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1. Introduction 2. Regexp types/patterns 3. XML Programming in CDuce 3. Properties 4. Toolkit MPRI

PART 1: XML PROGRAMMING IN
CDUCE
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Programming with XML

Level 0: textual representation of XML documents

AWK, sed, Perl

Level 1: abstract view provided by a parser

SAX, DOM, . . .

Level 2: untyped XML-specific languages

XSLT, XPath

Level 3: XML types taken seriously (aka: related work)

XDuce, Xtatic
XQuery
Cω (Microsoft)
. . .
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Presentation of CDuce

Features:
Oriented to XML processing
Type centric
General-purpose features
Very efficient

Intended use:
Small “adapters” between different XML applications
Larger applications that use XML
Web development
Web services

Status:
Public release available (0.5.3) in all major Linux distributions.

Integration with standards
Internally: Unicode, XML, Namespaces, XML Schema
Externally: DTD, WSDL

Some tools: graphical queries, code embedding (à la php)
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Types, Types, Types!!!

Types are pervasive in CDuce:

Static validation
E.g.: does the transformation produce valid XHTML ?

Type-driven programming semantics
At the basis of the definition of patterns
Dynamic dispatch
Overloaded functions

Type-driven compilation
Optimizations made possible by static types
Avoids unnecessary and redundant tests at runtime
Allows a more declarative style
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Regular Expression
Types and Patterns for XML
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Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with pattern one can write

let (x,y) = e in (y,x)

which is syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test
several “|||”-separated patterns.

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 8/110
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Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil

fun length (x:(List,Int)) : Int =
match x with
| (‘nil , n) -> n
| (( ,t), n) -> length(t,n+1)

So patterns are values with capture variables, wildcards, constants.

But if we:

1 use for types the same constructors as for values
(e.g. (s,t) instead of s × t)

2 use values to denote singleton types
(e.g. ‘nil in the list type);

3 consider the wildcard “ ” as synonym of Any

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 9/110
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Which types should we start from?

Patterns are tightly connected to boolean type constructors,
that is unions (|), intersections (&) and differences (\\\):

Boolean operators are needed to type pattern matching:
match e with p1 -> e1 | p2 -> e2

- To infer the type t1 of e1 we need t& *** p1+++ (where e : t);
- To infer the type t2 of e2 we need (t \ *** p1+++)& *** p2+++;
- The type of the match is t1|t2 .

Boolean type constructors are useful for programming:

map catalogue with
x :: (Car & (Guaranteed|(Any\Used)) -> x

Select in catalogue all cars that if used then are guaranteed.
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map catalogue with
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Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

1 Define types for XML documents,
2 Add boolean type constructors,
3 Define patterns as types with capture variables
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XML syntax

type Bib = <bib>[Book Book]
<book year="1997">
<title>[’Object-Oriented Programming’]</title>
<author>
<last>[’Castagna’]</last>
<first>[’Giuseppe’]</first>

</author>]
<price>[’56’]</price>
’Bikhäuser’

</book>]
<book year="2000">
<title>[’Regexp Types for XML’]</title>
<editor>
<last>[’Hosoya’]</last>
<first>[’Haruo’]</first>

</editor>]
’UoT’

</book>]
</bib>]
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<last>[’Castagna’]
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<price>[’56’]
’Bikhäuser’

]
<book year="2000">[
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<editor>
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<first>[’Haruo’]

]
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]
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type Bib = <bib>[Book Book]
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<author>[
<last>[’Castagna’]
<first>[’Giuseppe’]

]
<price>[’56’]
’Bikhäuser’

]
<book year="2000">[
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XML syntax

type Bib = <bib>[Book Book] String = [PCDATA] = [Char*]
<book year=String>[
<title>
<author>[
<last>[PCDATA]
<first>[PCDATA]

]
<price>[PCDATA]
PCDATA

]
<book year=String>[
<title>[PCDATA]
<editor>
<last>[PCDATA]
<first>[PCDATA]

]
PCDATA

]
]
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XML syntax

type Bib = <bib>[Book Book]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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Patterns

Patterns = Types + Capture variables
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type Bib = <bib>[Book*]
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type Bib = <bib>[Book*]
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type Publisher = StringT
Y
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match bibs with
<bib>[( x::<book year="2005"> | y:: )*] -> x@y

Binds x to the sequence of all this year’s books, and y to all the
other books.
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type Bib = <bib>[Book*]
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<bib>[( x::<book year="2005"> | y:: )*] -> x@y

Returns the concatenation (i.e., “@”) of the two captured sequencesP
A

T
T
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XML-programming in CDuce
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Functions: basic usage

type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

Extract subsequences (union polymorphism)

fun (Invited|Talk -> [Author+])
< >[ Title x::Author* ] -> x

Extract subsequences of non-consecutive elements:

fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
[ (i::Invited | t::Talk | )* ] -> (i,t)

Perl-like string processing (String = [Char*])

fun parse email (String -> (String,String))
| [ local:: * ’@’ domain:: * ] -> (local,domain)
| -> raise "Invalid email address"

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 14/110
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Functions: advanced usage

type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

Functions can be higher-order and overloaded

let patch program
(p :[Program], f :(Invited -> Invited) &&& (Talk -> Talk)):[Program]

= xtransform p with (Invited | Talk) & x -> [ (f x) ]

Higher-order, overloading, subtyping provide name/code sharing...

let first author ([Program] -> [Program];
Invited -> Invited;
Talk -> Talk)

| [ Program ] & p -> patch program (p,first author)
| <invited>[ t a * ] -> <invited>[ t a ]
| <talk>[ t a * ] -> <talk>[ t a ]

Even more compact: replace the last two branches with:

<(k)>[ t a * ] -> <(k)>[ t a ]

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 15/110
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. . . it is all syntactic sugar!

Types

t ::= Int | v | (t, t) | t→→→t | t ∨ t | t ∧ t | ¬t | Any

Patterns

p ::= t | x | (p, p) | p ∨ p | p ∧ p

Example:

type Book = <book>[Title (Author+|Editor+) Price?]

encoded as

Book = (‘book, (Title,X ∨ Y ))
X = (Author,X ∨ (Price, ‘nil) ∨ ‘nil)
Y = (Editor,Y ∨ (Price, ‘nil) ∨ ‘nil)

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 16/110
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Some reasons to consider regular
expression types and patterns
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Some good reasons to consider regexp patterns/types

Theoretical reason: very compact

Nine practical reasons:

1 Classic usage
2 Informative error messages
3 Error mining
4 Efficient execution
5 Compact programs
6 Logical optimisation of pattern-based queries
7 Pattern matches as building blocks for iterators
8 Type/pattern-based data pruning for memory usage optimisation
9 Type-based query optimisation

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 18/110
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2. Informative error messages

List of books of a given year, stripped of the Editors and Price

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:

[ <title>[ ] ]

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 19/110

In case of error return a sample value in the difference of the
inferred type and the expected one
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2. Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author | )+] in books

where int of(y) = year
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inferred type and the expected one

type Book = <book year=String>[Title (Author+|Editor+) Price?]
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5. Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = <b>[B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a> -> 1 | -> 0

No backtracking.

Whole parts of the matched data are not checked

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 20/110

Use static type information to perform an optimal set of tests
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On top of CDuce

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 21/110
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Full integration with OCaml

Embedding of CDuce code in XML documents

Graphical queries

Security (control flow analysis)

Web-services
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CDuce↔OCaml Integration

A CDuce application that requires OCaml code

Reuse existing librairies

Abstract data structures : hash tables, sets, ...
Numerical computations, system calls
Bindings to C libraries : databases, networks, ...

Implement complex algorithms

An OCaml application that requires CDuce code

CDuce used as an XML input/output/transformation layer

Configuration files
XML serialization of datas
XHTML code production
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CDuce↔OCaml Integration

A CDuce application that requires OCaml code

Reuse existing librairies

Abstract data structures : hash tables, sets, ...
Numerical computations, system calls
Bindings to C libraries : databases, networks, ...

