# Blossoming trees and planar maps

Marie Albenque (CNRS, LIX, École Polytechnique)

joint work with Louigi Addario-Berry (McGill University Montréal) and Dominique Poulalhon (LIAFA)

> Séminaire Philippe Flajolet, 6th February 2014

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.



A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.



planar map = planar graph + cyclic order of neigbours around each vertex.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.



planar map = planar graph + cyclic order of neigbours around each vertex. face = connected component of the sphere when the edge are removed

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.



planar map = planar graph + cyclic order of neigbours around each vertex.
face = connected component of the sphere when the edge are removed
Plane maps are rooted : by orienting an edge.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.



planar map = planar graph + cyclic order of neigbours around each vertex.
face = connected component of the sphere when the edge are removed
Plane maps are rooted : by orienting an edge.

Distance between two vertices = number of edges between them. Planar map = Metric space





#### Quadrangulations



**4-regular maps** 



**Simple triangulations** (no loops nor multiple edges)

# Why maps ?

What the motivation for studying maps instead of graphs ?

Because maps have **more structure** than graphs, they are actually simpler to study.

# Why maps ?

What the motivation for studying maps instead of graphs ?

Because maps have **more structure** than graphs, they are actually simpler to study.

Euler Formula : # vertices + # faces = 2 + # edges

A quadrangulation with n faces has 2n edges and n+2 vertices.

# Why maps ?

What the motivation for studying maps instead of graphs ?

Because maps have **more structure** than graphs, they are actually simpler to study.

Euler Formula : # vertices + # faces = 2 + # edges

A quadrangulation with n faces has 2n edges and n+2 vertices.



- $Q_n = \{ \text{Quadrangulations of size } n \} \\= n + 2 \text{ vertices, } n \text{ faces, } 2n \text{ edges}$
- $Q_n = \mathsf{Random} \text{ element of } \mathcal{Q}_n$

 $(V(Q_n), d_{gr})$  is a random compact metric space



 $Q_n = \{ \text{Quadrangulations of size } n \} \\= n + 2 \text{ vertices, } n \text{ faces, } 2n \text{ edges}$ 

 $Q_n = \mathsf{Random} \text{ element of } \mathcal{Q}_n$ 

 $(V(Q_n), d_{gr})$  is a random compact metric space





What is the behavior of  $Q_n$  when n goes to infinity ? typical distances? convergence towards a continuous object ?



What is the behavior of  $Q_n$  when n goes to infinity ? typical distances? convergence towards a continuous object ?

well understood:

- Schaeffer's bijection : quadrangulations  $\leftrightarrow$  labeled trees. Labels in the trees = distances in the map.
- distance between two random points  $\sim n^{1/4}$  + law of the distance [Chassaing-Schaeffer '04]

 cvgence of normalized quadrangulations + limiting object: Brownian map. [Marckert-Mokkadem '06], [Le Gall '07], [Miermont '08], [Miermont 13], [Le Gall 13]

What is the behavior of  $Q_n$  when n goes to infinity ? typical distances? convergence towards a continuous object ?

+ what if quadrangulations are replaced by triangulations, simple triangulations, 4-regular maps ?

What is the behavior of  $Q_n$  when n goes to infinity ? typical distances? convergence towards a continuous object ?

+ what if quadrangulations are replaced by triangulations, simple triangulations, 4-regular maps ?

- Idea : The Brownian map is a **universal** limiting object. All "reasonable models" of maps (properly rescaled) are expected to converge towards it.
- **Problem :** These results relie on nice bijections between maps and labeled trees [Schaeffer '98], [Bouttier-Di Francesco-Guitter '04].

