 `p e11 ⇓ 〈λsσKx.e, E , σH〉 where s = ∧i∈Isi → s′i and tv(E) ∩ dom(σH ◦ σK) = ∅;
(b) σI ; E1 `p e12 ⇓ vp0;
(c) σJ = σH ◦ σK and P = {j ∈ J | ∃i ∈ I : vp0 ∈p siσj}; and
(d) σP ; E , x 7→ vp0 `p e ⇓ vp.
• By IH on (a), σI ; E2 `p e21⇓〈λsσK′x.e

′, E ′, σH′〉 where σH ◦σK = σH′ ◦σK′ and e(E) = e′(E ′).
Moreover, tv(E ′) ∩ dom(σH′ ◦ σK′) = ∅.
• By IH on (b), σI ; E2 `p e22 ⇓ vp′0 and vp0 ≡c vp

′
0.

• By Lemma D.14 with vp0 ≡c vp
′
0 and σJ = σH ◦σK = σH′ ◦σK′ , we have P = {j ∈ J | ∃i ∈ I :

vp0 ∈p siσj} = {j ∈ J | ∃i ∈ I : vp
′
0 ∈p siσj}.

• From e(E) = e′(E ′) and vp0 ≡c vp
′
0 and tv(E) ∩ σP = ∅ and tv(E ′) ∩ σP = ∅, we have

(e@σP)(E , x 7→ vp0) = (e′@σP)(E ′, x 7→ vp
′
0).

• Now, by IH on (d), σP ; E ′, x 7→ vp
′
0 `p e

′ ⇓ vp′ and vp ≡c vp
′.

• Finally, we have σI ; E2 `p e2 ⇓ vp′ by the rule (PE-APPLY), thus completing the proof.
(PE-TYPE CASE T): e1 = e11 ∈ s ? e12 : e13.

• From (1), we have e2 = e21 ∈ s?e22 :e23 and (e1l@σI)(E1) = (e2l@σI)(E2) where l ∈ {1, 2, 3}.
• From (2), we have the following assumptions:

(a) σI ; E1 `p e11 ⇓ vp0 (b) vp0 ∈p s (c) σI ; E1 `p e12 ⇓ vp
• By IH on (a), σI ; E2 `p e21 ⇓ vp′0 and vp0 ≡c vp

′
0.

• By Lemma D.14 with (b), we have vp′0 ∈p s.
• By IH on (c), σI ; E2 `p e22 ⇓ vp′ and vp ≡c vp

′.
• Finally, we have σI ; E2 `p e2 ⇓ vp′ by the rule (PE-TYPE CASE T), thus completing the proof.

(PE-TYPE CASE F): e1 = e11 ∈ s ? e12 : e13.
• Similar to the case for the rule (PE-TYPE CASE F).

(PE-INSTANCE): e1 = eσJ .
• From (1), we have e2 = e′σJ and (e@(σI ◦ σJ))(E1) = (e′@(σI ◦ σJ))(E2).
• From (2), we have the following assumption: (a) σI ◦ σJ ; E1 `p e ⇓ vp.
• By IH on (a), σI ◦ σJ ; E2 `p e′ ⇓ vp′ and vp ≡c vp

′.
• Finally, we have σI ; E2 `p e2 ⇓ vp′ by the rule (PE-INSTANCE), thus completing the proof.

(PE-PVARc): e1 = x and vp = c.
• Similar to the case for (PE-CONST).

(PE-PVARf): e1 = x, E1(x) = 〈λsσK z.e, E , σH〉 and vp = 〈λsσK z.e, E , σI ◦ σH〉.
• Similar to the case for (PE-VAR).

(PE-LET): e1 = let x = e11 in e12.
• From (1), we have e2 = let x = e21 in e22. Moreover, (e11@σI)(E1) = (e21@σI)(E2) and

(e12@σI)(E1) = (e22@σI)(E2).
• From (2), we have the following assumptions:

(a) σI ; E1 `p e11 ⇓ vp0 (b) σI ; E1, x 7→ vp0 `p e12 ⇓ vp
• By IH on (a), σI ; E2 `p e21 ⇓ vp′0 and vp0 ≡c vp

′
0.