Implement complex algorithms

An OCaml application that requires CDuce code

CDuce used as an XML input/output/transformation layer

Configuration files
XML serialization of datas
XHTML code production

Need to seamlessly call OCaml code in CDuce and viceversa

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 23/110



logoP7

1. Introduction 2. Regexp types/patterns 3. XML Programming in CDuce 3. Properties 4. Toolkit MPRI

Main Challenges

1 Seamless integration:
No explicit conversion function in programs:
the compiler performs the conversions

2 Type safety:
No explicit type cast in programs:
the standard type-checkers ensure type safety

What we need:

A mapping between OCaml and CDuce types and values

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 24/110
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How to integrate the two type systems?

The translation can go just one way: OCaml → CDuce

⊕⊕⊕ CDuce uses (semantic) subtyping; OCaml does not
If we translate CDuce types into OCaml ones :
- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
⇒ CDuce typing would be lost.

⊕⊕⊕ CDuce has unions, intersections, differences,
heterogeneous lists; OCaml does not
⇒ OCaml types are not enough to translate CDuce types.

			 OCaml supports type polymorphism; CDuce does not.
⇒ Polymorphic OCaml libraries/functions must be first instantied

to be used in CDuce

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 25/110
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In practice

1 Define a mapping T from OCaml types to CDuce types.

t (OCaml) T(t) (CDuce)
int min int- -max int

string Latin1

t1 ∗ t2 (T(t1),T(t2))
t1 → t2 T(t1)→ T(t2)
t list [T(t)∗]
t array [T(t)∗]
t option [T(t)?]
t ref ref T(t)
A1 of t1 | . . . | An of tn (‘A1,T(t1)) | . . . | (‘An,T(tn))
{l1 = t1; . . . ; ln = tn} {l1 = T(t1); . . . ; ln = T(tn)}

2 Define a retraction pair between OCaml and CDuce values.

ocaml2cduce: t → T(t)
cduce2ocaml: T(t)→ t
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Calling OCaml from CDuce

Easy

Use M.f to call the function f exported by the OCaml module M

The CDuce compiler checks type soundness and then
- applies cduce2ocaml to the arguments of the call
- calls the OCaml function
- applies ocaml2cduce to the result of the call

Example: use ocaml-mysql library in CDuce

let db = Mysql.connect Mysql.defaults;;

match Mysql.list dbs db ‘None [] with

| (‘Some,l) -> print [ ’Databases: ’ !(string of l) ’\ n’ ]

| ‘None -> [];;

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 27/110
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Calling CDuce from OCaml

Needs little work

Compile a CDuce module as an OCaml binary module by providing
a OCaml (.mli) interface. Use it as a standard Ocaml module.

The CDuce compiler:
1 Checks that if val f :t in the .mli file, then the CDuce type

of f is a subtype of T(t)
2 Produces the OCaml glue code to export CDuce values as

OCaml ones and bind OCaml values in the CDuce module.

Example: use CDuce to compute a factorial:

(* File cdnum.mli: *)
val fact: Big int.big int -> Big int.big int

(* File cdnum.cd: *)
let aux ((Int,Int) -> Int)
| (x, 0 | 1) -> x
| (x, n) -> aux (x * n, n - 1)

let fact (x : Int) : Int = aux(1,x)

Part 1: XML Programming in CDuce G. Castagna: Theory and practice of XML processing languages 28/110
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Goal

The goal is to show how to take your favourite type constructors

×××, →→→, {. . . }, chan(), . . .

and add boolean combinators:

∨∨∨, ∧∧∧, ¬¬¬

so that they behave set-theoretically w.r.t. ≤

WHY?

Short answer: YOU JUST SAW IT!

Recap:
- to encode XML types
- to define XML patterns
- to precisely type pattern matching
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In details

t ::= B | t×××t | t→→→t

| t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Handling subtyping without combinators is easy:
constructors do not mix, e.g. :

s2 ≤ s1 t1 ≤ t2

s1 → t1 ≤ s2 → t2

With combinators is much harder:
combinators distribute over constructors, e.g.

(s1∨∨∨s2)→ t R (s1 → t)∧∧∧(s2 → t)

MAIN IDEA

Instead of defining the subtyping relation so that it conforms to
the semantic of types, define the semantics of types and derive the
subtyping relation.

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 31/110
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In details

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Not a particularly new idea. Many attempts
(e.g. Aiken&Wimmers, Damm,. . . , Hosoya&Pierce).

None fully satisfactory. (no negation, or no function types,
or restrictions on unions and intersections, . . . )

Starting point of what follows: the approach of
Hosoya&Pierce.

MAIN IDEA

Instead of defining the subtyping relation so that it conforms to
the semantic of types, define the semantics of types and derive the
subtyping relation.
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Semantic subtyping
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Semantic subtyping

1 Define a set-theoretic semantics of the types:

J K : Types −→ P(D)

2 Define the subtyping relation as follows:

s ≤ t
def⇐⇒ JsK ⊆ JtK

KEY OBSERVATION 1:

The model of types may be independent from a model of terms

Hosoya and Pierce use the model of values:
JtKV = {v | ` v : t}

Ok because the only values of XDuce are XML documents (no
first-class functions)

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 33/110
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Hosoya and Pierce use the model of values:
JtKV = {v | ` v : t}

Ok because the only values of XDuce are XML documents (no
first-class functions)
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Step 1 : Model

Define when J K : Types −→ P(D) yields a set-theoretic model.

Easy for the combinators:
Jt1∨∨∨t2K = Jt1K ∪ Jt2K
Jt1∧∧∧t2K = Jt1K ∩ Jt2K
J¬¬¬tK = D\JtK
J0K = ∅
J1K = D

Hard for constructors:
Jt1×××t2K =

Jt1K× Jt2K

Jt1→→→t2K =

???

Think semantically!
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Intuition

(×JsK)Jt→→→sK = ???

Impossible since it requires P(D2) ⊆ D

KEY OBSERVATION 2:

We need the model to

state how types are related

rather than
what the types are

Accept every J K that behaves w.r.t. ⊆ as if equation (∗) held,
namely

Jt1→→→s1K ⊆ Jt2→→→s2K ⇐⇒ P(Jt1K× Js1K) ⊆ P(Jt2K× Js2K)

and similarly for any boolean combination of arrow types.
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Technically . . .

1 Take J K : Types→ P(D) such that
Jt1∨∨∨t2K = Jt1K ∪ Jt2K Jt1∧∧∧t2K = Jt1K ∩ Jt2K

J0K = ∅ J1K = D
J¬¬¬tK = J1K\JtK

[connective semantics]

2 Define E( ) : Types→ P(D2 + P(D2)) as follows

E(t1×××t2)
def
= Jt1K× Jt2K ⊆ D2

E(t1→→→t2)
def
= P(Jt1K× Jt2K) ⊆ P(D2)

E(t1∨∨∨t2)
def
= E(t1) ∪ E(t2) E(t1∧∧∧t2)

def
= E(t1) ∩ E(t2)

E(0)
def
= ∅ E(1)

def
= D2 + P(D2)

E(¬¬¬t)
def
= E(1)\E(t) [constructor semantics]

3 Model: Instead of requiring JtK = E(t), accept J K if

JtK = ∅ ⇐⇒ E(t) = ∅
(which is equivalent to JsK ⊆ JtK ⇐⇒ E(s) ⊆ E(t))
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The main intuition

To characterize ≤ all is needed is the test of emptyness

Indeed: s ≤ t ⇔ JsK ⊆ JtK⇔ JsK ∩ JtK = ∅⇔ Js∧∧∧¬¬¬tK = ∅

Instead of JtK = E(t), the weaker JtK=∅ ⇔ E(t)=∅ suffices for ≤.

J K and E( ) must have the same zeros

We relaxed our requirement but . . .

DOES A MODEL EXIST?

