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Chapter 1

Categories, functors, natural
transformations

In this chapter, we introduce the basic material of category theory. In Section 1.1,
we introduce the notion of category, we single out remarkable classes of morphisms,
and we define the important notion of cartesian closed category. In Section 1.2, we
define the notion of limit and colimit, and we spell out remarkable special casess:
equalisers and coequalisers, pullbacks and pushouts. In Section 1.3, we define func-
tors, which are morphisms between categories, and natural transformations, which
are morphisms between functors. In Section 1.4, we study a special class of func-
tors, the presheaves. In Section 1.5, we introduce pairs of adjoint functors, which
are in abundance. In Section 1.6, we define the notion of equivalence of categories
(a special case of adjunction). Finally, in Section 1.7 we define monads, a notion
related to adjunction.

1.1 Categories

Definition 1.1.1 A category C is given by the following data:

• a collection Obj (C) of objects A,B, . . . (we write A : C, B : C, . . . ),

• a family of collections C[A,B] doubly indexed over Obj (C) whose elements f
are called morphisms (notation f : A → B),

• a family of morphisms idA : A → A indexed over Obj (C), and

• a family of composition operations: if f : A → B and g : B → C, then
g ◦ f : A → C, such that the following equations are universally satisfied:

(f ◦ g) ◦ h = f ◦ (g ◦ h) f ◦ id = f id ◦ f = f

We also write gf for g ◦ f .
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4CHAPTER 1. CATEGORIES, FUNCTORS, NATURAL TRANSFORMATIONS

The above equalities are understood only when the compositions are well-defined (in
particular, id stands for some appropriate idA). This is spelled out in the following
“proof-theoretical” presentation:

idA : A → A
f : A → B g : B → C

g ◦ f : A → C

f : B → A g : C → B h : D → C

(f ◦ g) ◦ h = f ◦ (g ◦ h) : D → A
f : A → B

f ◦ idA = f : A → B
f : A → B

idB ◦ f = f : A → B

which stresses the fact that a category is a “typed monoid”.
An alternative definition of a category is by means of two collections Obj (C)

and Mor(C), where Mor(C) stands for the disjoint union of all the C[A,B]’s. In
this presentation, one must also provide two functions dom and cod from Mor(C) to
Obj (C). Then the family of identities, and the composition operation are specified
as

• id : Obj (C) → Mor(C), with the constraints that

dom(idA) = A and cod(idA) = A, for all A

• ◦ : Comp → Mor(C), where Comp = {(g, f) ∈ Mor(C) × Mor(C) | cod(f) =
dom(g)}, with the constraints that

dom(g ◦ f) = dom(f) and cod(g ◦ f) = cod(g)

and subject to the above monoid equations, in which we assume that all com-
positions are defined.

From the data of definition 1.1.1, we retrieve dom(f) from the tag of f.(A,B)
in the disjoint union Mor(C) = {f.(A,B) | A ∈ Obj (C), B ∈ Obj (C), f ∈ C[A,B]}.
(We recall that the disjoint union of two sets X,Y is defined as, say X.1 ∪ X.2,
where, say, X.1 = {x.1 | x ∈ X}.) Conversely, given Mor(C), we retrieve C[A,B]
as {f ∈ Mor(C) | dom(f) = A and cod(f) = B}.

This alternative definition of category stresses categories as “graphs with com-
position (and identities)”.

In this book, we shall not be concerned with problems of size. But as the
examples will show, Obj (C) or even C[A,B] may not be sets. When C[A,B] is a
set, for all A,B, we say that C is locally small, and when moreover Obj (C) is a set,
we say that C is small.

There are two special cases of categories which are of interest:

• If, for all A,B, C[A,B] has at most one element, then C amounts to a preorder
on the collection of its objects, where A ≤ B if and only if C[A,B] '= ∅. (A
preorder is a set equipped with a binary reflexive and transitive relation.)
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Indeed, the existence of the identities says that ≤ is reflexive. Transitivity is
shown as follows: if A ≤ B and B ≤ C then there exists f : A → B and
g : B → C. Hence C[A,C] is not empty since it contains g ◦ f .

If moreover C[A,B] is non-empty only if A = B, then we say that C is discrete:
its only morphisms are the identity morphisms.

• if C has a single object A, then C amounts to a monoid C[A,A]. This further
justifies the intuition of a category as a “typed monoid”.

The degenerated preorder case is important, as it will often be easy to see a general
categorical definition as a generalisation of a known concept. For example, limits
will generalise greatest lower bounds.

Here are some “real” categories:

• Set: the objects are sets, the morphisms are functions. This is a locally small
category, but not a small category, since the sets form a proper class.

• Algebraic structures: for example, groups and group homomorphisms form a
category, ring and ring homomorphisms form a category, etc. . . .

• Topological spaces and continuous functions.

• Preorders and monotonic functions.

Here are some categories where the morphisms are not functions.

• PSet. The objects are sets, and the morphisms are partial functions, i.e.

PSet[X,Y ] = {(X ′, f) | X ′ ⊆ X and f ∈ Set[X ′, Y ]}

• Rel. The objects are sets, the morphisms are binary relations, with x idX y
if and only if x = y and, for R a relation from X to Y , S a relation from Y to
Z:

x (S ◦ R) z if and only if there exists z ∈ Y such that x R y and y S z

We now list a few fundamental operations for constructing new categories.

Definition 1.1.2 (dual category) Let C be a category. We define the dual cate-
gory Cop as follows:

Obj (Cop) = Obj (C) Cop[A,B] = C[B,A]
idop = id f ◦op g = g ◦ f .

Given a property P for a category C and relative theorems, it will often make
sense to consider a dual property P op to which correspond dual theorems. This idea
can be formalised using the notion of dual category as follows: given a property P ,
we say that C has property P op if Cop has property P .
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Definition 1.1.3 (subcategory) Let C be a category. A subcategory of C is a
category C′ such that Obj (C′) ⊆ Obj (C), C′[A′, B′] ⊆ C[A′, B′] for all A′, B′ : C′

and such that the identities and composition operation on C′ are the restrictions of
those of C. If moreover C′[A′, B′] = C[A′, B′] for all A′, B′ : C′, then C′ is called a
full subcategory of C.

In terms of graphs, a subcategory is a subgraph closed under composition and iden-
tities.