• By IH on (b), σI ; E2, x 7→ vp
′
0 `p e22 ⇓ vp′ and vp ≡c vp

′.
• We conclude σI ; E2 `p e2 ⇓ vp′ by the rule (PE-LET).

Lemma D.16. Let v be a well-typed closed value such that dom(σI) ∩ tv(v) = ∅. Suppose (1) σI ; E `p
(e@σL){v/x} ⇓ vp. Then σI ◦ σL; E , x 7→ clos(v) `p e ⇓ vp′ and vp ≡c vp

′.

Proof. By induction on a derivation of σI ; E `p (e@σL){v/x} ⇓ vp.

(PE-CONST): e = c and vp = vp
′ = c.

(PE-VAR): There are two cases to consider.
• Suppose e = x. Then (e@σL){v/x} = v and vp = clos(v, E , σI) = clos(v) = vp

′.
• Now suppose (e = y ∧ y 6= x). Then (e@σL){v/x} = y and vp = vp

′ = E (y).
(PE-CLOSURE): e = λsσKy.e0, (e@σL){v/x} = λsσL◦σKy.(e0{v/x}), and vp = 〈λsσL◦σKy.(e0{v/x}), E , σI〉.

Moreover, vp′ = 〈e, (E , x 7→ clos(v)), σI ◦ σL〉 and thus vp ≡c vp
′.

(PE-APPLY): e = e1e2 and (e@σL){v/x} = ((e1@σL){v/x})((e2@σL){v/x}).
• From (1), we have the following assumptions:

(a) σI ; E `p (e1@σL){v/x} ⇓ 〈λsσKy.e0, E0, σH〉
where s = ∧i∈Isi → s′i and tv(E0) ∩ dom(σH ◦ σK) = ∅;

(b) σI ; E `p (e2@σL){v/x} ⇓ vp0;
(c) σJ = σH ◦ σK and P = {j ∈ J | ∃i ∈ I : vp0 ∈p siσj}; and

(d) σP ; E0, y 7→ vp0 `p e0 ⇓ vp.
• By IH on (a), σI ◦ σL; E , x 7→ clos(v) `p e1 ⇓ 〈λsσK′ y.e

′
0, E

′
0, σH′〉 where σH ◦ σK = σH′ ◦ σK′

and e0(E0) = e′0(E ′0). Moreover, tv(E ′0) ∩ dom(σH′ ◦ σK′) = ∅.
• By IH on (b), σI ◦ σL; E , x 7→ clos(v) `p e2 ⇓ vp′0 and vp0 ≡c vp

′
0.

• By Lemma D.14 with vp0 ≡c vp
′
0 and σH ◦ σK = σH′ ◦ σK′ , we have P = {j ∈ J | ∃i ∈ I :

vp0 ∈p siσj} = {j ∈ J | ∃i ∈ I : vp
′
0 ∈p siσj}.

• From e0(E0) = e′0(E ′0) and vp0 ≡c vp
′
0 and tv(E0) ∩ σP = ∅ and tv(E ′0) ∩ σP = ∅, we have

(e0@σP)(E0, y 7→ vp0) = (e′0@σP)(E ′0, y 7→ vp
′
0).

• By Lemma D.15 with (d), we have σP ; E ′0, y 7→ vp
′
0 `p e

′
0 ⇓ vp′ and vp ≡c vp

′.
• By the rule (PE-APPLY), we have σI ◦ σL; E , x 7→ clos(v) `p e ⇓ vp′, thus completing the proof.

(PE-TYPE CASE T): e = e1 ∈ s ? e2 : e3.
• (e@σL){v/x} = (e1@σL){v/x} ∈ s ? (e2@σL){v/x} : (e3@σL){v/x}.
• From (1), we have the following assumptions:

(a) σI ; E `p (e1@σL){v/x} ⇓ vp0 (b) vp0 ∈p s (c) σI ; E `p (e2@σL){v/x} ⇓ vp
• By IH on (a), σI ◦ σL; E , x 7→ clos(v) `p e1 ⇓ vp′0 and vp0 ≡c vp

′
0.

