Blossoming trees and planar maps

Marie Albenque (CNRS, LIX, École Polytechnique)

joint work with Louigi Addario-Berry (McGill University Montréal) and Dominique Poulalhon (LIAFA)

Séminaire Philippe Flajolet, 6th February 2014

Planar Maps - Definition.

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

Planar Maps - Definition.

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex.

Planar Maps - Definition.

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex. face $=$ connected component of the sphere when the edge are removed

Planar Maps - Definition.

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex.
face $=$ connected component of the sphere when the edge are removed Plane maps are rooted: by orienting an edge.

Planar Maps - Definition.

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex.
face $=$ connected component of the sphere when the edge are removed
Plane maps are rooted: by orienting an edge.
Distance between two vertices $=$ number of edges between them.
Planar map $=$ Metric space

Which maps ?

Quadrangulations

4-regular maps

Simple triangulations (no loops nor multiple edges)

Why maps ?

What the motivation for studying maps instead of graphs ?
Because maps have more structure than graphs, they are actually simpler to study.

Why maps ?

What the motivation for studying maps instead of graphs ?
Because maps have more structure than graphs, they are actually simpler to study.

Euler Formula: \# vertices $+\#$ faces $=\mathbf{2}+\#$ edges
A quadrangulation with n faces has $2 n$ edges and $n+2$ vertices.

Why maps ?

What the motivation for studying maps instead of graphs ?
Because maps have more structure than graphs, they are actually simpler to study.

Euler Formula: \# vertices $+\#$ faces $=\mathbf{2}+\#$ edges
A quadrangulation with n faces has $2 n$ edges and $n+2$ vertices.

Structure allows recursive decomposition \Rightarrow enumeration [Tutte, '60s].

Two possibilities:

The root edge is an isthmus

OR The root edge is NOT an isthmus
$q_{n}=$ number of quadrangulations with n faces $=\frac{2}{n+2} \frac{3^{n}}{n+1}\binom{2 n}{n}$

Random maps

$\mathcal{Q}_{n}=\{$ Quadrangulations of size $n\}$ $=n+2$ vertices, n faces, $2 n$ edges
$Q_{n}=$ Random element of \mathcal{Q}_{n}
$\left(V\left(Q_{n}\right), d_{g r}\right)$ is a random compact metric space

Random maps

$\mathcal{Q}_{n}=\{$ Quadrangulations of size $n\}$ $=n+2$ vertices, n faces, $2 n$ edges
$Q_{n}=$ Random element of \mathcal{Q}_{n}
$\left(V\left(Q_{n}\right), d_{g r}\right)$ is a random compact metric space

Simulations by N.Curien

Random maps

What is the behavior of Q_{n} when n goes to infinity ? typical distances?
convergence towards a continuous object ?

Random maps

What is the behavior of Q_{n} when n goes to infinity ? typical distances?

 convergence towards a continuous object ?well understood:

- Schaeffer's bijection : quadrangulations \leftrightarrow labeled trees.

Labels in the trees $=$ distances in the map.

- distance between two random points $\sim n^{1 / 4}+$ law of the distance [Chassaing-Schaeffer '04]
- cvgence of normalized quadrangulations + limiting object: Brownian map.
[Marckert-Mokkadem '06], [Le Gall '07], [Miermont '08], [Miermont 13], [Le Gall 13]

Random maps

What is the behavior of Q_{n} when n goes to infinity ? typical distances?
convergence towards a continuous object ?

Random maps

What is the behavior of Q_{n} when n goes to infinity ?

typical distances?
 convergence towards a continuous object ?

+ what if quadrangulations are replaced by triangulations, simple triangulations, 4-regular maps ?

Idea: The Brownian map is a universal limiting object. All "reasonable models" of maps (properly rescaled) are expected to converge towards it.

Problem : These results relie on nice bijections between maps and labeled trees [Schaeffer '98], [Bouttier-Di Francesco-Guitter '04].

Which maps ?

Quadrangulations

Number of quadrangulations with n faces:

$$
q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} \begin{gathered}
{[\text { Tutte, 60], [Cori-Vauquelin '81] }} \\
{[\text { Schaeffer'98] }}
\end{gathered}
$$

4-regular maps

Simple triangulations (no loops nor multiple edges)

Which maps ?