Definition 1.1.4 If C and D are categories, the product category C×D is defined
by:

Obj (C × D) = Obj (C) × Obj (D) (C × D)[(A,B), (A′, B′)] = C[A,A′] × D[B,B′]
id (A,B) = (idA, idB) (f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g)

The following definition spells some remarkable properties of morphisms.

Definition 1.1.5 Let C be a category.

• A morphism f : A → B is a monomorphism (or is a mono, or is mono) if

∀C, h : C → A, k : C → A (f ◦ h = f ◦ k ⇒ h = k)

• A morphism f : A → B is an epimorphism (epi for short) if it is mono in
Cop , i.e.,

∀C, h : B → C, k : B → C (h ◦ f = k ◦ f ⇒ h = k)

• A morphism f : A → B is a split mono if there is a morphism g : B → A
such that g ◦ f = id. Dually, a morphism g : B → A is a split epi if there is a
morphism f : A → B such that g ◦ f = id.

• A morphism f : A → B is an isomorphism (iso for short) if there is a mor-
phism g : B → A (called the inverse of f) such that g ◦ f = id and f ◦ g = id.
We write A ∼= B if there is an iso between A and B.

It should be clear that a split mono is mono, that a split epi is epi, and that a
morphism is iso if and only if is mono and split epi (or epi and split mono).

Exercise 1.1.6 Show that in Set the monos are the injective functions and the epis
are the surjective functions. (See also Exercise 1.3.5).

Exercise 1.1.7 1. Show that, in the category of rings and ring morphisms, the
inclusion from Z to Q is a non-surjective epi, and is also an example of an epi
and mono that is not invertible.

2. Idem for the inclusion of Q in R in the category of (separated) topological
spaces and continuous functions.
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1.2 Limits and colimits

We now turn to the important notions of limit and colimit. We first give examples,
and then a general definition.

Definition 1.2.1 (terminal object) An object A in a category C is terminal if
∀b ∈ C ∃!f : B → A. We denote a terminal object with 1 and with !B the unique
morphism from B to 1.

Definition 1.2.2 (product) Let A,B be two objects in a category C. A product
of A,B is a triple (C,π1 : C → A,π2 : C → B) such that for any triple (D, f : D →
A, g : D → B) there exists a unique h : D → C such that π1 ◦ h = f and π2 ◦ h = g.
We write C = A × B and h = 〈f, g〉 (the pair of f, g).

The situation is illustrated by the following diagram.

D

f g
〈f,g〉

A × B

π1 π2

A B

where we have used the following conventions: the fat arrows form the structure
being defined, the ondulating arrows correspond to the universal quantification (“for
all D, f, g”) and the dashed arrow to the (uniquely) existing arrow h.

Exercise 1.2.3 Show that the following purely equational description of the product
is equivalent to that given in the Definition 1.2.2:

π1 ◦ 〈f, g〉 = f
π2 ◦ 〈f, g〉 = g
〈f ◦ π1, f ◦ π2〉 = f

Exercise 1.2.4 Show that the equational presentation of Exercise 1.2.3 is equivalent
to the following one (i.e. the two equational theories they define are equal):

π1 ◦ 〈f, g〉 = f
π2 ◦ 〈f, g〉 = g
〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉
〈π1,π2〉 = id

Definition 1.2.5 (Equaliser) Let A,B be two objects, and f, g be two morphisms
between A and B, in some category C. An equaliser of f, g is a pair (C, e : C → A)
such that f ◦ e = g ◦ e, and such that, for all (C ′, e′ : C ′ → A), if f ◦ e′ = g ◦ e′ then
∃ !z : C ′ → C (e ◦ z = e′).
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The following picture illustrates equalisers.

C ′

z
e′

C e A

f

g

B

Definition 1.2.6 (Pull-back) Let A,B,D be objects, and let f : A → D, g : B →
D, in some category C. A pullback of f, g is a triple (C, h : C → A, k : C → B) such
that f ◦h = g◦k, and such that, for all C ′, h′ : C ′ → A, k′ : C ′ → B), if f ◦h′ = g◦k′

then ∃ !z : C ′ → C (h ◦ z = h′ and k ◦ z = k′).

The following picture illustrates the definition of pullback. The square in the picture
is called a pullback square.

C ′

z

h′

k′
C

h

k

A

f

B
g

D

Pullback squares can be put side by side and the result is a pullback (let’s call
it a rectangle!).

Proposition 1.2.7 Let C be a category, and consider the following commuting di-
agram (i.e. f ◦ h = g ◦ f ′ and f ′ ◦ h′ = g′ ◦ f ′′):

A′′
h′

f ′′

A′
h

f ′

A

f

B′′ g′

B′ g
B

1. If the two squares on the picture are pullbacks, then so is the outer rectangle.

2. If the right square and the outer rectangle are pullbacks, then the left square is
a pullback.

Proof. We leave (1) to the reader. As for (2), let C, k : C → A′, l : C → B′′ be
such that f ′ ◦k = g′ ◦ l. Using that the outer rectangle is a pullback, we get a unique
z : C → A′′ such that f ′′ ◦ z and (hh′) ◦ z = hk:
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C
z k

l

hk

A′′
h′

f ′′

A′
h

f ′

A

f

B′′ g′

B′ g
B

If we show that in fact h′ ◦ z = k, we shall a fortiori have a unique z relative to
the left square, and we will be done. This equality follows from the fact that both
h′ ◦ z and k are mediating for hk and g′l (relatively to the right square):

C
z k

l

hk

A′′
h′

f ′′

A′
h

f ′

A

f

B′′ g′

B′ g
B

!

We are now ready for the general notion of limit.

Definition 1.2.8 (diagram) Let C be a category and I be a graph. (By graph, we
mean here the same as a category, but without identities and composition, thus we
just have Obj (I), and for every i,j:I, a set I[i, j] of edges.) A diagram in C over I
is a graph morphism D : I → C, i.e. it maps every i : I to some object Di of C and
every u : i → j to some morphism Du : Di → Dj.

Note that the identity of the nodes and edges of I does not matter, since it serves
only for indexing matters. For this reason, (the isomorphism class of) I is called the
shape of D : I → C. Below, we shall draw some shapes as graphs with unnamed
vertices and edges.