• By Lemma D.14 with (b) and vp0 ≡c vp
′
0, we have vp′0 ∈p s.

• By IH on (c), σI ◦ σL; E , x 7→ clos(v) `p e2 ⇓ vp′ and vp ≡c vp
′.

• We conclude σI ◦ σL; E , x 7→ clos(v) `p e ⇓ vp′ by the rule (PE-TYPE CASE T).
(PE-TYPE CASE F): Similar to the case for the rule (PE-TYPE CASE T).
(PE-INSTANCE): e = e0σJ and e′ = ((e0σJ)@σL){v/x} = (e0@(σL ◦ σJ)){v/x}.

• From (1), we have σI ; E `p (e0@(σL ◦ σJ)){v/x} ⇓ vp.
• By IH, we have σI ◦ (σL ◦ σJ); E , x 7→ clos(v) `p e0 ⇓ vp′ and vp ≡c vp

′.
• We conclude σI ◦ σL; E , x 7→ clos(v) `p e0σJ ⇓ vp′ by the rule (PE-INSTANCE).

(PE-VARc): e = x and vp = vp
′ = c.

(PE-VARf): e = x, E (x) = 〈λsσKy.e0, E
′, σH〉, and vp = vp

′ = 〈λsσKy.e0, E
′, (σI ◦ σL) ◦ σH〉.

(PE-LET): e = let x = e1 in e2.
• (e@σL){v/x} = let x = (e1@σL){v/x} in (e2@σL){v/x}.
• From (1), we have the following assumptions:

(a) σI ; E `p (e1@σL){v/x} ⇓ vp0 (b) σI ; E , x 7→ vp0 `p (e2@σL){v/x} ⇓ vp
• By IH on (a), σI ◦ σL; E , x 7→ clos(v) `p e1 ⇓ vp′0 and vp0 ≡c vp

′
0.

• By IH on (b), σI ◦ σL; E , x 7→ vp0, x 7→ clos(v) `p e2 ⇓ vp′ and vp ≡c vp
′.

• We conclude σI ◦ σL; E , x 7→ clos(v) `p e ⇓ vp′ by the rule (PE-LET).

Lemma D.17. Let v be a well-typed closed value such that dom(σI) ∩ tv(v) = ∅. Suppose (1) σI ; E `p
e{v/x} ⇓ vp. Then σI ; E , x 7→ clos(v) `p e ⇓ vp′ and vp ≡c vp

′.

Proof. Similar to the proof for Lemma D.16.

Lemma D.18. If (1) ` e : t, (2) e e′, and (3) i;∅ `p e′ ⇓ vp, then i;∅ `p e ⇓ vp′ and vp ≡c vp
′.

Proof. By induction on a derivation of e e′.

(e = e1e2):

(I)
e1 e′1

e1e2 e′1e2

where e′ = e′1e2:

• From (3), we have the following assumptions:
(a) i;∅ `p e′1 ⇓ 〈λsσKx.e0, E , σH〉 where s = ∧l∈Lsl → s′l and tv(E) ∩ dom(σH ◦ σK) = ∅;
(b) i;∅ `p e2 ⇓ vp0;
(c) σJ = σH ◦ σK and P = {j ∈ J | ∃l ∈ L : vp0 ∈p slσj}; and
(d) σP ; E , x 7→ vp0 `p e0 ⇓ vp.
• By IH on e1 e′1 with (a), i;∅ `p e1 ⇓ 〈λsσK′x.e

′
0, E

′, σH′〉 where σH ◦ σK = σH′ ◦ σK′ and
tv(E ′) ∩ dom(σH′ ◦ σK′) = ∅ and e0(E) = e′0(E ′).
• From e0(E) = e′0(E ′), tv(E) ∩ dom(σP) = ∅, and tv(E ′) ∩ dom(σP) = ∅, we have

(e0@σP)(E , x 7→ vp0) = (e′0@σP)(E ′, x 7→ vp).
• By Lemma D.15 with (d), σP ; E ′, x 7→ vp0 `p e

′
0 ⇓ vp′ and vp ≡c vp

′.
• Finally, by the rule (PE-APPLY), we conclude σI ; E `p e1e2 ⇓ vp′.

