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A planar map is the proper embedding of a finite connected graph
in the 2-dimensional sphere seen up to continuous deformations.

Planar Maps – Definition.

Plane maps are rooted : by orienting an edge.

Distance between two vertices = number of edges between them.
Planar map = Metric space

planar map = planar graph + cyclic order of neigbours around each vertex.

face = connected component of the sphere when the edge are removed



Which maps ?

Quadrangulations

4-regular maps

Simple triangulations (no loops nor multiple edges)
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Why maps ?

What the motivation for studying maps instead of graphs ?

Because maps have more structure than graphs,
they are actually simpler to study.

Structure allows recursive decomposition ⇒ enumeration [Tutte, ’60s].

qn = number of quadrangulations with n faces =
2

n+ 2

3n

n+ 1

(
2n

n

)

Euler Formula : # vertices + # faces = 2 + # edges

A quadrangulation with n faces has 2n edges and n+ 2 vertices.

Two possibilities:

The root edge is an isthmus The root edge is NOT an isthmusOR
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Random maps

What is the behavior of Qn when n goes to infinity ?
typical distances?

convergence towards a continuous object ?

well understood:

• Schaeffer’s bijection : quadrangulations ↔ labeled trees.
Labels in the trees = distances in the map.

• distance between two random points ∼ n1/4 + law of the distance
[Chassaing-Schaeffer ’04]

• cvgence of normalized quadrangulations + limiting object: Brownian map.
[Marckert-Mokkadem ’06], [Le Gall ’07], [Miermont ’08],
[Miermont 13], [Le Gall 13]
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Random maps

What is the behavior of Qn when n goes to infinity ?
typical distances?

convergence towards a continuous object ?

+ what if quadrangulations are
replaced by triangulations, simple
triangulations, 4-regular maps ?

The Brownian map is a universal limiting object.
All ”reasonable models” of maps (properly rescaled) are
expected to converge towards it.

Idea :

Problem : These results relie on nice bijections between maps and labeled
trees [Schaeffer ’98], [Bouttier-Di Francesco-Guitter ’04].
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Simple triangulations (no loops nor multiple edges)

[Tutte, 60], [Cori-Vauquelin ’81],
[Schaeffer ’98]
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Which maps ?

4-regular maps

Simple triangulations (no loops nor multiple edges)

[Tutte, 60], [Cori-Vauquelin ’81],
[Schaeffer ’98]

Number of rooted 4-regular maps with n vertices:

Rn =
2 · 3n

n+ 1

(
2n

n

)
[Tutte, 62], [Schaeffer ’97]

Quadrangulations
Number of quadrangulations with n faces:

qn =
2 · 3n

(n+ 2)(n+ 1)

(
2n

n

)

Number of simple triangulations with n+ 2 vertices:

∆n =
2 · (4n− 3)!

n!(3n− 1)!
[Tutte, 62],
[Poulalhon-Schaeffer ’05]



History : what questions about maps ?

Recursive decomposition: [Tutte, ’60]

Matrix integrals: [t’Hooft, ’74], [Brézin, Itzykson, Parisi and Zuber ’78]

Representation of the symmetric group: [Goulden and Jackson ’87].

Bijective approach with labeled trees: [Cori-Vauquelin ’81], [Schaeffer ’98], [Bouttier, Di
Francesco and Guitter ’04], [Bernardi and Fusy], ...

• Enumerate them : a lot of different techniques

Bijective approach with blossoming trees: [Schaeffer ’98], [Schaeffer and Bousquet-Mélou ’00],
[Poulalhon and Schaeffer ’05], [Fusy, Poulalhon and Schaeffer ’06], [Bernardi and Fusy]
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History : what questions about maps ?

• Sample them (efficiently)

• Understand random ones

Recursive decomposition: [Tutte, ’60]

Matrix integrals: [t’Hooft, ’74], [Brézin, Itzykson, Parisi and Zuber ’78]

Representation of the symmetric group: [Goulden and Jackson ’87].

Bijective approach with labeled trees: [Cori-Vauquelin ’81], [Schaeffer ’98], [Bouttier, Di
Francesco and Guitter ’04], [Bernardi and Fusy], ...

Bijective approach with blossoming trees.

• Enumerate them : a lot of different techniques

Take a bijection between maps and trees, sample a tree (easy), you’re DONE.

Take a bijection between maps and trees, study the trees (complicated but doable), relate the
distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you’re
DONE (maybe).

[Schaeffer ’98], [Schaeffer and
Bousquet-Mélou ’00], [Poulalhon and
Schaeffer ’05], [Fusy, Poulalhon and
Schaeffer ’06], [Bernardi and Fusy]
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Today: what’s the plan ?

What is a blossoming tree ?

Can we unify the constructions involving blossoming trees ?