# Which maps ?



#### Quadrangulations

Number of quadrangulations with n faces:

$$q_n = \frac{2 \cdot 3^n}{(n+2)(n+1)} \binom{2n}{n}$$
 [Tutte, 60], [Cori-Vauquelin '81],  
[Schaeffer '98]



**4-regular maps** 



**Simple triangulations** (no loops nor multiple edges)

# Which maps ?



#### Quadrangulations

Number of quadrangulations with n faces:

$$q_n = \frac{2 \cdot 3^n}{(n+2)(n+1)} \binom{2n}{n}$$
 [Tutte, 60], [Cori-Vauquelin '81], [Schaeffer '98]



#### **4-regular maps**

Number of rooted 4-regular maps with n vertices:

$$R_n = \frac{2 \cdot 3^n}{n+1} \binom{2n}{n}$$

[Tutte, 62], [Schaeffer '97]



Simple triangulations (no loops nor multiple edges)

# Which maps ?



#### Quadrangulations

Number of quadrangulations with n faces:

$$q_n = \frac{2 \cdot 3^n}{(n+2)(n+1)} \binom{2n}{n}$$
 [Tutte, 60], [Cori-Vauquelin '81], [Schaeffer '98]



#### **4-regular maps**

Number of rooted 4-regular maps with n vertices:

$$R_n = \frac{2 \cdot 3^n}{n+1} \binom{2n}{n}$$

[Tutte, 62], [Schaeffer '97]



**Simple triangulations** (no loops nor multiple edges) Number of simple triangulations with n + 2 vertices:

$$\Delta_n = \frac{2 \cdot (4n - 3)!}{n!(3n - 1)!}$$

[Tutte, 62], [Poulalhon-Schaeffer '05]

• Enumerate them : a lot of different techniques Recursive decomposition: [Tutte, '60] Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78] Representation of the symmetric group: [Goulden and Jackson '87]. Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ... Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

#### • Enumerate them : a lot of different techniques Recursive decomposition: [Tutte, '60] Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78] Representation of the symmetric group: [Goulden and Jackson '87]. Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ... Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

## • Sample them (efficiently)

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

#### • Enumerate them : a lot of different techniques

Recursive decomposition: [Tutte, '60]

Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]

Representation of the symmetric group: [Goulden and Jackson '87].

Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ... Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

#### • Sample them (efficiently)

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

#### • Understand random ones

Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you're DONE (maybe).

#### • Enumerate them : a lot of different techniques Recursive decomposition: [Tutte, '60] Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]

Representation of the symmetric group: [Goulden and Jackson '87].

Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

#### • Sample them (efficiently)

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

#### • Understand random ones

Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you're DONE (maybe).

• **Enumerate them** : a lot of different techniques Recursive decomposition: [Tutte, '60] Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78] Representation of the symmetric group: [Goulden and Jackson '87]. Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ... [Schaeffer '98], [Schaeffer and Bijective approach with **blossoming trees**.

• **Sample them** (efficiently)

Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

#### • Understand random ones

Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you're DONE (maybe).

# Today: what's the plan ?

What is a blossoming tree ?

Can we unify the constructions involving blossoming trees ?

Can we prove some convergence results to the Brownian map using blossoming trees ?

i.e. can we put "distances" on trees ?

# **Today:** what's the plan ?

What is a blossoming tree ? Wait a second

Can we unify the constructions involving blossoming trees ?

```
Yes, cf also [Bernardi, Fusy]
```

Can we prove some convergence results to the Brownian map using blossoming trees ?

i.e. can we put "distances" on trees ? Yes ... for some models

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :



A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :



A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that :



A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that :



A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that :



A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that :



A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that :



A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :



A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :

# closing stems = # opening stems



A plane map can be canonically associated to any blossoming tree by making all closures clockwise.



A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally

 $\Rightarrow$  Accessible orientation of the map without ccw cycles.
### What is a blossoming tree ?



A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally

 $\Rightarrow$  Accessible orientation of the map without ccw cycles.

# Can we transform a plane map into a blossoming tree ?

**Theorem :** [Bernardi '07], [A., Poulalhon 14+] If a plane map M has a marked vertex v is endowed with an orientation such that :

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,

then there exists a **unique** blossoming tree rooted at v whose closure is M endowed with the same orientation.