(II)
e2 e′2

e1e2 e1e
′
2

where e′ = e1e
′
2:

• Similar to the case for (I).
(III) e1 = λ

∧i∈Isi→s′i
σJ x.e0, e2 = v, e′ = (e0@σP){v/x}, and P = {j ∈ J | ∃i ∈ I, ` v : siσj}:

• We have i;∅ `p e1 ⇓ clos(e1) and i;∅ `p v ⇓ clos(v).
• By Lemma D.10, P = {j ∈ J | ∃i ∈ I, ` v : siσj} = {j ∈ J | ∃i ∈ I, clos(v) ∈p siσj}.
• By Lemma D.16 with (3), we have σP ;x 7→ clos(v) `p e0 ⇓ vp′ and vp ≡c vp

′.
• Finally, by the rule (PE-APPLY), we conclude i;∅ `p e1e2 ⇓ vp′.

(e = e1 ∈ s ? e2 : e3):

(I)
e1 e′1

e e′1 ∈ s ? e2 : e3

where e′ = e′1 ∈ s ? e2 : e3:

• From (3), there are two cases to consider. Here we consider only the case for (PE-TYPE CASE T).
The case for (PE-TYPE CASE F) is similar.
• We have the following assumptions:

(a) i;∅ `p e′1 ⇓ vp0 (b) vp0 ∈p s (c) i;∅ `p e2 ⇓ vp
• By IH on e1 e′1 with (a), i;∅ `p e1 ⇓ vp′0 and vp0 ≡c vp

′
0.

• By Lemma D.14 with (b), we have vp′0 ∈p s.
• Finally, by the rule (PE-TYPE CASE T), we conclude i;∅ `p e ⇓ vp.

(II)
e2 e′2

e e1 ∈ s ? e′2 : e3

where e′ = e1 ∈ s ? e′2 : e3:

• From (3), there are two cases to consider.
• First, consider the case for the rule (PE-TYPE CASE T). Then, we have the following assump-

tions:
(a) i;∅ `p e1 ⇓ vp0 (b) vp0 ∈p s (c) i;∅ `p e′2 ⇓ vp

By IH on e2 e′2 with (c), we have i;∅ `p e2 ⇓ vp′ and vp ≡c vp
′. Then, by the rule

(PE-TYPE CASE T), we complete the proof.
• Now consider the case for the rule (PE-TYPE CASE F). Then, we have the following assumptions:

(a) i;∅ `p e1 ⇓ vp0 (b) vp0 6∈p s (c) i;∅ `p e3 ⇓ vp
Then, we just complete the proof by the rule (PE-TYPE CASE F).

(III)
e3 e′3

e e1 ∈ s ? e2 : e′3
where e′ = e1 ∈ s ? e2 : e′3:

• Similar to the case for (II).
(IV) e1 = v, ` v : s, and e′ = e2:

• We have i;∅ `p e1 ⇓ clos(v).
• By Lemma D.10 with ` v : s, we have clos(v) ∈p s.
• Then, by the rule (PE-TYPE CASE T) with (3), we conclude i;∅ `p e ⇓ vp.

(V) e1 = v, 6` v : s, and e′ = e3:
• We have i;∅ `p e1 ⇓ clos(v).
• By Lemma D.11 with 6` v : s, we have clos(v) 6∈p s.
• Then, by the rule (PE-TYPE CASE F) with (3), we conclude i;∅ `p e ⇓ vp.

(e = e0σJ): e′ = e0@σJ .
• By Lemma D.16 with (3), we have σJ ;∅ `p e0 ⇓ vp′ and vp ≡c vp

′.
• By the rule (PE-INSTANCE), we conclude i;∅ `p e0σJ ⇓ vp′.