Is it possible to define J K : Types→ P(D) that satisfies the model
conditions, in particular a JK such that JtK=∅ ⇔ E(t)=∅?

YES: an example within two slides

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 37/110
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The role of E()

E() characterizes the behavior of types (for what it concerns ≤ one
can consider JtK = E(t)): it depends on the language the types are
intended for.

Variations are possible. Our choice

E(t1→→→t2) = P(Jt1K× Jt2K)
accounts for languages that are:

1 Non-deterministic :
Admits functions in which (d , d1) and (d , d2) with d1 6= d2.

2 Non-terminating :
a function in Jt→→→sK may be not total on JtK.E.g.

Jt→→→0K = functions diverging on t

3 Overloaded :
J(t1∨∨∨t2)→→→(s1∧∧∧s2)K  J(t1→→→s1)∧∧∧(t2→→→s2)K
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Closing the circle

1 Take any model (B, JKB) to bootstrap the definition.

2 Define
s ≤B t ⇐⇒ JsKB ⊆ JtKB

3 Take any “appropriate” language L and use ≤B to type it

Γ `B e : t

4 Define a new interpretation JtKV = {v ∈ V | `B v : t} and
s ≤V t ⇐⇒ JsKV ⊆ JtKV

5 If L is “appropriate” (`B v : t ⇐⇒ 6`B v : ¬¬¬t) then JKV is a
model and

s ≤B t ⇐⇒ s ≤V t

The circle is closed

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 39/110



logoP7

1. Introduction – 2. Semantic subtyping – 3. Algorithms – 4. Language – 6. Recap – MPRI

Closing the circle

1 Take any model (B, JKB) to bootstrap the definition.

2 Define
s ≤B t ⇐⇒ JsKB ⊆ JtKB

3 Take any “appropriate” language L and use ≤B to type it

Γ `B e : t

4 Define a new interpretation JtKV = {v ∈ V | `B v : t} and
s ≤V t ⇐⇒ JsKV ⊆ JtKV

5 If L is “appropriate” (`B v : t ⇐⇒ 6`B v : ¬¬¬t) then JKV is a
model and

s ≤B t ⇐⇒ s ≤V t

The circle is closed

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 39/110



logoP7

1. Introduction – 2. Semantic subtyping – 3. Algorithms – 4. Language – 6. Recap – MPRI

Closing the circle

1 Take any model (B, JKB) to bootstrap the definition.

2 Define
s ≤B t ⇐⇒ JsKB ⊆ JtKB

3 Take any “appropriate” language L and use ≤B to type it

Γ `B e : t

4 Define a new interpretation JtKV = {v ∈ V | `B v : t} and
s ≤V t ⇐⇒ JsKV ⊆ JtKV

5 If L is “appropriate” (`B v : t ⇐⇒ 6`B v : ¬¬¬t) then JKV is a
model and

s ≤B t ⇐⇒ s ≤V t

The circle is closed

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 39/110



logoP7

1. Introduction – 2. Semantic subtyping – 3. Algorithms – 4. Language – 6. Recap – MPRI

Closing the circle

1 Take any model (B, JKB) to bootstrap the definition.

2 Define
s ≤B t ⇐⇒ JsKB ⊆ JtKB

3 Take any “appropriate” language L and use ≤B to type it

Γ `B e : t

4 Define a new interpretation JtKV = {v ∈ V | `B v : t} and
s ≤V t ⇐⇒ JsKV ⊆ JtKV

5 If L is “appropriate” (`B v : t ⇐⇒ 6`B v : ¬¬¬t) then JKV is a
model and

s ≤B t ⇐⇒ s ≤V t

The circle is closed

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 39/110



logoP7

1. Introduction – 2. Semantic subtyping – 3. Algorithms – 4. Language – 6. Recap – MPRI

Closing the circle

1 Take any model (B, JKB) to bootstrap the definition.

2 Define
s ≤B t ⇐⇒ JsKB ⊆ JtKB

3 Take any “appropriate” language L and use ≤B to type it

Γ `B e : t

4 Define a new interpretation JtKV = {v ∈ V | `B v : t} and
s ≤V t ⇐⇒ JsKV ⊆ JtKV

5 If L is “appropriate” (`B v : t ⇐⇒ 6`B v : ¬¬¬t) then JKV is a
model and

s ≤B t ⇐⇒ s ≤V t

The circle is closed

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 39/110



logoP7

1. Introduction – 2. Semantic subtyping – 3. Algorithms – 4. Language – 6. Recap – MPRI

Closing the circle

1 Take any model (B, JKB) to bootstrap the definition.

2 Define
s ≤B t ⇐⇒ JsKB ⊆ JtKB

3 Take any “appropriate” language L and use ≤B to type it

Γ `B e : t

4 Define a new interpretation JtKV = {v ∈ V | `B v : t} and
s ≤V t ⇐⇒ JsKV ⊆ JtKV

5 If L is “appropriate” (`B v : t ⇐⇒ 6`B v : ¬¬¬t) then JKV is a
model and

s ≤B t ⇐⇒ s ≤V t

The circle is closed

Part 2: Theoretical Foundations G. Castagna: Theory and practice of XML processing languages 39/110



logoP7

1. Introduction – 2. Semantic subtyping – 3. Algorithms – 4. Language – 6. Recap – MPRI

Exhibit a model

Does a model exists? (i.e. a J K such that JtK = ∅ ⇐⇒ E(t) = ∅)

YES: take (U , J KU ) where

1 U least solution of X = X 2 + Pf (X 2)

2 J KU is defined as:

J0KU = ∅ J1KU = U J¬¬¬tKU = U\JtKU
Js∨∨∨tKU = JsKU∪ JtKU Js∧∧∧tKU = JsKU∩ JtKU
Js×××tKU = JsKU × JtKU Jt→→→sKU = Pf (JtKU× JsKU )

It is a model: Pf (JtKU× JsKU ) = ∅ ⇐⇒ P(JtKU× JsKU ) = ∅

It is the best model: for any other model J KD

t1 ≤D t2 ⇒ t1 ≤U t2
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Subtyping Algorithms.
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Canonical forms

Every (recursive) type
t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

is equivalent (semantically, w.r.t. ≤) to a type of the form
(I omitted base types):∨∨∨

(P,N)∈Π

((
∧∧∧

s×××t∈P
s×××t)∧∧∧(

∧∧∧
s×××t∈N

¬¬¬(s×××t)))
∨∨∨

(P,N)∈Σ

((
∧∧∧

s→→→t∈P
s→→→t)∧∧∧(

∧∧∧
s→→→t∈N

¬¬¬(s→→→t)))

1 Put it in disjunctive normal form, e.g.
(a1∧∧∧a2∧∧∧¬¬¬a3)∨∨∨(a4∧∧∧¬¬¬a5)∨∨∨(¬¬¬a6∧∧∧¬¬¬a7)∨∨∨(a8∧∧∧a9)

2 Transform to have only homogeneous intersections, e.g.
((s1×××t1)∧∧∧¬¬¬(s2×××t2)) ∨∨∨ (¬¬¬(s3→→→t3)∧∧∧¬¬¬(s4→→→t4)) ∨∨∨ (s5×××t5)

3 Group negative and positive atoms in the intersections:∨∨∨
(P,N)∈S

((
∧∧∧
a∈P

a)∧∧∧(
∧∧∧
a∈N
¬¬¬a))
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3 Group negative and positive atoms in the intersections:∨∨∨
(P,N)∈S

((
∧∧∧
a∈P

a)∧∧∧(
∧∧∧
a∈N
¬¬¬a))
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Decision procedure

s ≤ t?