# Can we transform a plane map into a blossoming tree ?

**Theorem :** [Bernardi '07], [A., Poulalhon 14+] If a plane map M has a marked vertex v is endowed with an orientation such that :

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,

then there exists a **unique** blossoming tree rooted at v whose closure is M endowed with the same orientation.



# Can we transform a plane map into a blossoming tree ?

**Theorem :** [Bernardi '07], [A., Poulalhon 14+] If a plane map M has a marked vertex v is endowed with an orientation such that :

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,

then there exists a **unique** blossoming tree rooted at v whose closure is M endowed with the same orientation.



# Can we transform a plane map into a Proof by induction on

the number of faces +

**Theorem :** [Bernardi '07], [A., Poulalhon 14identification of closure If a plane map M has a marked vertex v is  $\epsilon$ edges .... orientation such that :

- there exists a directed path from any vert
- there is no counterclockwise cycle,

then there exists a unique blossoming tree rooted at v whose  $c_{1}$ is M endowed with the same orientation.



**Orientation** = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations** 

**Orientation** = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations** 

**4-regular maps** 



2 outgoing edges/vertex
2 ingoing edges/vertex

**Orientation** = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations** 



2 outgoing edges/vertex 2 ingoing edges/vertex

A map is 4-regular iff it admits an orientation with indegree 2 and outdegree 2 for each vertex.

**Orientation** = orientation of the edges of the map.

To apply the construction: need to find canonical orientations

4-regular maps



2 outgoing edges/vertex 2 ingoing edges/vertex

#### Simple triangulations



3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

**Orientation** = orientation of the edges of the map.

To apply the construction: need to find canonical orientations

4-regular maps



2 outgoing edges/vertex 2 ingoing edges/vertex



3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

A triangulation is simple iff it admits an orientation with: outdegree 3 for each non-root vertex outdegree 1 for each vertex on the root face.

**4-regular maps** 



2 outgoing edges/vertex
2 ingoing edges/vertex

#### **Simple triangulations**



3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

#### Many families admit a caracterization via orientations (description of the orientation = outdegree for each vertex is prescribed)

**4-regular maps** 



2 outgoing edges/vertex
2 ingoing edges/vertex

#### **Simple triangulations**



3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

Theorem requires accessible orientation without ccw cycles: Too much too ask ?

**4-regular maps** 



2 outgoing edges/vertex
2 ingoing edges/vertex

#### Simple triangulations



3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

Theorem requires accessible orientation without ccw cycles: **NO** ! Too much too ask ?

**Proposition:** [Felsner '04]

For a given map and orientation, there exists a unique orientation with the same outdegrees and without ccw cycles.

If there exists one accessible such orientation, all of them are accessible.

• Take a family of maps,



Maps with even degrees.

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,
- Apply the bijection,



- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,
- Apply the bijection,
- Study the family of blossoming trees.



#### Distances in blossoming trees: simple triangulations



Simple Triangulation : no multiple edges no loops Euler Formula : v + f = 2 + eTriangulation : 2e = 3f

 $\mathcal{M}_n = \{ \text{Simple triangulations of size } n \} \\= n+2 \text{ vertices, } 2n \text{ faces, } 3n \text{ edges}$ 

 $M_n = \mathsf{Random} \text{ element of } \mathcal{M}_n$ 

What is the behavior of  $M_n$  when n goes to infinity ? typical distances ? Scaling limit of  $M_n$  ?



Simple triangulation endowed with its unique orientation such that :

- no counterclockwise cycle
- out(v) = 3 for v an inner vertex
- out(v) = 1 for v an outer vertex



Simple triangulation endowed with

its unique orientation such that :

- no counterclockwise cycle
- $\operatorname{out}(v) = 3$  for v an inner vertex
- out(v) = 1 for v an outer vertex



its unique orientation such that :

- no counterclockwise cycle
- $\operatorname{out}(v) = 3$  for v an inner vertex
- out(v) = 1 for v an outer vertex



- no counterclockwise cycle
- out(v) = 3 for v an inner vertex
- out(v) = 1 for v an outer vertex



**Theorem:** [Poulalhon, Schaeffer '05]

The closure operation is a bijection between balanced 2-blossoming trees and simple triangulations.