(e = let x = e1 in e2):

(I)
e1 e′1

e let x = e′1 in e2

where e′ = let x = e′1 in e2:

• From (3), we have the following assumptions:
(a) i;∅ `p e′1 ⇓ vp0 (b) i;x 7→ vp0 `p e2 ⇓ vp

• By IH on e1 e′1 with (a), we have i;∅ `p e1 ⇓ vp′0 and vp0 ≡c vp
′
0.

• By Lemma D.15 with (b), we have i;x 7→ vp
′
0 `p e2 ⇓ vp′ and vp ≡c vp

′.
• Then, by the rule (PE-LET), we conclude i;∅ `p e ⇓ vp′.

(II)
e2 e′2

e let x = e1 in e
′
2

where e′ = let x = e1 in e
′
2:

• From (3), we have the following assumptions:
(a) i;∅ `p e1 ⇓ vp0 (b) i;x 7→ vp0 `p e

′
2 ⇓ vp

• By IH on e2 e′2 with (b), we have i;x 7→ vp0 `p e2 ⇓ vp′ and vp ≡c vp
′.

• Then, by the rule (PE-LET), we conclude i;∅ `p e ⇓ vp′.
(III) e1 = v and e′ = e2{v/x}:

• We have i;∅ `p e1 ⇓ clos(v).
• By Lemma D.17 with (3), we have i;x 7→ clos(v) `p e2 ⇓ vp′ and vp ≡c vp

′.
• Finally, by the rule (PE-LET), we conclude i;∅ `p e ⇓ vp′.

Lemma D.19. If ` e : t and e ∗ v, then i;∅ `p e ⇓ vp and v = (vp).

Proof. By induction on e ∗ v. Suppose e = v. Then vp = clos(v) and (vp) = v.
Now suppose e e1 ∗ v. By induction hypothesis on e1 ∗ v, we have i;∅ `p e1 ⇓ vp′ and

v = (vp′). Then, by Lemma D.18, we have i;∅ `p e ⇓ vp and vp ≡c vp
′, and therefore v = (vp).

Theorem D.20. Let e be a well-typed closed explicitly-typed expression (` e : t). Then
i;∅ `p e ⇓ v ⇐⇒ e ∗ (v)

Proof. Follows from Lemmas D.12 and D.19.

D.2 Compilation of the polymorphic language into the intermediate language
In this section, we prove the adequacy of the compilation of the polymorphic language into the intermediate
language defined in Section 5.3 (extended with let-polymorphism in Section 5.4). For clarity, in this section,
we write respectively eo, vo, and Eo for the expressions, values, and environments for the intermediate
language.

Definition D.21 (Intermediate language).
eo ::= c | x | xΣ | λtΣx.eo | eoeo | eo ∈ t ? eo : eo | let x = eo in eo
vo ::= c | 〈λtΣx.eo, Eo〉
Σ ::= σI | comp(Σ,Σ′) | sel(x, t,Σ) | 〈Eo,Σ〉

In this definition, we added a new symbolic substitution of the form 〈Eo,Σ〉, which is absent from
Section 5.3. Furthermore, we use the following new evaluation rule for polymorphic let-variables:

(OE-PVARf)

Eo(x) = 〈λtΣ′y.eo, Eo
′〉

Eo `o xΣ ⇓ 〈λtcomp(〈Eo,Σ〉,Σ′)y.eo, Eo
′〉

The difference from the previous rule is that in this rule we use in the decoration 〈Eo,Σ〉 instead of Σ.
The main reason is that Σ in xΣ may contain a symbolic substitution of the form sel(y, t,Σ0) such that
y /∈ dom(Eo

′). Such a symbolic substitution as sel(y, t,Σ0) may be generated if the let-variable x is used
inside λ-abstraction in the body of the let-expression. However, in practice, only type-substitutions for the
type variables introduced before or in the let-binding may be applied to the polymorphic let-variable, which
are already recorded in the closure for the let-variable. Therefore, for the implementation, it is safe to ignore
such substitutions as 〈Eo,Σ〉without evaluating them. Still, introducing this new extra symbolic substitution
makes the intermediate language and its evaluation semantics clearer.