Definition 1.2.9 (cone, limit) Let C be a category and D : I → C be a diagram.
A cone over D is given by an object C (the vertex of the cone) and a collection
of morphisms λi : C → Di indexed over Obj (I) such that the following triangle
commutes (for every edge of I):
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C

λi λj

Di
Du Dj

We say that the morphism λi is the component of the cone at i.
A limiting cone (or limit for short) for D is a cone (C, {λi}i:I) such that for

any other cone given by C ′ and a family of λ′i’s there exists a unique morphism
z : C ′ → C (called the mediating morphism) such that all triangles

C ′

λ′i

z
C

λi

Di

(indexed over Obj (I)) commute. By abuse of language, one often says that C is the
limit of the Di’s.

We say that C has all limits of shape I when all diagrams D : I → C have a
limit.

We can now recognise the terminal object, products, equalisers and pullbacks as
limits of the following respective shapes:

• Terminal. The shape is empty (i.e., Obj (I) = ∅ : then a cone is reduced to its
vertex C.

• Product.The shape is

• •

i.e., I has two vertices and no edge. More generally, the product of any indexed
collection of objects (notation Πi∈IAi) is defined as the limit of the diagram
D : I → C (where I is the graph that has I as set of vertices, and that has no
edges) defined by Di = Ai. We stress the case of the product of two objects
by calling it a binary product. When I is finite of cardinal n and all Ai’s are
equal, i.e., Ai = A for some A, we write Πi∈IA = An.
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• Equaliser. The shape is

• •

• Pull-back. The shape is

•

• •

We spell out the pullback case. There are three vertices and two edges in the shape,
let us name them (different names for different vertices, different names for different
edges):

i

u

j v k

Then we recover the data of definition 1.2.6 by defining D as follows:

Di = A Dj = B Dk = D Du = f Dv = g

Note that neither A,B,D nor f, g are imposed to be distinct. And this is precisely
why we use this indirect machinery of a separate graph I rather than just taking a
subgraph of C.

A cone over this diagram, strictly speaking, consists of three morphisms λi :
C → A, λj : C → B, and λk : C → D satisfying

f ◦ λi = λk = g ◦ λj ,

but we see that the middle morphism λk is superfluous, since it is defined in terms
of either of the two others, and that all information is in the equality f ◦λi = g ◦λj ,
as in definition 1.2.6 (with λi = h, λj = k).

(Similarly, for equalisers, the morphism to the common target B is superfluous,
and a cone thus reduces to a morphism e′ : C ′ → A.)

Exercise 1.2.10 Show that a category with terminal object and pullbacks has binary
products and equalisers.

Exercise∗ 1.2.11 Show that a category which has all equalisers and all finite prod-
ucts has all finite limits (here finite means that the shape of the diagram has finitely
many vertices and edges).

Exercise 1.2.12 Show that Set has all limits and all colimits (hint: limits are
subsets of a product, colimits are quotients of a disjoint union).



12CHAPTER 1. CATEGORIES, FUNCTORS, NATURAL TRANSFORMATIONS

The dual notion of limit is that of colimit. Let D : I → C be a diagram. A
cocone over D is given by a vertex C and a collection of morphisms λi : Di → C
(that go thus now into C) such that

∀u : i → j λj ◦ Du = λi .

Such a cocone is colimiting if, for every other cocone (C ′, {λ′i}i:I), there exists a
unique mediating z : C → C ′ (thus from C) such that

∀ i z ◦ λi = λ′i .

Since “colimiting cocone” is a bit ugly, one often speaks of cones for cocones.
Here are the duals of the special cases considered above:

• Initial. An initial object 0 is a colimit of the empty diagram. This just means
that, for evey object A : C, C[0, A] consists of exactly one morphism.

• Coproduct. A coproduct is a colimit of a diagram of shape

• •

Let us spell out the definition: a coproduct of A,B consists of a triple

(C, i1 : A → C, i2 : B → C)

such that for any triple (D, f : A → D : B → D) there exists a unique
h : C → D such that h ◦ i1 = f and h ◦ i2 = g. We write C = A + B and
h = [f, g] (the copair of f, g). We use the notation

∐
i∈I Ai for a coproduct of

a family of objects.

• Coequaliser. A coequaliser is a colimit of a diagram of shape

• •

• Push-out. A pushout is a colimit of a diagram of shape

•

• •

In general, the dual of a limit of shape I is a colimit of shape Iop (where Iop is
defined by Obj (Iop) = Obj (I) and Iop[i, j] = I[j, i]).

An important property of limits and colimits is that they are unique up to
unique isomorphism: if (C, {λi}i:I) and (C ′, {λ′i}i:I) are two limiting cones for the
same diagram D : I → C, then there exists a unique iso ι : C → C ′ such that
λ′i ◦ ι = λi, for all i. We leave the easy proof to the reader.
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Exercise 1.2.13 Show that every coequaliser is epi, and that every equalizer is
mono. Show that h, k (referring to the definition of pullbacks) are jointly mono
(define this notion). More generally, what can we say of a limit or colimit cone?

We end this section with the notion of cartesian closed category.

Definition 1.2.14 (CCC) Let C be a cateogory that has binary products. An ex-
ponent of two objects A,B is a pair (C, ev : C × A → B) such that for any other
pair (C ′, f : C ′ × A → B) there exists a unique arrow g : C ′ → C such that the
following triangle commutes:

C × A

ev

〈g◦π1,π2〉
C ′ × A

f

B

We write C = BA (or C = A ⇒ B) and g = Λ(f). We call g the curried form of
f , and f the uncurried form of g. A cartesian category is a category which has a
terminal object and all binary products (and hence all finite products). A cartesian
closed category (CCC for short) is a cartesian category in which all pairs of objects
have an exponent.

Exercise 1.2.15 Show that the following purely equational description of the expo-
nent is equivalent to that given in definition 1.2.14 (in presence of products):

ev ◦ 〈Λ(f) ◦ π1,π2〉 = f
Λ(ev ◦ 〈g ◦ π1,π2〉) = g

Exercise 1.2.16 Show that the equational presentation of Exercise 1.2.15 is equiv-
alent to the following one:

ev ◦ 〈Λ(f), g〉 = f ◦ 〈id , g〉
Λ(f) ◦ g = Λ(f ◦ 〈g ◦ π1,π2〉)
Λ(ev) = id

There are very few cartesian closed categories in mathematics. Among the “real”
categories listed above, only Set and the category of preorders and monotonic func-
tions are CCC’s. But they nevertheless are fundamental in theoretical computer
science, since they are the categorical counterpart of λ-calculus. (see Chapter 5).
Many cartesian closed categories have been built for modelling λ-calculus. Carte-
sian closed categories play also an important role in category theory itself. Two
important examples of CCC’s are given in Section 1.3.