Quadrangulations

Number of quadrangulations with n faces:

$$
q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} \underset{\substack{[\text { Tutte, 60] },[\text { Cori-Vauquelin '81] } \\ \\[\text { Schaeffer '98] }}}{ }
$$

4-regular maps

Number of rooted 4-regular maps with n vertices:

$$
R_{n}=\frac{2 \cdot 3^{n}}{n+1}\binom{2 n}{n}
$$

[Tutte, 62], [Schaeffer '97]

Simple triangulations (no loops nor multiple edges)

Which maps ?

Quadrangulations

Number of quadrangulations with n faces:

$$
q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n}
$$

[Tutte, 60], [Cori-Vauquelin '81], [Schaeffer '98]

4-regular maps

Number of rooted 4-regular maps with n vertices:

$$
R_{n}=\frac{2 \cdot 3^{n}}{n+1}\binom{2 n}{n}
$$

[Tutte, 62], [Schaeffer '97]

Simple triangulations (no loops nor multiple edges)
Number of simple triangulations with $n+2$ vertices:

$$
\Delta_{n}=\frac{2 \cdot(4 n-3)!}{n!(3 n-1)!}
$$

[Tutte, 62],
[Poulalhon-Schaeffer '05]

History : what questions about maps ?

- Enumerate them : a lot of different techniques

Recursive decomposition: [Tutte, '60]
Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]
Representation of the symmetric group: [Goulden and Jackson '87].
Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ...
Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

History : what questions about maps ?

- Enumerate them : a lot of different techniques

Recursive decomposition: [Tutte, '60]
Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]
Representation of the symmetric group: [Goulden and Jackson '87].
Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ...
Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

- Sample them (efficiently)

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

History : what questions about maps ?

- Enumerate them : a lot of different techniques

Recursive decomposition: [Tutte, '60]
Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]
Representation of the symmetric group: [Goulden and Jackson '87].
Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di
Francesco and Guitter '04], [Bernardi and Fusy], ...
Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

- Sample them (efficiently)

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

- Understand random ones

Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you're DONE (maybe).

History : what questions about maps ?

- Enumerate them : a lot of different techniques

Recursive decomposition: [Tutte, '60]
Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]
Representation of the symmetric group: [Goulden and Jackson '87].
Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di
Francesco and Guitter '04], [Bernardi and Fusy], ...
Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

- Sample them (efficiently)

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

- Understand random ones

Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you're DONE (maybe).

History : what questions about maps ?

- Enumerate them : a lot of different techniques

Recursive decomposition: [Tutte, '60]
Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]
Representation of the symmetric group: [Goulden and Jackson '87].
Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ...
Bijective approach with blossoming trees.

- Sample them (efficiently)

Take a bijection between maps and trees, sample a tree (easy), you're DONE.

- Understand random ones

Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you're DONE (maybe).

Today: what's the plan ?

What is a blossoming tree ?
Can we unify the constructions involving blossoming trees ?

Can we prove some convergence results to the Brownian map using blossoming trees ?
i.e. can we put "distances" on trees ?

Today: what's the plan ?

What is a blossoming tree ? Wait a second
Can we unify the constructions involving blossoming trees ?

Yes, cf also [Bernardi,Fusy]

Can we prove some convergence results to the Brownian map using blossoming trees ?
i.e. can we put "distances" on trees ? Yes ... for some models

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
$\#$ closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems = \# opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

What is a blossoming tree?

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally
\Rightarrow Accessible orientation of the map without ccw cycles.

What is a blossoming tree?

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally
\Rightarrow Accessible orientation of the map without ccw cycles.

Can we transform a plane map into a blossoming tree ?

Theorem : [Bernardi '07], [A., Poulalhon 14+]
If a plane $\operatorname{map} M$ has a marked vertex v is endowed with an orientation such that:

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,
then there exists a unique blossoming tree rooted at v whose closure is M endowed with the same orientation.

Can we transform a plane map into a blossoming tree ?

Theorem : [Bernardi '07], [A., Poulalhon 14+] If a plane $\operatorname{map} M$ has a marked vertex v is endowed with an orientation such that:

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,
then there exists a unique blossoming tree rooted at v whose closure is M endowed with the same orientation.

Can we transform a plane map into a blossoming tree ?

Theorem : [Bernardi '07], [A., Poulalhon 14+] If a plane map M has a marked vertex v is endowed with an orientation such that:

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,
then there exists a unique blossoming tree rooted at v whose closure is M endowed with the same orientation.

Can we transform a plane map into a -nming tree?

Theorem: [Bernardi '07], [A., Poulalhon 14. the $_{\text {the }}$ of by in induction on If a plane map M has a marked vertex v is $\epsilon \begin{aligned} & \text { identification of fan on } \\ & \text { orientation such that: } \\ & \text { e there exists a directed path from any ver. } \\ & \text { edges ... }\end{aligned}$

- there is no counterclockwise cycle, then there exists a unique blossoming tree rooted at v whose u^{-} is M endowed with the same orientation.