Definition D.22 (Compilation).
JcKΣ = c
JxKΣ = x
JxKΣ = xΣ

JλtσIx.eKΣ = λtcomp(Σ,σI)x.JeKsel(x,t,comp(Σ,σI))

Je1e2KΣ = Je1KΣJe2KΣ

JeσIKΣ = JeKcomp(Σ,σI)

Je1 ∈ t ? e2 : e3KΣ = Je1KΣ ∈ t ? Je2KΣ : Je3KΣ

Jlet x = e1 in e2KΣ = let x = Je1KΣ in Je2KΣ

Definition D.23 (Membership).
c ∈o t

def⇐⇒ bc ≤ t
〈λsΣx.eo, Eo〉 ∈o t

def⇐⇒ s(eval(Eo,Σ)) ≤ t
where the evaluation of the symbolic set of type-substitutions is inductively defined as

eval(Eo, σI) = σI
eval(Eo, comp(Σ,Σ′)) = eval(Eo,Σ) ◦ eval(Eo,Σ

′)

eval(Eo, sel(x,
∧
i∈I ti→si,Σ)) = [σj ∈ eval(Eo,Σ) | ∃i∈I : Eo(x) ∈o tiσj]

eval(Eo, 〈Eo
′,Σ〉) = eval(Eo,Σ)

Definition D.24. Let E and vp be an environment and a value for the polymorphic language and Eo and vo
for the intermediate language. We define an equivalence relation ≡o between them as follows:

E ≡o Eo
def⇐⇒ dom(E) = dom(Eo) and ∀x ∈ dom(E), E (x) ≡o Eo(x)

and ∀x ∈ dom(E), E (x) ≡o Eo(x)

〈λtσKx.e, E , σH〉 ≡o 〈λtΣx.eo, Eo〉
def⇐⇒ σH ◦ σK = eval(Eo,Σ) and eo = JeKsel(x,t,Σ) and E ≡o Eo

Moreover, for any constant c, by definition c ≡o c.

Note that if vp ≡o vo, then (vp) = (vo), but not vice versa.

Lemma D.25. Let vp ≡o vo. Then:
(1) vp ∈p t if and only if vo ∈o t.
(2) vp 6∈p t if and only if vo 6∈o t.

Proof. If vp = vo = c, the proof is trivial. Suppose vp = 〈λsσKx.e, E , σH〉 and vo = 〈λsΣx.eo, Eo〉. By
definition, vp ∈p t if and only if s(σH ◦ σK) ≤ t and vo ∈o t if and only if s(eval(Eo,Σ)) ≤ t. From
vp ≡o vo, we have σH ◦ σK = eval(Eo,Σ), thus completing the proof.

Lemma D.26. Suppose E ≡o Eo and σI = eval(Eo,Σ) and ` (e@σI)(E) : t. Then, σI ; E `p e ⇓ vp if
and only if Eo `o JeKΣ ⇓ vo where vp ≡o vo.

Proof. (Only-if part) By induction on a derivation of σI ; E `p e ⇓ vp.

(PE-CONST): e = JeKΣ = vp = vo = c.
(PE-VAR): e = JeKΣ = x and vp = E (x) and vo = Eo(x). From E ≡o Eo, we have vp ≡o vo.
(PE-CLOSURE): e = λtσKx.e

′ and JeKΣ = λtcomp(Σ,σK)x.Je
′Ksel(x,t,comp(Σ,σK)).

• vp = 〈λtσKx.e
′, E , σI〉.

• vo = 〈λtcomp(Σ,σK)x.Je
′Ksel(x,t,comp(Σ,σK)), Eo〉.

• eval(Eo, comp(Σ, σK)) = eval(Eo,Σ) ◦ eval(Eo, σK) = σI ◦ σK and therefore vp ≡o vo by
Definition D.24.