A more frequent structure in “mainstream mathematics” is that of a monoidal
closed category. It is the same definition, where the notion of product is replaced
by a weaker notion of monoidal product.
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1.3 Functors, natural transformations

We are interested in the following question: is there a category of categories, or can
we define a good notion of morphism between categories?

Definition 1.3.1 (functor) Let C, D be categories. A functor F : C → D is a
morphism between the underlying graphs that preserves identity and composition,
that is, it consists of a function FObj : Obj (C) → Obj (D) and a family of functions
FA,B : C[A,B] → D[FA,FB] such that the following equations hold universally

F id = id F (f ◦ g) = Ff ◦ Fg

Note that we freely write F without subscripts, and Ff rather than F(f), etc. . . . A
functor F : C → C is called an endofunctor. A contravariant functor F from C
to D is a functor F : Cop → D. A functor, say, F : C1

op × C2 → D is called
contravariant in its first argument and covariant in its second argument. A frequent
notation for a functor of, say, two arguments, is to write F (A, f) for F (idA, f).

The full specification of a functor can be given in the deductive style:

A : C
FA : D

f : A → B
Ff : FA → FB

idA : A → A
F idA = idFA : FA → FA

f : B → C g : A → B

Ff ◦ Fg = F (f ◦ g) : FA → FC

Categories and functors form a category, which we call Cat. The identity functor
and the composition of functors are defined obviously:

idA = A idf = f (G ◦ F )A = G(FA) (G ◦ F )f = G(Ff)

We shall freely write GF for G ◦F , GFA for G(FA), etc. . . . Note that idid in this
context should read as idC(idA), for A : C.

An important example of functor is given in the next definition.

Definition 1.3.2 (hom-functor) Let C be a locally small category. We define the
hom-functor HomC : Cop ×C → Set as follows:

HomC(A,B) = C[A,B]
HomC(f, g)(h) = g ◦ h ◦ f (f : A′ → A, g : B → B′, h : A → B)

Note that the hom-functor is contravariant in its first argument and covariant in
its second argument. A frequent notation for the hom-functor is C[ , ], where
appears as a place holder. A slightly better notation is C[ 1, 2], with two distinct
place holders (since they are to be replaced by distinct entities). We shall also use
the λ-calculus inspired notation λx, y.C[x, y].

Here is another important functor:
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Proposition 1.3.3 Let C be a category that has all binary products. Then × ex-
tends to a functor from C × C to C.

Proof. Let f : A → A′, g : B → B′. We set f × g = 〈f ◦ π1, g ◦ π2〉. We show,
using Exercise 1.2.4, that this defines a functor:

id × id = 〈π1,π2〉 = id
(f ′ × g′) ◦ (f × g) = 〈f ′ ◦ (π1 ◦ 〈f ◦ π1, g ◦ π2〉), g′ ◦ (π2 ◦ 〈f ◦ π1, g ◦ π2〉)〉

= 〈f ′ ◦ f ◦ π1, g′ ◦ g ◦ π2〉
= (f ′ ◦ f) × (g′ ◦ g)

!
The following definition states two important properties for functors.

Definition 1.3.4 A functor F : C → D is called full if

∀A,B ∀h : FA → FB ∃ f : A → B (Ff = h)

i.e. if it is surjective on each homset C[A,B]. It is called faithful if it is injective
on each hom-set C[A,B].

Exercise 1.3.5 Let C be a category that has a terminal object 1. We say that C
has enough points if the functor C[1, ] : C → Set is faithful. Show that in such a
category the following equivalence and implication hold:

f mono ⇔ C[1, f ] injective
f epi ⇐ C[1, f ] surjective

(The definition of “enough points” amounts to say that every morphism f : A → B is
characterised by the underlying function from the points of A to the points of B (we
call point a morphism of source 1). The exercise thus implies that, in usual categories
of sets with structure and structure preserving functions, the monos are the injective
morphisms, and the surjective morphisms are always epi (but not conversely, cf.
Exercise 1.1.7).) (Hint: the faithfulness assumption is used only in the ⇐ direction.)

The next definition relates limits and functors.

Definition 1.3.6 (limit preservation) Suppose that F : C → D is a functor,
and D : I → C is a diagram which has a limit (C, {λi}i:I). We say that F preserves
the limit of D if (FC, {Fλi}i:I) is a limit of the diagram F ◦D : I → D (it is clearly
a cone over this diagram).

Exercise 1.3.7 Show that the functor C[C, ] : C → Set preserves all limits.

Now we ask the following question. Let us fix two categories C and D: is there
a category whose objects are the functors F : C → D?
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Definition 1.3.8 (natural transformation) Let F,G : C → D be functors. A
natural transformation µ : F → G is a family of morphisms {µA : FA → GA}A:C

(called the components of µ) such that, for all A,B, f : A → B, the following square
commutes:

FA
µA

Ff

GA

Gf

FB
µB

GB

Functors from C to D and natural transformations between them indeed form
a category, which we denote as DC (this is justified by Proposition 1.3.11). The
identity and the composition of natural transformations are defined as follows:

idA = idFA (ν ◦ µ)A = νA ◦ µA

(in the first equality, the first occurrence of id refers to the natural transformation
being defined, and the second occurrence refers to an identity morphism in D). The
composition just defined is called vertical (see below).

A picture that is often shown for a natural transformation µ : F → G is the
following one.

C

F

G

µ D

Then a pictorial representation of the vertical composition of two natural transfor-
mations looks as follows:

C

F

G

H

µ

ν D

In the next chapter we shall consider another pictorial representation, which we shall
use extensively.

Exercise 1.3.9 Show that a natural transformation µ is iso (in DC) if and only if
all its components are iso (in D).

Exercise 1.3.10 Let C, D be categories, and let I be a graph. Show that if D has
all limits of shape I then DC has all limits of shape I, and that the limit of a diagram
F : I → DC is given by the formula (lim F )C = lim(λx.FxC).

We now have enough material to give our first “categorical” example of a CCC.



1.3. FUNCTORS, NATURAL TRANSFORMATIONS 17

Proposition 1.3.11 The category Cat is a CCC.