Orientations

Orientation $=$ orientation of the edges of the map.
To apply the construction: need to find canonical orientations

Orientations

Orientation $=$ orientation of the edges of the map.
To apply the construction: need to find canonical orientations

4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex

Orientations

Orientation $=$ orientation of the edges of the map.
To apply the construction: need to find canonical orientations

Orientations

Orientation $=$ orientation of the edges of the map.
To apply the construction: need to find canonical orientations

4-regular maps

2 outgoing edges/vertex 2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

Orientations

Orientation $=$ orientation of the edges of the map.
To apply the construction: need to find canonical orientations

4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex
1 outgoing edge / root vertex

A triangulation is simple iff it admits an orientation with: outdegree 3 for each non-root vertex outdegree 1 for each vertex on the root face.

Orientations

4-regular maps

2 outgoing edges/vertex 2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

Many families admit a caracterization via orientations (description of the orientation $=$ outdegree for each vertex is prescribed)

Orientations

4-regular maps

2 outgoing edges/vertex 2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

Theorem requires accessible orientation without ccw cycles:
Too much too ask ?

Orientations

4-regular maps

2 outgoing edges/vertex 2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex 1 outgoing edge / root vertex

Theorem requires accessible orientation without ccw cycles: NO! Too much too ask ?

Proposition: [Felsner '04]

For a given map and orientation, there exists a unique orientation with the same outdegrees and without ccw cycles.
If there exists one accessible such orientation, all of them are accessible.

Summary

- Take a family of maps,

Maps with even degrees.

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,
- Apply the bijection,

Maps with even degrees.
Orientations with same out/in degrees

Summary

- Take a family of maps,
- Try to find a caracterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,
- Apply the bijection,
- Study the family of blossoming trees.

Maps with even degrees. Orientations with same out/in degrees

Distances in blossoming trees: simple triangulations

$$
\begin{aligned}
& \text { Euler Formula : } v+f=2+e \\
& \text { Triangulation : } 2 e=3 f \\
& \begin{array}{r}
\mathcal{M}_{n}=\{\text { Simple triangulations of size } n\} \\
=n+2 \text { vertices, } 2 n \text { faces, } 3 n \text { edges }
\end{array}
\end{aligned}
$$

Simple Triangulation : no multiple edges
$M_{n}=$ Random element of \mathcal{M}_{n} no loops

What is the behavior of M_{n} when n goes to infinity ? typical distances ? Scaling limit of M_{n} ?

From simple triangulations to blossoming trees

Simple triangulation endowed with its unique orientation such that :

- no counterclockwise cycle
- out $(v)=3$ for v an inner vertex
- out $(v)=1$ for v an outer vertex

From simple triangulations to blossoming trees

- no counterclockwise cycle
- out $(v)=3$ for v an inner vertex
- out $(v)=1$ for v an outer vertex

From simple triangulations to blossoming trees

- no counterclockwise cycle
- out $(v)=3$ for v an inner vertex
- out $(v)=1$ for v an outer vertex

From simple triangulations to blossoming trees

Simple triangulation endowed with its unique orientation such that :

- no counterclockwise cycle
- out $(v)=3$ for v an inner vertex
- out $(v)=1$ for v an outer vertex

From simple triangulations to blossoming trees

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1 .
- Non-leaf to non-leaf, label decreases by 1 .

Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1 .
- Non-leaf to non-leaf, label decreases by 1 .

Aside: Tree is balanced \Leftrightarrow all labels ≥ 2
+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

Same bijection with corner labels

Aside: Tree is balanced \Leftrightarrow all labels ≥ 2
+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

Same bijection with corner labels

Aside: Tree is balanced \Leftrightarrow

all labels ≥ 2

+root corner incident to two stems Closure: Merge each leaf with the first subsequent corner with a smaller label.

From blossoming trees to labeled trees

From blossoming trees to labeled trees

From blossoming trees to labeled trees

- Can retrieve the blossoming tree from the labeled tree.
- Labeled tree $=$ GW trees + random displacements on edges uniform on

$$
\{(-1,-1, \ldots,-1,0,0, \ldots, 0,1,1 \ldots, 1)\} .
$$

almost the setting of [Janson-Marckert] and [Marckert-Miermont] but r.v are not "locally centered" \Rightarrow symmetrization required

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u
First observation: In the tree, the labels of two adjacent vertices differ by at most 1 . What can go wrong with closures ?