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.



- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.



- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.



- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.



- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1. 2
- Non-leaf to non-leaf, label decreases by 1.



- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.  $2^{4}$
- Non-leaf to non-leaf, label decreases by 1.

3

3

Aside: Tree is balanced  $\Leftrightarrow$  all labels > 2

+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.



 $\begin{array}{l} \text{all labels} \geq 2 \\ + \text{root corner incident to two stems} \\ \text{Closure: Merge each leaf with the first} \\ \text{subsequent corner with a smaller label.} \end{array}$ 

Aside: Tree is balanced  $\Leftrightarrow$
#### Same bijection with corner labels



all labels  $\geq 2$ +root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

#### From blossoming trees to labeled trees



#### From blossoming trees to labeled trees



#### From blossoming trees to labeled trees

Generic vertex :



- Can retrieve the blossoming tree from the labeled tree.
- Labeled tree = GW trees + random displacements on edges uniform on

 $\{(-1, -1, \dots, -1, 0, 0, \dots, 0, 1, 1, \dots, 1)\}.$ 



almost the setting of [Janson-Marckert] and [Marckert-Miermont] but r.v are not "locally centered"  $\Rightarrow$  symmetrization required

**Claim 1:**  $3d_M(root, u) \ge Label of u$ 

First observation : In the tree, the labels of two adjacent vertices differ by at most 1. What can go wrong with closures ?

Claim 1:  $3d_M(root, u) \ge Label of u$ 

First observation : In the tree, the labels of two adjacent vertices differ by at most 1. What can go wrong with closures ?



Claim 1:  $3d_M(root, u) \ge Label of u$ 

First observation : In the tree, the labels of two adjacent vertices differ by at most 1. What can go wrong with closures ?



- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP



- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
  ⇒ they reach the outer face



- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
  ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.



- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
  ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.



- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting
  ⇒ they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.





Leftmost path Another path: can it be shorter ?



Euler Formula :  $|E(T_q)| = 3|V(T_q)| - 3 - (\ell_p + \ell_q)$ 3-orientation + LMP :  $|E(T_q)| \ge 3|V(T_q)| - 2\ell_q - 2$ 

 $\implies \ell_q \ge \ell_p + 1$ 

Leftmost path Another path: can it be shorter ?

Leftmost path Another path: can it be shorter ?



Leftmost path

Another path: can it be shorter ? YES



Leftmost path Another path: can it be shorter ? YES ... but not too often Bad configuration = Atoo many windings around the LMP But w.h.p a winding cannot be too short.  $\implies$  w.h.p the number of windings is  $o(n^{1/4})$ .

Leftmost path Another path: can it be shorter ? YES ... but not too often Bad configuration = Atoo many windings around the LMP But w.h.p a winding cannot be too short.  $\implies$  w.h.p the number of windings is  $o(n^{1/4})$ . **Proposition:** For  $\varepsilon > 0$ , let  $A_{n,\varepsilon}$  be the event that there exists  $u \in M_n$  such that

> Label of  $u \ge d_{M_n}(u, root) + \varepsilon n^{1/4}$ . Then under the uniform law on  $\mathcal{M}_n$ , for all  $\varepsilon > 0$ :

> > $\mathbb{P}(A_{n,\varepsilon}) \to 0.$

#### The result

**Theorem :** [Addario-Berry, A.]  $(M_n) =$  sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n}\right)^{1/4} d_{M_n}\right) \xrightarrow{(d)}$$
Brownian map

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.



#### **Beyond the universality**

Simple triangulations converge to the Brownian map  $\Rightarrow$  properties of the Brownian map from the simple triangulations ?

#### **Beyond the universality**

Simple triangulations converge to the Brownian map  $\Rightarrow$  properties of the Brownian map from the simple triangulations ?