(PE-APPLY): e = e1e2 and JeKΣ = Je1KΣJe2KΣ.
• From σI ; E `p e ⇓ vp, we have the following assumptions:

(a) σI ; E `p e1 ⇓ 〈λsσKx.e
′, E ′, σH〉 where s = ∧i∈Isi → s′i;

(b) σI ; E1 `p e2 ⇓ vp′;
(c) σJ = σH ◦ σK and P = {j ∈ J | ∃i ∈ I : vp

′ ∈p siσj}; and
(d) σP ; E ′, x 7→ vp

′ `p e′ ⇓ vp.
• By IH on (a), Eo `o Je1KΣ ⇓ 〈λsΣ′x.eo, Eo

′〉 where eval(Eo
′,Σ′) = σH ◦ σK = σJ and E ′ ≡o Eo

′

and eo = Je′Ksel(x,s,Σ′).
• By IH on (b), Eo `o Je2KΣ ⇓ vo′ where vp′ ≡o vo

′.
• From E ′ ≡o Eo

′ and vp′ ≡o vo
′, we have (E ′, x 7→ vp

′) ≡o (Eo
′, x 7→ vo

′).
• eval((Eo

′, x 7→ vo
′), sel(x, s,Σ′)) = [σj ∈ eval(Eo

′,Σ′) | ∃i∈I : vo
′ ∈o siσj] = [σj ∈ σJ |

∃i∈I : vo
′ ∈o siσj], which is equal to σP by Lemma D.25.

• By IH on (d), Eo
′, x 7→ vo

′ `o eo ⇓ vo and vp ≡o vo.
• Finally, by the rule (OE-APPLY), we conclude Eo `o JeKΣ ⇓ vo.

(PE-TYPE CASE T): e = e1 ∈ t ? e2 : e3 and JeKΣ = Je1KΣ ∈ t ? Je2KΣ : Je3KΣ.
• From σI ; E `p e ⇓ vp, we have the following assumptions:

(a) σI ; E `p e1 ⇓ vp′ (b) vp
′ ∈p t (c) σI ; E `p e2 ⇓ vp

• By IH on (a), Eo `o Je1KΣ ⇓ vo′ and vp′ ≡o vo
′.

• By Lemma D.25 with (b), we have vo′ ∈o t.
• By IH on (c), Eo `o Je2KΣ ⇓ vo and vp ≡o vo.
• Finally, by the rule (OE-TYPE CASE T), we conclude Eo `o JeKΣ ⇓ vo.

(PE-TYPE CASE F): Similar to the case for (PE-TYPE CASE T).
(PE-INSTANCE): e = e0σJ and JeKΣ = Je0Kcomp(Σ,σJ).

• From σI ; E `p e ⇓ vp, we have the following assumption:
(a) σI ◦ σJ ; E `p e0 ⇓ vp

• eval(Eo, comp(Σ, σJ)) = eval(Eo,Σ) ◦ eval(Eo, σJ) = σI ◦ σJ .
• By IH on (a), Eo `o Je0Kcomp(Σ,σJ) ⇓ vo and vp ≡o vo.
• Then, from JeKΣ = Je0Kcomp(Σ,σJ), we complete the proof.

(PE-VARc): Similar to the case for (PE-CONST).
(PE-VARf): e = x and JeKΣ = xΣ and E (x) = 〈λtσKy.e0, E

′, σH〉.
• From E ≡o Eo, we have Eo(x) = 〈λtΣ′y.eo, Eo

′〉 where eval(Eo
′,Σ′) = σH ◦ σK and E ′ = Eo

′ and
eo = Je0Ksel(y,t,Σ′).
• Then, vp = 〈λtσKy.e0, E

′, σI ◦ σH〉 and vo = 〈λtcomp(〈Eo,Σ〉,Σ′)y.eo, Eo
′〉.

• eval(Eo
′, comp(〈Eo,Σ〉,Σ′)) = eval(Eo

′, 〈Eo,Σ〉) ◦ eval(Eo
′,Σ′) = eval(Eo,Σ) ◦ (σH ◦ σK) =

σI ◦ (σH ◦ σK) and therefore vp ≡ vo.
(PE-LET): e = let x = e1 in e2 and JeKΣ = let x = Je1KΣ in Je2KΣ.