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u

First observation: In the tree, the labels of two adjacent vertices differ by at most 1 . What can go wrong with closures ?

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u

First observation: In the tree, the labels of two adjacent vertices differ by at most 1 . What can go wrong with closures ?

Distances in simple triangulations

Claim 1: $3 d_{M}($ root, $u) \geq$ Label of u
Claim 2: $d_{M}($ root,$u) \leq$ Label of u

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u
Claim 2: $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u
Claim 2: $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u
Claim 2: $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u
Claim 2: $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

Distances in simple triangulations

Claim 1: $3 d_{M}($ root,$u) \geq$ Label of u
Claim 2: $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex : 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES

with possible equality

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES ... but not too often

Bad configuration = too many windings around the LMP
But w.h.p a winding cannot be too short.
\Longrightarrow w.h.p the number of windings is $o\left(n^{1 / 4}\right)$.

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES ... but not too often
 Bad configuration $=$ too many windings around the LMP

But w.h.p a winding cannot be too short.
\Longrightarrow w.h.p the number of windings is $o\left(n^{1 / 4}\right)$.

Proposition:

For $\varepsilon>0$, let $A_{n, \varepsilon}$ be the event that there exists $u \in M_{n}$ such that
Label of $u \geq d_{M_{n}}(u$, root $)+\varepsilon n^{1 / 4}$.
Then under the uniform law on \mathcal{M}_{n}, for all $\varepsilon>0$:

$$
\mathbb{P}\left(A_{n, \varepsilon}\right) \rightarrow 0 .
$$

The result

Theorem : [Addario-Berry, A.]
$\left(M_{n}\right)=$ sequence of random simple triangulations, then:

$$
\left(M_{n},\left(\frac{3}{4 n}\right)^{1 / 4} d_{M_{n}}\right) \xrightarrow{(d)} \text { Brownian map }
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

Beyond the universality

Simple triangulations converge to the Brownian map
\Rightarrow properties of the Brownian map from the simple triangulations ?

Beyond the universality

Simple triangulations converge to the Brownian map
\Rightarrow properties of the Brownian map from the simple triangulations ?

One motivation: Circle-packing theorem
Each simple triangulation M has a unique (up to Möbius transformations and reflections) circle packing whose tangency graph is M.
[Koebe-Andreev-Thurston]

Gives a canonical embedding of simple triangulations in the sphere and possibly of their limit.

Random circle packing

Random circle packing $=$ canonical embedding of random simple triangulation in the sphere.

Gives a way to define a canonical embedding of their limit?

Team effort : code by Kenneth Stephenson, Eric Fusy and our own.

Perspectives

Same approach works also for simple quadrangulations.
Can we make this approach work for the general setting of bijections developped in [A.,Poulalhon] and in [Bernardi, Fusy] ?

Can we say something about a random circle packing ?

Perspectives

Same approach works also for simple quadrangulations.
Can we make this approach work for the general setting of bijections developped in [A.,Poulalhon] and in [Bernardi, Fusy] ?

Can we say something about a random circle packing ?

Thank you!

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

$\left(e_{t}\right)_{0 \leq t \leq 1}=$ Brownian excursion

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$
1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

2nd step: Brownian labels
Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t)$
$Z \sim$ Brownian motion on the tree

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

The Brownian map

$$
\begin{aligned}
& \mathcal{T}_{e}=[0,1] / \sim_{e} \\
& u \sim_{e} v \text { iff } d_{e}(u, v)=0
\end{aligned}
$$

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] .
$$

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
\begin{gathered}
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] \\
D^{*}(a, b)=\inf \left\{\sum_{i=1}^{k-1} D^{\circ}\left(a_{i}, a_{i+1}\right): k \geq 1, a=a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}=b\right\},
\end{gathered}
$$

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
\begin{gathered}
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] . \\
D^{*}(a, b)=\inf \left\{\sum_{i=1}^{k-1} D^{\circ}\left(a_{i}, a_{i+1}\right): k \geq 1, a=a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}=b\right\},
\end{gathered}
$$

Then $M=\left(\mathcal{T}_{e} / \sim_{D^{\star}}, D^{*}\right)$ is the Brownian map.

The Brownian map

Then $M=\left(\mathcal{T}_{e} / \sim_{D^{\star}}, D^{*}\right)$ is the Brownian map.

The Brownian map

Then $M=\left(\mathcal{T}_{e} / \sim_{D^{\star}}, D^{*}\right)$ is the Brownian map.