Recall that:

s ≤ t ⇐⇒ JsK ∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅ ⇐⇒ s∧∧∧¬¬¬t = 0

1 Consider s∧∧∧¬¬¬t
2 Put it in canonical form∨∨∨
(P,N)∈Π

((
∧∧∧

s×××t∈P
s×××t)∧∧∧(

∧∧∧
s×××t∈N

¬¬¬(s×××t)))
∨∨∨

(P,N)∈Σ

((
∧∧∧

s→→→t∈P
s→→→t)∧∧∧(

∧∧∧
s→→→t∈N

¬¬¬(s→→→t)))

3 Decide (coinductively) whether all the intersections occuring
above are empty by applying the set theoretic properties
stated in the next slide.
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Subtyping decomposition

Decomposition law for products:∧∧∧
i∈I

ti×××si ≤
∨∨∨
j∈J

tj×××sj

⇐⇒ ∀J ′ ⊆ J.

∧∧∧
i∈I

ti ≤
∨∨∨
j∈J′

tj

 or

∧∧∧
i∈I

si ≤
∨∨∨

j∈J\J′
sj


Decomposition law for arrows:∧∧∧
i∈I

ti→→→si ≤
∨∨∨
j∈J

tj→→→sj

⇐⇒ ∃j ∈ J.∀I ′ ⊆ I .

(
tj ≤

∨∨∨
i∈I ′

ti

)
or

I ′ 6= I et
∧∧∧

i∈I\I ′
si ≤ sj


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Exercise

Using the laws of the previous slide prove the following
equivalences:

t1×××s1 ≤ t2×××s2 ⇐⇒ t1 ≤ ∅ or s1 ≤ ∅ or (t1 ≤ t2 and s1 ≤ s2)

t1→→→s1 ≤ t2→→→s2 ⇐⇒ t2 ≤ ∅ or or (t2 ≤ t1 and s1 ≤ s2)
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Application to a language.
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Language

e : := x variable

| µf (s1→→→t1;...;sn→→→tn)(x).e abstraction, n ≥ 1
| e1e2 application
| (e1,e2) pair
| πi (e) projection, i = 1, 2
| (x = e ∈∈∈ t)???e1:e2 binding type case
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Typing

Γ ` e : s ≤Bt
Γ ` e : t

(subsumption)

(∀i) Γ, (f : s1→→→t1∧∧∧ . . .∧∧∧sn→→→tn), (x : si ) ` e : ti

Γ ` µf (s1→→→t1;...;sn→→→tn)(x).e : s1→→→t1∧∧∧ . . .∧∧∧sn→→→tn
(abstr)

(for s1 ≡ s∧∧∧t, s2 ≡ s∧∧∧¬¬¬t)
Γ ` e : s Γ, (x : s1) ` e1 : t1 Γ, (x : s2) ` e2 : t2

Γ ` (x = e ∈∈∈ t)???e1:e2 :
∨∨∨
{i |si 6'0} ti

(typecase)

Consider:

µf(Int→→→Int;Bool→→→Bool)(x).(y = x ∈∈∈ Int)???(y + 1):not(y)
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Reduction

(µf (...)(x).e)v → e[x/v , (µf (...)(x).e)/f ]
(x = v ∈∈∈ t)???e1:e2 → e1[x/v ] if v ∈ JtK
(x = v ∈∈∈ t)???e1:e2 → e2[x/v ] if v 6∈ JtK

where
v ::= µf (...)(x).e | (v ,v)

And we have
s ≤B t ⇐⇒ s ≤V t

The circle is closed
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Why does it work?

s ≤B t ⇐⇒ s ≤V t (1)

Equation (1) (actually, ⇒) states that the language is quite rich,
since there always exists a value to separate two distinct types; i.e.
its set of values is a model of types with “enough points”

For any model B,
s 6≤B t =⇒ there exists v such that ` v : s and 6` v : t

In particular, thanks to multiple arrows in λ-abstractions:∧∧∧
i=1..k

si→→→ti 6≤ t

then the two types are distinguished by µf (s1→→→t1;...;sk→→→tk)(x).e
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Advantages for the programmer

The programmer does not need to know the gory details. All s/he
needs to retain is

1 Types are the set of values of that type

2 Subtyping is set inclusion

Furthermore the property
s 6≤ t =⇒ there exists v such that ` v : s and 6` v : t

is fundamental for meaningful error messages:

Exibit the v at issue rather than pointing to the failure of some
deduction rule.
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Summary of the theory
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La morale de l’histoire est . . .

If you have a strong semantic intuition of your favorite language
and you want to add set-theoretic ∨∨∨, ∧∧∧, ¬¬¬ types then:

1 Define E( ) for your type constructors so that it matches your
semantic intuition

2 Find a model (any model). [may be not easy/possible]

3 Use the subtyping relation induced by the model to type your
language: if the intuition was right then the set of values is
also a model, otherwise tweak it. [may be not easy/possible]

4 Use the set-theoretic properties of the model (actually of
E( )) to decompose the emptyness test for your type
constructors, and hence derive a subtyping algorithm.

[may be not easy/possible]
5 Enjoy.
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PART 3: POLYMORPHIC
SUBTYPING
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Goal

We want to add Type variables:

(X×××Y→→→X ) ∧∧∧ ((X→→→Y )→→→X→→→Y )

and define for them an intuitive semantics

WHY?

Short answers:

Parametric polymorphism is very useful in practice.

It covers new needs peculiar to XML processing
(eg, SOAP envelopes).

It would make the interface with OCaml complete

The extension shoud shed new light on the notion of
parametricity
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Concrete answer: an example in web development

We need parametric polymorphism to statically type service
registration in the Ocsigen web server:

To every page possibly with parameters

corresponds a function that takes the parameters (the query
string) and dynamically generates the appropriate Xhtml page:

let wikipage (p : WikiParams) : Xhtml = ...

type WikiParams = <params>

<title> String </title>

<action> "raw"|"edit" <action>

</params>
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The binding between the URL $WEBROOT/w/index and the
function wikipage is done by the Ocsigen function
register_new_service:

register new service(wikipage,"w.index")

whenever the page $WEBROOT/w/index is selected, Ocsigen
passes the XML encoding of the query string to wikipage

and returns its result.

We would like to give register_new_service the type

∀(X ≤ QueryString).(X→ Xhtml)× Path→ unit

where QueryString is the XML type that includes all query
strings and Path specifies the paths of the server.

Notice

We need both higher-order polymorphic functions and bounded
quantification
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A very hard problem
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Naive solution

t ::= B | t×××t | t→→→t

| t∨∨∨t | t∧∧∧t | ¬t | 0 | 1 | X

Now use the previous relation. This is defined for “ground types”

Let σ : Vars→ Typesground denote ground substitutions then
define:

s ≤ t
def⇐⇒ ∀σ . sσ ≤ tσ

or equivalently

s ≤ t
def⇐⇒ ∀σ.JsσK ⊆ JtσK

This is a wrong way
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Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ ≤ tσ is
equivalent to solve Diophantine equations

2 It breaks parametricity:

(t×××X ) ≤ (t×××¬¬¬t)∨∨∨(X×××t)

This inclusion holds if and only if t is an atomic type:
Imagine that t is a singleton or a basic type (both are special
cases of atomic types), then for all possible interpretation of
X it holds

t ≤ X or X ≤ ¬¬¬t

If X ≤ ¬¬¬t then the left element of the union suffices
If t ≤ X , then X = (X\t)∨∨∨t and, therefore,
(t×××X ) = (t×××(X\t))∨∨∨(t×××t). This union is contained
component-wise in the one above.
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component-wise in the one above.
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Problems with the naive solution

The fact that

(t×××X ) ≤ (t×××¬¬¬t)∨∨∨(X×××t)

holds if and only if t is an atomic type is really catastrophic:

It means that to decide subtyping one has to decide atomicity
of types which in general is very hard (cf. [Castagna,
DeNicola, Varacca TCS 2008])

It means that subtyping breaks parametricity since by
subsumption we can consider a function generic in its first
argument, as one generic on its second argument.