• From σI ; E `p e ⇓ vp, we have the following assumptions:
(a) σI ; E `p e1 ⇓ vp′ (b) σI ; E , x 7→ vp

′ `p e2 ⇓ vp
• By IH on (a), Eo `o Je1KΣ ⇓ vo′ and vp′ ≡o vo

′.
• By IH on (b), Eo, x 7→ vo

′ `o Je1KΣ ⇓ vo and vp ≡o vo.
• Finally, by the rule (OE-LET), we conclude Eo `o JeKΣ ⇓ vo.

(If part) By induction on a derivation of Eo `o JeKΣ ⇓ vo. The proof is similar to the proof for the (only-if
part).

Theorem D.27. Let e be a well-typed closed explicitly-typed expression (`A e : t). Then
i;∅ `p e ⇓ v ⇐⇒ `o JeKi ⇓ v′

with (v) = (v′).

Proof. Follows from Lemma D.26.

Corollary D.28 (Adequacy of the compilation). Let e be a well-typed closed explicitly-typed expression
(`A e : t). Then

`o [e]i ⇓ vo ⇐⇒ e ∗ (v)

Proof. Follows from Theorems D.20 and D.27.

E. Syntactic sugar for type-case
In order to make type-case closer to pattern matching, it is handy to define an extension of the type-case
expression that features binding, which we write (x=e)∈t ? e1 : e2, and that can be encoded as:

(λ((s∧t)→t1)∧((s∧¬t)→t2)x.x∈t ? e1 : e2)e

where s is the type of e, t1 the type of e1, and t2 the type of e2. We add another twist to this construct
and define a particular (purely) syntactic sugar: xε t ? e1 : e2 (notice the boldface “belongs to” symbol)
which stands for (x=x)∈t ? e1 : e2. The reader may wonder what is the interest of binding a variable to
itself. Actually, the two occurrences of x in (x=x)∈t denote two distinct variables: the one on the right is
recorded in the environment with some type s; this variable does not occur either in e1 or e2 because it is
hidden by the x on the left; this binds the occurrences of x in e1 and e2 but with different types, s∧t in e1

and s∧¬t in e2. This allows the system to use different type assumptions for x in each branch, as stated by
the (algorithmic) typing rule directly derived from the encoding:

(case-var)
ti 6' 0 ⇒ ∆ ; Γ, (x : ti) ` ei : si

∆ ; Γ ` xε t ? e1 : e2 :
∨
ti 6'0

si

t1 = Γ(x) ∧ t
t2 = Γ(x) ∧ ¬t

Note that x is defined in Γ but its type Γ(x) is overridden in the premises to type the branches. We already
silently used this construction in the body of the definition of map in Section 2 which should have been
written with the boldface “belongs to” symbol:

λ[α]→[β]` . `ε nil ? nil : (f(π1`),mf(π2`)),

since the presence of the πi’s in the second branch needs the hypothesis ` : [α]\nil (the expression πi` is
well-typed only if ` is a product, that is, in this case it a non-empty list). If we do not use the boldface belong
symbol, then each branch (in particular, the second one) is typed under the hypothesis ` : [α] and, thus,
type-check fails. In practice, any real programming language will implement just ε and not ∈ whenever the
tested expression is a variable.

	Introduction
	Problems and overview of the solution
	A calculus with explicit type-substitutions
	Expressions
	Operational semantics
	Type system
	Type soundness
	Expressing intersection type systems
	Elimination of sets of type-substitutions

	Typing algorithm
	Evaluation
	Monomorphic Language
	Polymorphic Language
	Intermediate Language
	Let-polymorphism

	Design choices and extensions
	Related work
	Conclusion
	Explicitly-Typed Calculus
	Types
	Expressions
	Type System
	Operational Semantics

	Properties of the Type System
	Syntactic meta-theory
	Type soundness
	Expressing intersection types
	Elimination of sets of type-substitutions

	Algorithmic Type Checking
	Merging Intersection and Instantiation
	Algorithmic Typing Rules
	Pair types
	Function types
	Syntax-Directed Rules

	Evaluation
	Equivalence between small-step semantics and big-step semantics
	Compilation of the polymorphic language into the intermediate language

	Syntactic sugar for type-case