One motivation : Circle-packing theorem

Each simple triangulation M has a unique (up to Möbius transformations and reflections) circle packing whose tangency graph is M. [Koebe-Andreev-Thurston]

Gives a canonical embedding of simple triangulations in the sphere and possibly of their limit.



#### **Random circle packing**

Random circle packing = canonical embedding of random simple triangulation in the sphere.

Gives a way to define a canonical embedding of their limit ?



Team effort : code by Kenneth Stephenson, Eric Fusy and our own.

#### Perspectives

Same approach works also for simple quadrangulations.

Can we make this approach work for the general setting of bijections developped in [A.,Poulalhon] and in [Bernardi, Fusy] ?

Can we say something about a random circle packing ?

#### Perspectives

Same approach works also for simple quadrangulations.

Can we make this approach work for the general setting of bijections developped in [A.,Poulalhon] and in [Bernardi, Fusy] ?

Can we say something about a random circle packing ?

# Thank you !







## **Brownian snake** $(e_t, Z_t)_{0 \le t \le 1}$

**1st step : the Brownian tree** [Aldous]





# **Brownian snake** $(e_t, Z_t)_{0 \le t \le 1}$

1st step : the Brownian tree [Aldous]



#### 2nd step : Brownian labels

Conditional on  $\mathcal{T}_e$ , Z a centered Gaussian process with  $Z_\rho = 0$  and  $E[(Z_s - Z_t)^2] = d_e(s, t)$ 

 $Z \sim \text{Brownian motion on the tree}$ 



Conditional on  $\mathcal{T}_e$ , Z a centered Gaussian process with  $Z_\rho = 0$  and  $E[(Z_s - Z_t)^2] = d_e(s, t)$   $Z \sim \text{Brownian motion on the tree}$ 



Conditional on  $\mathcal{T}_e$ , Z a centered Gaussian process with  $Z_\rho = 0$  and  $E[(Z_s - Z_t)^2] = d_e(s, t)$   $Z \sim \text{Brownian motion on the tree}$ 

$$D^{\circ}(s,t) = Z_s + Z_t - 2\max\left(\inf_{s \le u \le t} Z_u, \inf_{t \le u \le s} Z_u\right), \quad s,t \in [0,1].$$



Conditional on  $\mathcal{T}_e$ , Z a centered Gaussian process with  $Z_\rho = 0$  and  $E[(Z_s - Z_t)^2] = d_e(s, t)$   $Z \sim \text{Brownian motion on the tree}$ 

$$D^{\circ}(s,t) = Z_s + Z_t - 2 \max\left(\inf_{s \le u \le t} Z_u, \inf_{t \le u \le s} Z_u\right), \quad s,t \in [0,1].$$

$$D^*(a,b) = \inf\left\{\sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : k \ge 1, a = a_1, a_2, \dots, a_{k-1}, a_k = b\right\},\$$



Conditional on  $\mathcal{T}_e$ , Z a centered Gaussian process with  $Z_\rho = 0$  and  $E[(Z_s - Z_t)^2] = d_e(s, t)$   $Z \sim \text{Brownian motion on the tree}$ 

$$D^{\circ}(s,t) = Z_s + Z_t - 2\max\left(\inf_{s \le u \le t} Z_u, \inf_{t \le u \le s} Z_u\right), \quad s,t \in [0,1].$$

$$D^*(a,b) = \inf\left\{\sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : k \ge 1, a = a_1, a_2, \dots, a_{k-1}, a_k = b\right\},\$$

Then  $M = (\mathcal{T}_e / \sim_{D^*}, D^*)$  is the **Brownian map**.

# The Brownian map



Then 
$$M = (\mathcal{T}_e/\sim_{D^\star}, D^*)$$
 is the **Brownian map**.

# The Brownian map



Then 
$$M = (\mathcal{T}_e/\sim_{D^\star}, D^*)$$
 is the **Brownian map**.