We can eschew the problem by resorting to syntactic solutions:
- Castagna, Frisch, Hosoya [POPL 05]
- Vouillon [POPL 06]
It implies to give up to the underlying semantic intuition
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A semantic solution

Some faint intuition

The loss of parametricity is only due to the interpretation of
atomic types, all the rest works (more or less) smoothly

Indeed it seems that the crux of the problem is that for an atomic
type a

a ≤ X or X ≤ ¬¬¬a
validity can stutter from one formula to another, missing in this
way the uniformity typical of parametricity
If we can give a semantic characterization of models in which this
stuttering is absent, then this should yield a subtyping relation that
is:

Semantic

Intuitive for the programmer

Decidable
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Semantic solution
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A semantic solution

Rough idea

We must make atomic types “splittable” so that type variables can
range over strict subsets of every type, atomic types included

Since this cannot be done at syntactic level, move to the semantic
one and replace ground substitutions by semantic assignements:

η : Vars→ P(D)

and now the interpretation function takes an extra parameter

J K : Types→ P(D)Vars → P(D)

with
JX Kη = η(X ) J¬¬¬tKη = D\JtKη
Jt1∨∨∨t2Kη = Jt1Kη ∪ Jt2Kη Jt1∧∧∧t2Kη = Jt1Kη ∩ Jt2Kη
J0Kη = ∅ J1Kη = D
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Subtyping relation

In this framework the natural definition of subtyping is

s ≤ t
def⇐⇒ ∀η . JsKη ⊆ JtKη

It just remains to find the uniformity condition to recover
parametricity.
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The magic property

Consider only models of semantic subtyping in which the following
convexity property holds

∀η.(Jt1Kη=∅ or Jt2Kη=∅) ⇐⇒ (∀η.Jt1Kη=∅) or (∀η.Jt2Kη=∅)

It avoids stuttering: (Ja∧∧∧¬¬¬X Kη=∅ or Ja∧∧∧X Kη=∅) holds true
if and only if a is empty.

There is a natural model: every model in which all types are
interpreted as infinite sets satisfies it (we recover the initial
faint intuition).

A sound and complete algorithm: the condition gives us
exactly the right conditions needed to reuse the subtyping
algorithm for ground types (though, decidability is an open
problem, yet).

An intuitive relation: the algorithm returns intuitive results
(actually, it helps to better understand twisted examples)
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Examples of subtyping relations
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Examples

We can internalize properties such as:

(α→ γ) ∧ (β → γ) ∼ α∨β → γ

or distributivity laws:

(α∨β × γ) ∼ (α×γ) ∨ (β×γ) (2)

combining them we deduce:

(α×γ → δ1) ∧ (β×γ → δ2) ≤ (α∨β × γ)→ δ1 ∨ δ2

We can prove relevant relations on infinite types. Consider generic
lists:

α list = µx .(α×x) ∨ nil
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It contains both the α-lists with an even number of elements

µx .(α×(α×x)) ∨ nil ≤ µx .(α×x) ∨ nil

and the α-lists with an odd number of elements

µx .(α×(α×x)) ∨ (α×nil) ≤ µx .(α×x) ∨ nil

and it is itself contained in the union of the two, that is:

α list ∼ (µx .(α× (α× x))∨ nil) ∨ (µx .(α× (α× x))∨ (α× nil))

And we can prove far more complicated relations (see later).
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Subtyping algorithm
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Subtyping Algorithm

Step 1: Transform the subtyping problem into an emptiness
decision problem:
t1 ≤ t2 ⇐⇒ ∀η.Jt1Kη ⊆ Jt2Kη ⇐⇒ ∀η.Jt1∧¬t2Kη=∅ ⇐⇒
t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in
disjunctive normal form.∨

i∈I

∧
j∈J

`ij

where a ::= b | t × t | t → t | 0 | 1 | α and ` ::= a | ¬a
Step 3: Simplify mixed intersections:

Consider each summand of the union: cases such as
t1×t2 ∧ t1→t2 or t1×t2 ∧ ¬(t1→t2) are straightforward.

Solve:
∧
i∈I

ai
∧
j∈J
¬a′j

∧
h∈H

αh

∧
k∈K
¬βk

where all a are of the same kind.
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Step 4: Eliminate toplevel negative variables.,

∀η.JtKη = ∅ ⇐⇒ ∀η.Jt{¬α/α}Kη = ∅
so replace ¬βk for βk (forall k ∈ K )

Solve:
∧
i∈I

ai
∧
j∈J
¬a′j

∧
h∈H

αh

Step 5: Eliminate toplevel variables.∧
t1×t2∈P

t1×t2

∧
h∈H

αh ≤
∨

t′1×t′2∈N
t ′1×t ′2

holds if and only if∧
t1×t2∈P

t1σ × t2σ
∧
h∈H

γ1
h × γ2

h ≤
∨

t′1×t′2∈N
t ′1σ × t ′2σ

where σ = {(γ1
h×γ2

h) ∨ αh/αh}h∈H (similarly for arrows)

Part 3: Polymorphic subtyping G. Castagna: Theory and practice of XML processing languages 72/110



logoP7

1. Motivations 2. Current status 2. Semantic solution 3. Examples 4. Algorithm MPRI

Step 4: Eliminate toplevel negative variables.,

∀η.JtKη = ∅ ⇐⇒ ∀η.Jt{¬α/α}Kη = ∅
so replace ¬βk for βk (forall k ∈ K )

Solve:
∧
i∈I

ai
∧
j∈J
¬a′j

∧
h∈H

αh

Step 5: Eliminate toplevel variables.∧
t1×t2∈P

t1×t2

∧
h∈H

αh ≤
∨

t′1×t′2∈N
t ′1×t ′2

holds if and only if∧
t1×t2∈P

t1σ × t2σ
∧
h∈H

γ1
h × γ2

h ≤
∨

t′1×t′2∈N
t ′1σ × t ′2σ

where σ = {(γ1
h×γ2

h) ∨ αh/αh}h∈H (similarly for arrows)

Part 3: Polymorphic subtyping G. Castagna: Theory and practice of XML processing languages 72/110



logoP7

1. Motivations 2. Current status 2. Semantic solution 3. Examples 4. Algorithm MPRI

Step 6: Eliminate toplevel constructors, memoize, and recurse.
Thanks to convexity and the product decomposition rules∧

t1×t2∈P
t1×t2 ≤

∨
t′1×t′2∈N

t ′1×t ′2 (3)

is equivalent to

∀N ′⊆N.

 ∧
t1×t2∈P

t1 ≤
∨

t′1×t′2∈N′
t ′1

 or

 ∧
t1×t2∈P

t2 ≤
∨

t′1×t′2∈N\N′
t ′2


(similarly for arrows)
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A motivating example in Haskell

(almost)

[no XML]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x
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even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the
Boolean expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied
to an argument that is not an Int it returns a result of the
same type.

Typical function used to modify some nodes
of an XML tree leaving the others unchanged.
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map f l = case l of
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| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the
Boolean expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied
to an argument that is not an Int it returns a result of the
same type.

The combination of type-case and intersections
yields statically typed dynamic overloading.
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This example as a yardstick. I want to define a language that:

1 Can define both map and even
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| Int -> (x ‘mod‘ 2) == 0
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We expect map evenmap evenmap even to have the following type:

( Int list→ Bool list ) ∧∧∧ int lists are transformed into bool lists
(ααα\\\Int list→ ααα\\\Int list ) ∧∧∧ lists w/o ints return the same type
(ααα∨∨∨Int list→ (ααα\\\Int)∨∨∨Bool list ) ints in the arg. are replaced by bools

Difficult because of expansion: needs a set of type substitutions —
rather than just one— to unify the domain and the argument types.
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Formal framework
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Expressions include:

A type-case:
abstracts regular type patterns
makes dynamic overloading possible

Explicitly-typed functions:
Needed by the type-case [e.g. µf .λx .f ∈(1→Int) ? true : 42]

More expressive with the result type (parameter type not enough)

λ∧i∈I si→ti x .e: well typed if for all i∈I from x : si we can deduce e : ti .
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Types may be recursive and have a set-theoretic interpretation:

Constructors: JIntK={0, 1,−1, ...}. Js → tK = λ-abstractions that
when applied to arguments in JsK return only results in JtK.