Can we prove some convergence results to the Brownian map using
blossoming trees ?
i.e. can we put ”distances” on trees ?

Wait a second

Yes, cf also [Bernardi,Fusy]

Yes ... for some models
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Can we transform a plane map into a blossoming tree ?

Theorem : [Bernardi ’07], [A., Poulalhon 14+]
If a plane map M has a marked vertex v is endowed with an
orientation such that :
• there exists a directed path from any vertex to v,
• there is no counterclockwise cycle,

then there exists a unique blossoming tree rooted at v whose closure
is M endowed with the same orientation.
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Can we transform a plane map into a blossoming tree ?

Theorem : [Bernardi ’07], [A., Poulalhon 14+]
If a plane map M has a marked vertex v is endowed with an
orientation such that :
• there exists a directed path from any vertex to v,
• there is no counterclockwise cycle,

then there exists a unique blossoming tree rooted at v whose closure
is M endowed with the same orientation.

Proof by induction on

the number of faces +

identification of closure

edges ....
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Orientation = orientation of the edges of the map.
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4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex

A map is 4-regular iff it admits an orientation with
indegree 2 and outdegree 2 for each vertex.
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Orientations

Orientation = orientation of the edges of the map.

To apply the construction: need to find canonical orientations

4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex
1 outgoing edge / root vertex

A triangulation is simple iff it admits an orientation with:
outdegree 3 for each non-root vertex
outdegree 1 for each vertex on the root face.



4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex
1 outgoing edge / root vertex

Orientations

Many families admit a caracterization via orientations
(description of the orientation = outdegree for each vertex is prescribed)
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4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex
1 outgoing edge / root vertex

Orientations

Theorem requires accessible orientation without ccw cycles:
Too much too ask ?

NO !

Proposition: [Felsner ’04]
For a given map and orientation, there exists a unique orientation with
the same outdegrees and without ccw cycles.
If there exists one accessible such orientation, all of them are accessible.
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Summary

• Take a family of maps,

• Try to find a caracterization of the family by an orientation,

• Consider the unique orientation without counterclockwise cycles,

• Apply the bijection,

Maps with even degrees.
Orientations with same out/in degrees



• Study the family of blossoming trees.

Summary

• Take a family of maps,

• Try to find a caracterization of the family by an orientation,

• Consider the unique orientation without counterclockwise cycles,

• Apply the bijection,

Maps with even degrees.
Orientations with same out/in degrees

Trees with same out/in degrees



Distances in blossoming trees: simple triangulations

Simple Triangulation :
no multiple edges

no loops

Euler Formula : v + f = 2 + e
Triangulation : 2e = 3f

Mn = {Simple triangulations of size n}
= n+ 2 vertices, 2n faces, 3n edges

Mn = Random element of Mn

What is the behavior of Mn when n goes to infinity ?
typical distances ? Scaling limit of Mn ?



From simple triangulations to blossoming trees

• out(v) = 3 for v an inner vertex

Simple triangulation endowed with
its unique orientation such that :

• out(v) = 1 for v an outer vertex

• no counterclockwise cycle
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From simple triangulations to blossoming trees

• out(v) = 3 for v an inner vertex

Simple triangulation endowed with
its unique orientation such that :

• out(v) = 1 for v an outer vertex
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From simple triangulations to blossoming trees

The closure operation is a bijection between balanced
2-blossoming trees and simple triangulations.

Theorem: [Poulalhon, Schaeffer ’05]
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In contour order, apply the following rules:

4

• Start with a planted 2-blossoming tree.
• Give the root corner label 2.



2

2

22

22

2

2
2

2

3

3

3

3

3

3

3
3

3

3

3

3

3

3
3

3
3

4

4

4

4 4

44

4
4

3

5

5

Same bijection with corner labels

Aside: Tree is balanced ⇔
all labels ≥ 2

+root corner incident to two stems
Closure: Merge each leaf with the first
subsequent corner with a smaller label.
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• Leaf to non-leaf, label increases by 1.
• Non-leaf to non-leaf, label decreases by 1.

In contour order, apply the following rules:
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• Give the root corner label 2.
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From blossoming trees to labeled trees

2

2

22

22

2

2
2

2

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3
3

4

4

4

4
4

44

4
4

3

5

5

4

2

2

2

22

3

3label of a vertex =
minimum label of its corners

In the following:
Labels gives approximate
distances to the root in the map
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From blossoming trees to labeled trees

2

2

2

22
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3

0

+1

−1

0
−1

−1

Generic vertex :

i+1

i
i−1

i−1

i i

i+1
i+1i−1

• Can retrieve the blossoming tree
from the labeled tree.