Proof. The terminal category 1 is the category with just one object and one
morphism (the identity morphism on the unique object). We already defined the
product of two categories (Definition 1.1.4). The functors π1 and π2, and the pairing
of two functors are defined in the obvious way:

π1(C,D) = C π2(C,D) = D 〈F,G〉(C) = (FC,GC)
π1(f, g) = f π2(f, g) = g 〈F,G〉(f) = (Ff,Gf)

(for short, we may write π1 = λ(x, y).x, π2 = λ(x, y).y, and 〈F,G〉 = λx.(Fx,Gx)).
We now check that the category DC of functors and natural transformations indeed
provides an exponent. We define ev as follows. On objects, ev(F,A) = FA. On
morphisms, ev(µ, f) is defined as the diagonal of the naturality square:

FA
µA

Ff

GA

Gf

FB
µB

GB

i.e. ev(µ, f) = Gf ◦ µA = µB ◦ Ff .
For F : C′×C → D, we set Λ(F ) = λx′.(λx.F (x′, x)), or, with a mixed but may

be more suggestive notation,

Λ(F ) = λx′.F (x′, )

Let us spell this out: F (C ′, ) is defined by:

• F (C ′, )C = F (C ′, C) and F (C ′, )f = F (C ′, f) (notice the handyness of the
abuse of notation F (C ′, f)),

• for f ′ : C ′ → D′, F (f ′, ) : F (C ′, ) → F (D′, ) is defined by F (f ′, )C =
F (f ′, C). We check the naturality of F (f ′, ). The two paths from F (C ′, C)
to F (D′,D) in the naturality square

F (C ′, C)
F (f ′,C)

F (C′,f)

F (D′, C)

F (D′,f)

F (C ′,D)
F (f ′,D)

F (D′,D)

are equal to F (f ′, f). This “implicit naturality” underlying a functor of two
arguments is a consequence of functoriality. We obtain the paths F (D′, f) ◦
F (f ′, C) and F (f ′,D) ◦ F (C ′, f) by writing, respectively:

(f ′, f) = (idD′ ◦ f ′, f ◦ idC) and (f ′, f) = (f ′ ◦ idC , idD ◦ f)
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The verification that all this indeed provides the data for a CCC structure is left to
the reader. !

Natural transformations have a richer structure than that provided by the above
vertical composition. First we define the (horizontal) composition of a natural trans-
formation with a functor. If G : B → C, F,F ′ : C → C′ and µ : F → F ′,
then we define µG by set theoretical composition, i.e., (µG)A = µGA for all A. It
is immediate that µG is a natural transformation from FG tp F ′G. Likewise, if
H : C′ → B′, F,F ′ : C → C′ and ν : F → F ′, then Hν : HF → HF ′ is natural,
where (Hν)A = H(νA) for all A.

Then, if F,F ′ : C → C′, G,G′ : C′ → C′′, µ : F → F ′, and ν : G → G′ are
given, we can make sense of, or parse, the picture

C

F

F ′

µ C′

G

G′

ν C′′

either as (νF ′) ◦ (Gµ) or as (G′µ) ◦ (νF ), as illustrated by the following pictures:

C

F

F ′

µ C′

G

G′

ν C′′ C

F

F ′

µ C′

G

G′

ν C′′

where, say, the first picture should read as the vertical composition of

C

F

F ′

µ C′

G

C′′

and

C

F ′

C′

G

G′

ν C′′

The two parsings coincide, by naturality of ν (this property is known as Godement’s
rule):

GFA
νF A

GµA

G′FA

G′µA

GF ′A
νF ′A

G′F ′A

This leads us to the following definition:
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Definition 1.3.12 F,F ′ : C → C′, G,G′ : C′ → C′′, µ : F → F ′, and ν : G → G′.
We define the horizontal composition ν · µ : GF → G′F ′ of µ and ν as follows:

(νF ′) ◦ (Gµ) = ν · µ = (G′µ) ◦ (νF )

Now consider the following diagram:

C

F

F ′

F ′′

µ

µ′ C′

G

G′

G′′

ν

ν′ C′′

How should we parse it? Should we first make the horizontal compositions, or should
we first make the vertical ones? The answer is that it does not matter, and hence
that the pictorial representation is acurate, since it abstracts from these details.

Proposition 1.3.13 Let F,F ′, F ′′ : C → C′, G,G′, G′′ : C′ → C′′, µ : F → F ′,
µ′ : F ′ → F ′′, ν : G → G′ and ν ′ : G′ → G′′. Then the following equality, called
interchange law, holds:

(ν ′ ◦ ν) · (µ′ ◦ µ) = (ν ′ · µ′) ◦ (ν · µ)

Proof. We start from the right hand side. We parse ν · µ along the line GF ′ and
we parse ν ′ · µ′ along the line G′′F ′:

C

F

F ′
µ

C′

G

G′
ν

C′′

F ′

F ′′

µ′ C′
G′

G′′

ν′ C′′

This give us

(ν ′ · µ′) ◦ (ν · µ) = G′′µ′ ◦ (ν ′F ′ ◦ νF ′) ◦ Gµ
= G′′µ′ ◦ ((ν ′ ◦ ν)F ′ ◦ Gµ)
= (G′′µ′ ◦ G′′µ) ◦ (ν ′ ◦ ν)F by Godement’s rule
= G′′(µ′ ◦ µ) ◦ (ν ′ ◦ ν)F
= (ν ′ ◦ ν) · (µ′ ◦ µ)

where we have also used, say, ν ′F ′ ◦ νF ′ = (ν ′ ◦ ν)F ′, which is straightforward to
check. !



20CHAPTER 1. CATEGORIES, FUNCTORS, NATURAL TRANSFORMATIONS

1.4 Yoneda lemma and embedding

In this section, we study a remarkable class of functors. Let C be a category. The
functors F : Cop → Set are called set-valued functors, or presheaves. The hom
functors C[ , C] are called representable presheaves.

Lemma 1.4.1 (Yoneda lemma) For any functor F : Cop → Set and any object
C : C, the following isomorphism holds in Set:

FC ∼= SetC
op

[C[ , C], F ] .

Proof. We define iC : FC → SetC
op

[C[ , C], F ] with inverse jC : SetC
op

[C[ , C], F ] →
FC as follows:

iC(x) = λD.λl : D → C.(Fl)(x) jC(τ) = τC(idC) .