Connectives have the corresponding set-theoretic interpretation:
Js∨∨∨tK = JsK ∪ JtK Js∧∧∧tK = JsK ∩ JtK J¬¬¬tK = J1K \ JtK

Subtyping with type variables:

it is defined as set-containment: s ≤ t
def⇐⇒ JsK ⊆ JtK;

it is such that forall type-substitutions σ: s ≤ t ⇒ sσ ≤ tσ;
it is decidable. [ICFP2011].
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Formal calculus: new stuff

Exprs e ::= x | ee | λ∧i∈I si→ti x .e | e∈t ? e : e

Types t ::= B | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1 | ααα

Polymorphic functions.
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Polymorphic functions: The novelty of this work is that type vari-
ables can occur in the interfaces.
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1. Polymorphism needs instantiation:

To apply λα→αx .x to 42 we must use the instance obtained by the
type substitution {Int/α}:

(λInt→Intx .x)42
we relabel the function by instantiating its interface.

2. Type-case needs explicit relabeling:
(λα→α→αx .λα→αy .x)42 ∈ Int→Int ; λInt→Inty .42
(λα→α→αx .λα→αy .x)true 6∈ Int→Int ; λBool→Booly .true

Interfaces determine λ-abstractions’s types [intrinsic semantics]

3. Relabeling must be applied also on function bodies:
A “daffy” definition of identity:

(λα→αx .(λα→αy .x)x)
To apply it to 42, relabeling the outer λ by {Int/α} does not
suffice:

(λα→αy .42)42
is not well typed. The body must be relabeled as well, by applying
the {Int/α} yielding: (λInt→Inty .42)42
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4. Relabeling the body is not always straightforward:

1 More than one type-substitution needed

2 Relabeling depends on the dynamic type of the argument

The identity function λα→αx .x has both these types:

(Int→Int) ∧∧∧ (Bool→Bool)

So it has their intersection.
We can feed the identity to a function which expects argument of
that type. But how do we relabel it?
Intuitively: apply {Int/α} and {Bool/α} to the interface and
replace it by the intersection of the two instances:

(λα→αx .x)[{Int/α}, {Bool/α}] ; λ(Int→Int)∧∧∧(Bool→Bool)x .x

We applied a set of type substitutions: t[σi ]i∈I =
∧

i∈I tσi
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4. Relabeling the body is not always straightforward:

1 More than one type-substitution needed

2 Relabeling depends on the dynamic type of the argument

Consider again the daffy identity (λα→αx .(λα→αy .x)x).
It also has type

(Int→Int) ∧∧∧ (Bool→Bool)

Part 4: Polymorphic Language G. Castagna: Theory and practice of XML processing languages 82/110



logoP7

1. Motivating example 2. Formal setting – 3. Explicit substitutions – 4. Inference system – 5. Evaluation – 6. Conclusion – MPRI

4. Relabeling the body is not always straightforward:

1 More than one type-substitution needed

2 Relabeling depends on the dynamic type of the argument

Consider again the daffy identity (λα→αx .(λα→αy .x)x).
It also has type

(Int→Int) ∧∧∧ (Bool→Bool)

Applying the set of substitutions [{Int/α}, {Bool/α}] both to the
interface and the body yields an ill-typed term:

(λ(Int→Int)∧∧∧(Bool→Bool)x .(λ(Int→Int)∧∧∧(Bool→Bool)y .x)x)

Part 4: Polymorphic Language G. Castagna: Theory and practice of XML processing languages 82/110



logoP7

1. Motivating example 2. Formal setting – 3. Explicit substitutions – 4. Inference system – 5. Evaluation – 6. Conclusion – MPRI

4. Relabeling the body is not always straightforward:

1 More than one type-substitution needed

2 Relabeling depends on the dynamic type of the argument

Consider again the daffy identity (λα→αx .(λα→αy .x)x).
It also has type

(Int→Int) ∧∧∧ (Bool→Bool)

Applying the set of substitutions [{Int/α}, {Bool/α}] both to the
interface and the body yields an ill-typed term:

(λ(Int→Int)∧∧∧(Bool→Bool)x .(λ(Int→Int)∧∧∧(Bool→Bool)y .x)x)

Let us see why
it is not well typed
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In order to type

(λ(Int→Int)∧∧∧(Bool→Bool)x .(λ(Int→Int)∧∧∧(Bool→Bool)y .x)x)

we must check that it has both types of the interface:

1 x : Int ` (λ(Int→Int)∧∧∧(Bool→Bool)y .x)x : Int

2 x : Bool ` (λ(Int→Int)∧∧∧(Bool→Bool)y .x)x : Bool

Both fail because λ(Int→Int)∧∧∧(Bool→Bool)y .x is not well typed

Key idea

The relabeling of the body must change
according to the type of the parameter

In our example with (λα→αx .(λα→αy .x)x) and [{Int/α}, {Bool/α}]:
(λα→αy .x) must be relabeled as (λInt→Inty .x) when x : Int;
(λα→αy .x) must be relabeled as (λBool→Booly .x) when x : Bool
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A new technique

Observation

This “dependent relabeling” is the stumbling block for the
definition of an explicitly-typed λ-calculus with intersection types.

A new technique: “lazy” relabeling of bodies.

Decorate λ-abstractions by sets of type-substitutions:
To pass the daffy identity to a function that expects
arguments of type (Int→Int) ∧ (Bool→Bool)
first “lazily” relabel it as follows:

(λα→α[{Int/α},{Bool/α}]x .(λ
α→αy .x)x)

The decoration indicates that the function must be relabeled
The relabeling will be actually propagated to the body of the
function at the moment of the reduction (lazy relabeling)
The new decoration is statically used by the type system to
ensure soundness.
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Details follow, but remember we want to program in this language

e ::= x | ee | λ∧i∈I si→ti x .e | e∈t ? e : e
No decorations: We do not want to oblige the programmer to
write any explicit type substitution.

The technical development will proceed as follows:

1 Define a calculus with explicit type-substitutions and
decorated λ-abstractions.

2 Define an inference system that deduces where to insert
explicit type-substitutions in a term of the language above

3 Define a compilation and execution technique thanks to which
type substitutions are computed only when strictly necessary
(in general, as efficient as a monomorphic execution).

Before proceeding we can already check our first yardstick:

even = λ(Int→Bool)∧∧∧(α\\\Int→α\\\Int)x . x∈Int ? (x mod 2) = 0 : x

map = µm(α→β)→[α]→[β] f .
λ[α]→[β]` . `∈nil ? nil : (f (π1`),mf (π2`))
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A calculus with explicit
type-substitutions
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A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

e ::= x | ee | λ∧i∈I si→ti
[σj ]j∈J

x .e | e∈t ? e : e | e[σi ]i∈I

Some examples:

(λα→αx .x)42

(λα→αx .x)[{Int/α}]42
(λα→α

[{Int/α}]x .x)42

(λα→αx .x)[{Bool/α}]42
(λ(Int→Int)→Inty .y3)(λα→αx .x)

(λ(Int→Int)→Inty .y3)((λα→αx .x)[{Int/α}])
(λ((Int→Int)∧∧∧(Bool→Bool))→ty .e)((λα→αx .x)[{Int/α}, {Bool/α}])
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Reduction semantics

e ::= x | ee | λ∧i∈I si→ti
[σj ]j∈J

x .e | e∈t ? e : e | e[σi ]i∈I

Relabeling operation e@[σj ]j∈J : pushes the type substitutions
into the decorations of the λ’s inside e [Pushes σ’s down into λ’s]x@[σj ]j∈J

def
= x

(λ
∧i∈I ti→si
[σk ]k∈K

x .e)@[σj ]j∈J
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(e[σk ]k∈K )@[σj ]j∈J
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= e@([σk ]k∈K ◦ [σj ]j∈J)