• Labeled tree = GW trees +
random displacements on edges uniform on

{(−1,−1, . . . ,−1, 0, 0, . . . , 0, 1, 1 . . . , 1)}.

almost the setting of [Janson-Marckert] and [Marckert-Miermont] but
r.v are not ”locally centered” ⇒ symmetrization required
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differ by at most 1. What can go wrong with closures ?

Claim 1: 3dM (root, u) ≥ Label of u
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• Consider the Left Most Path from (u, v)
to the root face.
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⇒ they reach the outer face

• On the left of a LMP, corner labels
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Claim 2 : dM (root, u) ≤ Label ofu

• Consider the Left Most Path from (u, v)
to the root face.

• For each inner vertex : 3 LMP

• LMP are not self-intersecting
⇒ they reach the outer face

• On the left of a LMP, corner labels
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LMP are almost geodesic

Euler Formula :
|E(Tq)| = 3|V (Tq)|−3− (`p+`q)

3-orientation + LMP :
|E(Tq)| ≥ 3|V (Tq)| − 2`q − 2

=⇒ `q ≥ `p + 1u

w

Tq

lq

Leftmost path

Another path: can it be shorter ?

lp
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LMP are almost geodesic

Leftmost path

Another path: can it be shorter ?

A

u

`p

`q ≥ `p

A

u

`p
`q

`q ≥ `p + 3

A

u

`p
`q

`q ≥ `p − 2

A

u

`p
`q

`q ≥ `p + 1

YES

with possible equality



LMP are almost geodesic

YES ... but not too often
Leftmost path

Another path: can it be shorter ?

A Bad configuration =
too many windings around the LMP

But w.h.p a winding cannot be too short.

=⇒ w.h.p the number of windings is o(n1/4).



LMP are almost geodesic

Proposition:
For ε > 0, let An,ε be the event that there exists
u ∈Mn such that
Label of u ≥ dMn(u, root) + εn1/4.
Then under the uniform law on Mn, for all ε > 0:

P (An,ε)→ 0.

YES ... but not too often
Leftmost path

Another path: can it be shorter ?

A Bad configuration =
too many windings around the LMP

But w.h.p a winding cannot be too short.

=⇒ w.h.p the number of windings is o(n1/4).



The result

Theorem : [Addario-Berry, A.]
(Mn) = sequence of random simple triangulations, then:(

Mn,

(
3

4n

)1/4

dMn

)
(d)−−→ Brownian map

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

Simulation by J.F Marckert



Beyond the universality

Simple triangulations converge to the Brownian map
⇒ properties of the Brownian map from the simple triangulations ?



Beyond the universality

One motivation : Circle-packing theorem

Each simple triangulation M has a unique (up to
Möbius transformations and reflections) circle
packing whose tangency graph is M .
[Koebe-Andreev-Thurston]

Gives a canonical embedding of simple
triangulations in the sphere and possibly of their
limit.

Simple triangulations converge to the Brownian map
⇒ properties of the Brownian map from the simple triangulations ?



Random circle packing

Random circle packing =
canonical embedding of
random simple triangulation in
the sphere.

Gives a way to define a
canonical embedding of their
limit ?

Team effort : code by Kenneth Stephenson, Eric
Fusy and our own.



Perspectives

Same approach works also for simple quadrangulations.

Can we make this approach work for the general setting of bijections
developped in [A.,Poulalhon] and in [Bernardi, Fusy] ?

Can we say something about a random circle packing ?



Perspectives

Same approach works also for simple quadrangulations.

Can we make this approach work for the general setting of bijections
developped in [A.,Poulalhon] and in [Bernardi, Fusy] ?

Thank you !

Can we say something about a random circle packing ?



0 1

Brownian snake (et, Zt)0≤t≤1

1st step : the Brownian tree [Aldous]

i j
T CTn (or Cn) = contour process

i and j = same vertex of T

Cn(i) = Cn(j) = min
i≤k≤j

Cn(k)iff



0 1

Brownian snake (et, Zt)0≤t≤1

1st step : the Brownian tree [Aldous]

i j
T CTn (or Cn) = contour process

i and j = same vertex of T

Cn(i) = Cn(j) = min
i≤k≤j

Cn(k)iff

0 1

(et)0≤t≤1= Brownian excursion



0 1

Brownian snake (et, Zt)0≤t≤1

1st step : the Brownian tree [Aldous]

i j
T CTn (or Cn) = contour process

i and j = same vertex of T

Cn(i) = Cn(j) = min
i≤k≤j

Cn(k)iff

0 1

(et)0≤t≤1= Brownian excursionTe

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

u v

ū
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ū

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Brownian snake (et, Zt)0≤t≤1

1st step : the Brownian tree [Aldous]
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ū

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)2] = de(s, t)

Z ∼ Brownian motion on the tree

Brownian snake (et, Zt)0≤t≤1

2nd step : Brownian labels

1st step : the Brownian tree [Aldous]
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