We leave it to the reader to prove that iC(x) is natural and that iC and jC are
inverse. We refer to section 2.6 for a graphical proof. !

Theorem 1.4.2 (Yoneda) For any category C, the curried form of the hom func-
tor Y = λx.C[ , x] : C → SetC

op
is full and faithful. It is called the Yoneda

embedding.

Proof. We specialise the Yoneda lemma to F = Y C ′, and we verify that if = Y f ,
for all f . Indeed, we have, for all D, l : D → C:

• (if)Dl = Y C ′lf = C[l, C ′]f = l ◦ f on one hand,

• (Y f)Dl = C[f,D]l = l ◦ f on the other hand.

Then we know that Y is bijective on C[C,C ′], by the Yoneda lemma. !

Proposition 1.4.3 Every presheaf is a colimit of representable presheaves.

Proof. Let P : Cop → Set. We are looking for a diagram D : I → C such that P
will be the limit of Y ◦ D. We take as I the graph underlying the category Elt(P )
that is defined as follows: objects are pairs (C, p), with C : C and p ∈ PC. and we
set:

Elt(P )[(C, p), (C ′, p′)] = {u ∈ C[C,C ′] | Pup′ = p}

We take D = π, where π(C, p) = C and π(u) = u.
We construct a cocone (P, {h(C,p)}(C,p):Elt(P ) over Y ◦π by taking h(C,p) = iC(p),

where iC is given by the Yoneda lemma. Let (Q, {λ(C,p)}(C,p):Elt(P ) be an arbitrary
cocone over Y ◦ π We define ν : P → Q by νC(p) = j(λ(C,p)). We leave it to the
reader to show that the colimiting cone is indeed a cocone, and that ν is indeed the
unique mediating morphism. We refer to Section 2.6 for a graphical proof. !

The following exercise gives a suggestive illustration of this theorem (in the
degenerated case where C is a preorder).
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Exercise 1.4.4 Let A be an alphabet of letters or actions, and let A∗ be the set of
words over A, ordered by the prefix ordering, and considered as a category.

1. Show that giving a functor from (A∗)op to Set amounts to giving a synchroni-
sation forest, i.e. a labelled oriented acyclic graph (in the ordinary sense where
there is at most one edge between two vertices). The labels are on edges (and
may be non distinct). Here is an example:

·
b

·
b

·
b

·

c

·
a

·

c

·
a

·
a

·

b

· ·
These forests can be formalised as follows:

• A synchronisation forest is a set of synchronisation trees.

• If {Pi}i∈I is a family of synchronisation trees and if {ai}i∈I is a family
of actions over the same index set, then ΣI∈I (ai · Pi) is a synchroni-
sation tree (where the formal sum is taken modulo commutativity and
associativity).

The base case of the above inductive definition is when I = ∅. (Synchronisation
forests are automata with possibly infinitely many states, without initial and
final state, and without loop.) (Hint: think of what should be the action of the
functor F on the unique arrow from, say, s to ss′ in A∗.)

2. Spell out what this means that the above example of a synchronisation forest
is a colimit of representable functors. (Hint: a forest is a glueing of branches,
and glueing has to do with quotienting, which has to do with taking a colimit
(cf. Exercise 1.2.12).)

A key interest of the Yoneda embedding is that it embeds an arbitrary category
into a richly structured one. By Exercises 1.2.12 and 1.3.10, SetC

op
has all limits

and all colimits. It is also a CCC, as we now show.

Proposition 1.4.5 The category SetC
op

(for any category C) is a CCC.

Proof. The cartesian structure is built pointwise. The terminal functor maps every
object C : C to the singleton set {∗}, and every morphism to id{∗}. The product
F ×G of two functors is defined by (F ×G)A = FA×GA and (F ×G)f = Ff ×Gf .
But this would not work for the exponent, because then f would have to behave
both contravariantly and covariantly. Yoneda lemma provides the solution. It tells
us that GF C must be in bijective correspondence with SetC

op
[C[ , C], GF ], but the
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latter must be in bijective correspondence with SetC
op

[C[ , C] × F,G]. This gives
us the definition of GF on objects:

(F → G)C = SetC
op

[C[ , C] × F,G]

The rest follows easily (things come in place by matching the types): For F,G :
Cop → Set we define:

((F → G)fµ)A(g, x) = µA(f ◦ g, x) (µ : C[ , C] × F → G, f : D → C,
g : A → D,x ∈ Fa)

evC(µ, x) = µC(idC , x) ((µ : C[ , C] × F → G,x ∈ FC)

(Λ(ν)Cz)A(f, x) = νA(Hfz, x) (ν : H × F → G, z ∈ HC,
f : A → C, x ∈ Fa)

!

Exercise 1.4.6 Let C be a CCC which has an initial object 0. Then show that for
any A : C:

1. 0 × A ∼= 0,

2. C[A, 0] '= ∅ implies A ∼= 0 (thus C[A, 0] has at most one element).

3. If furthermore C has finite limits, show that, for any A : C, the unique mor-
phism from 0 to A is mono.

Hints: C[0×A,B] ∼= C[0, BA] and consider in particular B = 0×A. Consider also
!op ◦ π1. Suppose f : A → 0. Then consider π2 ◦ 〈f, id〉.

Exercise 1.4.7 Let C be a CCC, and 0 be an object such that the natural transfor-
mation µ : λx.x → λx.(x → 0) → 0 defined by µ = Λ(ev ◦ 〈π2,π1〉) is iso. Show that
0 is initial and that C is a preorder

(This is an important negative fact: there is no nontrivial categorical semantics
of classical logic, thinking of 0 as absurdity and of (x → 0) → 0 as double negation.)

Hints: (i) 0 → 0 ∼= 1, by observing 1 ∼= (1 → 0) → 0, and (1 → A) ∼= A, for any
A. (ii) For any A:

C[0, A] ∼= C[0, (A → 0) → 0] ∼= C[0 × (A → 0), 0]
∼= C[A → 0, 0 → 0] ∼= C[A → 0, 1] .

(iii) For any A,B: C[A,B] ∼= C[A, (B → 0) → 0] ∼= C[A × (B → 0), 0].



1.5. ADJUNCTIONS 23

1.5 Adjunctions

We now define the notion of adjunction, which has several characterizations.