Notions of reduction:
e[σj ]j∈J ; e@[σj ]j∈J

(λ
∧i∈I ti→si
[σj ]j∈J

x .e)v ; (e@[σj ]j∈P){v/x} P = {j∈J | ∃i∈I ,` v : tiσj}

v∈t ? e1 : e2 ;

{
e1 if ` v : t
e2 otherwise
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Example

(λ(Int→Int)∧(Bool→Bool)z .(λα→αx .(λα→αy .x)x)z)42

; (λα→αx .(λα→αy .x)x)[{Int/α}, {Bool/α}]42

; (λα→α
[{Int/α},{Bool/α}]x .(λ

α→αy .x)x)42

; (λInt→Inty .42)42 ≡ (((λα→αy .x)x)@[{Int/α}]){42/x}

; 42
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; (λα→αx .(λα→αy .x)x)[{Int/α}, {Bool/α}]42

; (λα→α
[{Int/α},{Bool/α}]x .(λ

α→αy .x)x)42

; (λInt→Inty .42)42

≡ (((λα→αy .x)x)@[{Int/α}]){42/x}

; 42
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Type system

(subsumption)

Γ ` e : t1 t1≤t2

Γ ` e : t2

(inst)

Γ ` e : t σj] Γ

Γ ` e[σj ]j∈J :
∧
j∈J

tσj

(appl)

Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1e2 : t2

(abstr)

Γ, x : tiσj ` e@[σj ] : siσj

Γ ` λ∧i∈I ti→si
[σj ]j∈J

x .e :
∧

i∈I ,j∈J
tiσj → siσj

i ∈ I
j ∈ J

[plus the rules for type-case and variables]
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Properties

Theorem (Subject Reduction)

For every term e and type t, if Γ ` e : t and e ; e ′, then Γ ` e ′ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term e ′ such that e ; e ′.

Theorem

Let `BCD be Barendregt, Coppo, and Dezani, typing, and dee the
type erasure of e. If `BCD a : t, then ∃e s.t. ` e : t and dee = a.

Note that

e ::= x | ee | λ∧i∈I si→ti
[σj ]j∈J

x .e | e∈t ? e : e | e[σi ]i∈I
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e ::= x | ee | λ∧i∈I si→ti
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x .e | e∈t ? e : e | e[σi ]i∈I

satisfies the above theorem and is closed by reduction.
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Theorem (Subject Reduction)

For every term e and type t, if Γ ` e : t and e ; e ′, then Γ ` e ′ : t.

Theorem (Progress)
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Theorem

Let `BCD be Barendregt, Coppo, and Dezani, typing, and dee the
type erasure of e. If `BCD a : t, then ∃e s.t. ` e : t and dee = a.

Note that

e ::= x | ee | λ∧i∈I si→ti
[σj ]j∈J

x .e | e∈t ? e : e | e[σi ]i∈I

The first n terms (n = 3, 4, 5) form an explicitly-typed λ-calculus
with intersection types subsuming BCD.
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Properties

The definitions we gave:

even = λ(Int→Bool)∧∧∧(α\\\Int→α\\\Int)x . x∈Int ? (x mod 2) = 0 : x

map = µm(α→β)→[α]→[β] f .
λ[α]→[β]` . `∈nil ? nil : (f (π1`),mf (π2`))

are well typed.

A yardstick for the language

Can define both map and even

Can check the types specified in the signature

Can deduce the type of the partial application map even
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Inference of explicit
type-substitutions
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Two problems:

1 Local type-substitution inference: Given a term of

e ::= x | ee | λ∧i∈I si→ti x .e | e∈t ? e : e
a sound & complete algorithm that, whenever possible, inserts
sets of type-substitutions that make it a well-typed term of

e ::= x | ee | λ∧i∈I si→ti
[ ] x .e | e∈t ? e : e | e[σj ]j∈J

(and, yes, the type inferred for map even is as expected)

2 Type recostruction: Given a term

λx .e

find, if possible, a set of type-substitutions [σj ]j∈J such that

λ[σj ]j∈J

α→β x .e

is well typed
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Local Type-Substitution Inference

Given a term of

e ::= x | ee | λ∧i∈I si→ti x .e | e∈t ? e : e

Infer whether it is possible to insert sets of type-substitutions in it
to make it a well-typed term of

e ::= x | ee | λ∧i∈I si→ti
[ ] x .e | e∈t ? e : e | e[σj ]j∈J

The reason is purely practical:

λα→αx .3 must return a static type error

If we infer decorations, then it can be typed: λα→α{Int/α}x .3
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The rule for applications
1. In the type system: [with explicit type-subst.]

(Appl)

Γ ` e1 : s → u Γ ` e2 : s

Γ ` e1e2 : u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].

2. Subsumption elimination: [with explicit type-subst.]

(Appl-algorithm)

Γ `A e1 : t Γ `A e2 : s

Γ `A e1e2 : min{u | t ≤ s → u}
t ≤ 0→ 1
s ≤ dom(t)

3. Inference of type substitutions [w/o explicit type-subst.]

(Appl-inference)

∃[σi ]i∈I , [σ
′
j ]j∈J Γ `I e1 : t Γ `I e2 : s

Γ `I e1e2 : min{u | t[σ′j ]j∈J ≤ s[σi ]i∈I → u}
t[σ′

j ]j∈J ≤ 0→ 1
s[σi ]i∈I ≤ dom(t[σ′

j ]j∈J)
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argument is subsumed to the domain of this arrow].

2. Subsumption elimination: [with explicit type-subst.]
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Tallying problem

The problem of inferring the type of an application is thus to find
for s and t given, [σi ]i∈I , [σ′j ]j∈J such that:

t[σ′j ]j∈J ≤ 0→ 1 and s[σi ]i∈I ≤ dom(t[σ′j ]j∈J)

This can be reduced to solving a suite of tallying problems

Definition (Type tallying)

Let C = {(s1, t1), ..., (sn, tn)} a constraint set. A type-substitution
σ is a solution for the tallying of C iff sσ ≤ tσ for all (s, t) ∈ C .

A sound and complete set of solutions for every tallying problem
can be effectively found in three simple steps.
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Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form (α, t) or (t, α).

Step 2: Merge constraints on the same variable.

if (α, t1) and (α, t2) are in C , then replace them by (α, t1∧∧∧t2);
if (s1, α) and (s2, α) are in C , then replace them by (s1∨∨∨s2, α);

Possibly decompose the new constraints generated by transitivity.

Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form
{si≤αi≤ti | i ∈ [1..n]} where αi are pairwise distinct.

1 select s ≤ α ≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 in all other constraints in replace every α by (s∨∨∨β)∧∧∧t
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that
(with some care) are contractive. By Courcelle there exists a
solution, ie, a substitution for α1, ..., αn into (possibly recursive
regular) types t1, ..., tn (in which the fresh β’s are free variables).
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The application problem

Definition (Inference application problem)

Given s and t types, find [σi ]i∈I and [σ′j ]j∈J such that:∧
i∈I

tσi ≤ 0→1 and
∧
j∈J

sσj ≤ dom(
∧
i∈I

tσi )

1 Fix the cardinalities of I and J (at the beginning both 1);

2 Split each substitution σk (for k∈I∪J) in two: σk = ρk ◦ σ′k
where ρk is a renaming substitution mapping each variable of
the domain of σk into a fresh variable:
(
∧

i∈I (tρi )σ
′
i ≤ 0→1 and (

∧
j∈J(sρj)σ

′
j ≤ dom((

∧
i∈I (tρi )σ

′
i );

3 Solve the tallying problem for
{(t1,0→1), (t1, t2→γγγ)}

with t1 =
∧

i∈I tρi , t2 =
∧

j∈Jsρj , and γγγ fresh
if it fails at Step 1, then fail.
if it fails at Step 2, then change cardinalities (dove-tail)

Every solution for γγγ is a solution for the application.
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Example: map even

Start with the following tallying problem:
{(α1→β1)→[α1]→[β1] ≤ t→γγγ}

where t = (Int→Bool)∧∧∧(α\\\Int→α\\\Int) is the type of even

At step 2 the algorithm generates 9 constraint-sets: one is
unsatisfiable (t ≤ 0); four are implied by the others; remain
{γγγ ≥ [α1]→[β1] , α1≤0} ,
{γγγ ≥ [α1]→[β1] , α1≤Int , Bool≤β1},
{γγγ ≥ [α1]→[β1] , α1≤α\\\Int , α\\\Int≤β1},
{γγγ ≥ [α1]→[β1] , α1≤α∨∨∨Int , (α\\\Int)∨∨∨Bool≤β1};
Four solutions for γγγ:
{γγγ=[]→[]},
{γγγ = [Int]→[Bool]},
{γγγ = [α\\\Int]→[α\\\Int]},
{γγγ = [α∨∨∨Int]→[(α\\\Int)∨∨∨Bool]}.
The last two are minimal and we take their intersection:
{γγγ = ([α\\\Int]→[α\\\Int])∧∧∧([α∨∨∨Int]→[(α\\\Int)∨∨∨Bool])}
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On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds
only correct solutions) and complete (any other solution can be
derived from them).

Decidability: The algorithm is a semi-decision procedure. We
conjecture decidability (N.B.: the problem is unrelated to type-
reconstruction for intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our
algorithm finds an equivalent or more general solution. However,
this solution is not necessary the first solution found.

In a dully execution of the algorithm on map even the good
solution is the second one.

Principality: This raises the problem of the existence of principal
types: may an infinite sequence of increasingly general solutions
exist?
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Type reconstruction

Solve sets of contraint-sets by the tallying algorithm:

Γ `R x : Γ(x) ; {∅}
Γ, x : α `R e : t ; S

Γ `R λx .e : α→ β ; S u {{(t ≤ β)}}

Γ `R e1 : t1 ; S1 Γ `R e2 : t2 ; S2

Γ `R e1e2 : α; S1 u S2 u {{(t1 ≤ t2 → α)}} + rule for
typecase

Sound. it’s a variant: fix interfaces and infer decorations
λ[?]
α→βx .e

Not complete: reconstruction is undecidable

It types more than ML

λx .xx : µX .(α∧(X→β))→ β (≤ α∧(α→β))→β)

for functions typable in ML it deduces a type at least as good:

map : ((α→β)→ [α]→[β]) ∧ ((0→1)→ []→[])
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Type Reconstruction Algorithm

Γ `R c : bc ; {∅}(R-const)
Γ `R x : Γ(x) ; {∅}(R-var)

Γ `R m1 : t1 ; S1 Γ `R m2 : t2 ; S2

Γ `R m1m2 : α; S1 u S2 u {{(t1 ≤ t2 → α)}}(R-appl)

Γ, x : α `R m : t ; S
Γ `R λx .m : α→ β ; S u {{(t ≤ β)}}(R-abstr)

(R-case)
S = (S0 u {{(t0 ≤ 0)}})
t (S0 u S1 u {{(t0 ≤ t), (t1 ≤ α)}})
t (S0 u S2 u {{(t0 ≤ ¬t), (t2 ≤ α)}})
t (S0 u S1 u S2 u {{(t1 ∨ t2 ≤ α)}})

Γ `R m0 : t0;S0 Γ `R m1 : t1;S1 Γ `R m2 : t2;S2

Γ `R (m0∈t ?m1 :m2) : α; S
where α, αi and β in each rule are fresh type variables.
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Efficient evaluation
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Monomorphic language

e ::= c | x | λtx .e | ee | e ∈ t ? e : e
v ::= c | 〈λtx .e, E〉

(Closure) E `m λtx .e ⇓ 〈λtx .e, E〉

(Apply)
E `m e1 ⇓ 〈λtx .e, E ′〉 E `m e2 ⇓ v0 E ′, x 7→ v0 `m e ⇓ v

E `m e1e2 ⇓ v

(Typecase True)

E `m e1 ⇓ v0 v0 ∈m t E `m e2 ⇓ v
E `m e1 ∈ t ? e2 : e3 ⇓ v

(Typecase False)

E `m e1 ⇓ v0 v0 6∈m t E `m e3 ⇓ v
E `m e1 ∈ t ? e2 : e3 ⇓ v

c ∈m t
def
= {c} ≤ t

〈λsx .e, E〉 ∈m t
def
= s ≤ t
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Polymorphic language: naive implementation

e ::= c | x | λtσI x .e | ee | e ∈ t ? e : e | eσI

v ::= c | 〈λtσJx .e, E , σI 〉

(Closure)
σI ; E `p λ

t
σJ
x .e ⇓ 〈λtσJx .e, E , σI 〉

(Instance)
σI ◦ σJ ; E `p e ⇓ v
σI ; E `p eσJ ⇓ v

(Apply)

σI ; E `p e1 ⇓ 〈λ∧`∈Ls`→t`
σK

x .e, E ′, σH〉 σI ; E `p e2 ⇓ v0 σP ; E ′, x 7→ v0 `p e ⇓ v
σI ; E `p e1e2 ⇓ v

where σJ = σH ◦ σK and P = {j ∈ J | ∃` ∈ L : v0 ∈p s`σj}
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Intermediate language as compilation target

e ::= c | x | λtΣx .e | ee | e ∈ t ? e : e
v ::= c | 〈λtΣx .e, E〉
Σ ::= σI | comp(Σ,Σ′) | sel(x , t,Σ) symbolic substitutions

(Closure) E ` λtΣx .e ⇓ 〈λtΣx .e, E〉

(Apply)
E ` e1 ⇓ 〈λtΣx .e, E ′〉 E ` e2 ⇓ v0 E ′, x 7→ v0 ` e ⇓ v

E ` e1e2 ⇓ v

(Typecase True)

E ` e1 ⇓ v0 v0 ∈ t E ` e2 ⇓ v
E ` e1 ∈ t ? e2 : e3 ⇓ v

(Typecase False)

E ` e1 ⇓ v0 v0 6∈ t E ` e3 ⇓ v
E ` e1 ∈ t ? e2 : e3 ⇓ v

c ∈ t
def
= {c} ≤ t

〈λsΣx .e, E〉 ∈ t
def
= s ≤ t
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Compilation

1 Compile into the intermediate language

JxKΣ = x
JλtσI x .eKΣ = λtcomp(Σ,σI )

x .JeKsel(x,t,comp(Σ,σI ))

Je1e2KΣ = Je1KΣJe2KΣ

JeσI KΣ = JeKcomp(Σ,σI )

Je1 ∈ t ? e2 : e3KΣ = Je1KΣ ∈ t ? Je2KΣ : Je3KΣ

2 For 〈λsΣx .e, E〉 ∈ t
def
= s(eval(E ,Σ)) ≤ t we have

s(eval(E ,Σ)) 6= s only if λsΣx .e results from the partial
application of a polymorphic function
(ie, in s there occur free variables bound in the context).

Execution is slowed only when testing the type of the
result of a partial application of a polymorphic function.

3 This holds also with products (used to encode lists records and
XML), whose testing accounts for most of the execution time.
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Theory: All the theoretical machinery necessary to design and
implement a programming language is there. The practical
relevance of the open theoretical issues is negligible.

Languages: The polymorphic extension of CDuce is being
implemented. Future applications: polymorphic extensions of
XQuery and embedding some of this type machinery in ML.

Runtime: Relabeling cannot be avoided but it is materialized only
in case of partial polymorphic applications that end up in
type-cases, that is, just when it is needed.

Implementation: Subtyping of polymorphic types require minimal
modifications to the implementation. Existing data structures
(e.g., binary decision trees with lazy unions) and optimizations
mostly transpose smoothly.

Type reconstruction: Full usage needs more research, expecially
about the production of human readable types and helpful error
messages, but it is mature enough to use it to type local functions.
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