Definition 1.5.1 (adjunction (definition 1)) An adjunction between two cate-
gories C,C′ is a triple (F,G, ζ), where F : C → C′ and G : C′ → C are functors
and ζ : C′[F 1, 2] → C[ 1, G 2] is a natural isomorphism. We say that F is the left
adjoint and that G is the right adjoint, and we denote this situation by F 3 G.

Spelling out the definition, we have a family of bijections ζC,C′ : C′[FC,C ′] →
C[C,GC ′] such that

ζC,D′(g ◦ f) = Gg ◦ ζC,D(f) (f : FC → C ′, g : C ′ → D′)
ζD,C′(f ◦ Lh) = ζC,C′(f) ◦ h (f : FC → C, h : D → C)

When C,C′ are preorders, the definition of adjunction boils down to that of a
Galois connection: two functions F,G such that for all C,C ′ FC ≤ C ′ if and only if
C ≤ GC ′.

Definition 1.5.2 (adjunction (definition 2)) An adjunction between two cate-
gories C,C′ is a quadruple (F,G, η, ε), where F : C → C′ and G : C′ → C are
functors and η : idC → GF and ε : FG → idC′ are natural transformations such
that

Gε ◦ ηG = idG and εF ◦ Fη = idL

We show how to mutually derive the data of these two definitions:

• Given ζ, we define ηA = ζA,FA(idFA) and εA′ = ζ−1
GA′,A′(idGA′).

• Given η, ε, we define ζC,C′(f) = Gf ◦ ηC and ζ−1
C,C′(g) = εC′ ◦ Fg.

Definition 1.5.3 (universal morphism) Let G : C → D be a functor and D an
object in D. Then the pair (C, u : D → GC) is universal from D to G if:

∀C ′ ∀ g : D → GC ′ ∃ !f : C → C ′ (Gf ◦ u = g) .

The notion of a couniversal pair is defined dually.

We note that, in reference to the above definition, if ι : D′ → D is a an iso, and
if (C, u : D → GC) is universal from D to G, then (C, u ◦ ι) is universal from D′ to
G: given g′ : D′ → GC ′, we first build g = g′ ◦ ι−1, and then the unique associated
f , which fits and is the only one to fit since Gf ◦ u = g reads as Gf ◦ (u ◦ ι) = g′.

Our last two definitions of adjunction are more economical in the sense that
they do not suppose that we have two functors, nor that the unit or counit or the
bijections are natural: these come as derived facts.



24CHAPTER 1. CATEGORIES, FUNCTORS, NATURAL TRANSFORMATIONS

Definition 1.5.4 (adjunction (definition 3)) Let C, C′ be categories, and let
G : C′ → C. Then we say that G has a left adjoint if for avery object C : C there
exists a universal pair, denoted as (FC, ηC : C → GFC) from C to G.

The following diagram (where we use the same conventions as in section 1.2) spells
out the definition:

C

g

ηC
GFC

Gf

GC ′

We leave it to the reader to extend the definition of F to morphisms, to show
that η is then natural (not too surprising, since the definition of F on morphisms is
taylored for this), and to check that the correspondence associating f to g defines a
bijection between C[C,GC ′] and C′[FC,C ′], and that this collection of bijections is
natural (back to definition 1, with f = ζ−1(g)!)

Definition 3 is useful when we want to construct a left adjoint. One of the most
frequent situations of adjunction is the construction of a free structure. We describe
this in a very simple instance.

Consider a signature, say, Σ = {c, f}, where c and f are function symbols of
respective arities 0 et 2. A Σ-algebra consists of a set A, an element cA of A for
interpreting c and a function fA from A × A → A for interpreting f . We can put
these informations together in the form of a morphism a : (1 + (A × A)) → A.
Let Σ : Set → Set be the functor defined by σ = λx. 1 + (x × x), and more
generally Σ = λx.

∐
f∈Σ xar(f) for an arbitrary signature, where ar(f) is the arrity

of the symbol f . This makes sense in any category that has finite products and
coproducts, and in particular in Set. A Σ-algebra is thus a pair (A, a : ΣA → A).
A morphism of Σ-algebras is a function between their underlying sets that preserves
the (interpretations) of the operations. We leave it to the reader to check that this
is synthetically taken care of by the following abstract definition. A morphism from
(A, a) to (B, b) is a function f : A → B such that the following square commutes:

A

f

ΣAa

Σf

B ΣB
b

Clearly, Σ-algebras and Σ-algebra morphisms form a category, let us call it SetΣ.
More generally, given any category C and any endofunctor F : C → C, we can
define the category CΣ of Σ-algebras (see Section 4.1). There is an obvious functor
U : SetΣ → Set defined by U(A, a) = A and Uf = f . This functor forgets the Σ-
algebra structure, and is therefore called a forgetful functor. In the reverse direction,
there is a functor TΣ that maps a set X to the free Σ-algebra over X, which has as
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carrier the set of terms written with the following syntax:

t ::= x | c | f(t, t)

where x ranges over X. The distinguished element of TΣ is the term c, and the
binary operation associated with f maps (t1, t2) to f(t1, t2). We have TΣ 3 U and
the adjunction says precisely that TΣ is a free construction:

X

g

ηX
UTΣ(X)

Ug∗

U(A, a)

Here ηX is the inclusion function: each x ∈ X is a term, and the unique g∗ is the
unique extension of g to all terms, which is defined by induction:

g∗(x) = g(x) g∗(c) = cA

g∗(t1) = y1 g∗(t2) = y2

g∗(f(t1, t2)) = fA(y1, y2)

Note that in common mathematical practive, the functor U is omitted, and one
draws simply:

X

g

ηX
TΣ(X)

g∗

(A, a)

which is easier to read, while the categorical formulation is more careful about type
coercions: an element x ∈ X is “coerced” to a term x ∈ TΣ(X), etc. . . .

Our last definition is tailored to the construction of right adjoints.

Definition 1.5.5 (adjunction (definition 4)) Let C, C′ be categories, and let
F : C → C′. Then we say that F has a right adjoint if for every object C ′ : C′ there
exists a couniversal pair, denoted as (GC ′, εC′ : FGC ′ → C ′) from F to C ′.

The following diagram spells out the definition (of course, here g = ζ(f) in the
terminology of the first definition):

FGC ′

εC′

FC
f

Fg

C ′

We did not display the diagrams corresponding to the third and fourth definitions
symmetrically, but they actually are, up to a rotation. We have drawn the triangles
following rather common practice found in papers and books. The fact is that in a
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given application, one rarely sees the two sorts of diagrams together, so there is no
real need to symmetrise them perfectly.

Here are two fundamental examples of adjunctions, for which the fourth presen-
taiion is the most natural.

• Limits. We fix a graph I and a category C. A diagram D : I → C is like
a functor, less the preservation of identities and composition. The notion of
natural transformation does not involve any category structure on the source
category, but only on the target category. Therefore it makes perfect sense to
speak about natural transformations between diagrams. Diagrams and natural
transformations between them form a category, which we denote with CI. A
cone (C, {λi}i:I) over D can be seen as a natural transformation λ : ∆C → D,
where ∆ : C → CI is the curried form of the first projection, i.e., maps C
to the constant diagram that maps every i to C and every u to idC . Then
the fact that C admits all I-limits can be characterised as the fact that the
functor ∆ has a right adjoint Lim. LimD provides us with the vertex of the
limiting cone, and the counit provides us with the limiting cone. We leave the
reader convince himself by some drawings. If one is just interested in the limit
of some diagram D, then a limiting cone is a couniversal arrow from ∆ to D.

Similarly, colimits give rise to a left adjoint to the constant functor, or indi-
vidually are universal arrows from D to ∆.

• Exponents. A category has all exponents of the form BA, for some fixed A, if
and only if the functor × A has a right adjoint G. The morphisms ev form
the counit of this adjunction, GB is BA, and Λ(f) is the unique g : C → BA

associated with f : C × A → B.

We summarise below the three examples of adjunctions given in this section:

free Σ-algebras Limits CCC

TΣ 3 U ∆ 3 Lim ( × A) 3 A

We end the section with an important result that relates adjunctions with limit
preservation.

Proposition 1.5.6 Right adjoints preserve limits, and left adjoints preserve colim-
its.

Proof. We deal only with limits (the other half of the statement is dual, and hence
comes for free). Let D′ : I → C′ of limit C ′. The key is to “translate” a cone
(C, {λi : C → GD′i}i:I into a cone of vertex FC over D′, and to translate back its
mediating arrow from FC to C ′ into an arrow from C to GC ′. We leave the details
to the reader. (See Section 2.3 for a graphical proof.)

!
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We cannot resist giving an alternative, more diagrammatic proof of this result,
under the assumption that both C and C′ have all limits of shape I. This addi-
tional assumption allows us to exploit the characterisation of limits by adjunctions.
Contemplate the following square of adjunctions (for the bottom adjunction, see
Exercise 1.5.9):

C
F

G

∆ Lim

C′

∆ Lim

CI

F I

GI

C′I

We have ∆F = F I∆, as highlighted in the drawing. Indeed, we have

(∆F )Ci = ∆(FC)i = FC
(F I∆)Ci = F I(∆C)i = (F ◦ (∆C))i = F (∆Ci) = FC

From this it follows (using Exercise 1.5.8) that GLim and LimGI are both right
adjoint to the same functor. Hence they coincide up to isomorphism (see Exercise
1.5.7). Spelling this out, we have proved our statement:

G(LimD) = Lim(G ◦ D)

Exercise 1.5.7 Show that it F 3 G and F 3 G′, then G and G′ coincide up to a
unique isomorphism respecting some property (which one?). (We give a graphical
solution to this exercise in Section 2.2.)

Exercise 1.5.8 Show that adjunctions compose: if F 3 G (with F : C → C′) and
F ′ 3 G′ (with F ′ : C′ → C′′), then (F ′ ◦ F ) 3 (G′ ◦ G).

Exercise 1.5.9 Show that if F 3 G (with F : C → C′), and if I is a graph, then
F I 3 GI, where, say, F I : CI → C′I is defined by F I(D) = F ◦ D. (We give a
graphical solution to this exercise in Section 2.3.)

1.6 Equivalences of categories

In this section, we investigate special cases of adjunctions: equivalences, reflections
and coreflections. All these notions have to do with one or two of the functors
in a pair of adjoint functors being full and faithuful. We therefore begin by a
characterisation of the faithfulness and the fullness of adjoint functors. The proofs
of the following two propositions are given in Section 2.4.
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Proposition 1.6.1 For an adjunction F 3 G the following holds:

1. G is faithful if and only if every component of the counit is an epi.

2. G is full if and only if every component of the counit is a split mono.

3. G is full and faithful if and only if the counit is iso.

Dually, F is faithful (resp. full) if every component of the unit is mono (resp. split
epi), and is full and faithful iff η is iso.

Proposition 1.6.2 The following properties of a functor F : C → C′ are equiva-
lent:

1. There exists a functor G : C′ → C and two natural equivalences ι : GF → idC

and ι′ : FG → idC′.

2. F is part of an adjunction F 3 G in which the unit and the counit are natural
isomorphisms.

3. F is full and faithful and ∀C ′ : C′ ∃C ∈ C (C ′ ∼= FC).

When either of these properties holds, we say that F or that F 3 G is an equivalence
of categories.

We note that if F 3 G is an equivalence of categories, then we also have G 3 F ,
with unit (resp. counit) the inverse of the counit (resp. of the unit) of the adjunction
F 3 G.

Exercise 1.6.3 Give examples of equivalent but not isomorphic preorders.

Exercise 1.6.4 Show that any adjunction cuts down to an equivalence between the
full subcategory whose objects are those at which the counit and the unit, respectively,
are iso.

Definition 1.6.5 A reflection is an adjunction F 3 G where F is full and faithful
(or equivalently where the unit is iso). Dually, a coreflection is an adjunction F 3 G
where G is full and faithful (or equivalently where the counit is iso).

(In some books, starting with [36], one only assumes the faithfulness of F (resp.
G) in the definition of a reflection (resp. coreflection). We do not see much interest
in this relaxation, though, as we regard the following proposition as the key property
of reflections and coreflections.)

Proposition 1.6.6 Let F : C → C′ and G : C′ → C be two functors.

1. If F 3 G is a reflection, if D′ : I → C′ is a diagram in C′, and if GD′ has a
colimit in C, then F (colim GD′) is a colimit of D′.
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2. If F 3 G is a coreflection, if D : I → C is a diagram in C, and if FD has a
limit in C′, then G(lim FD) is a limit of D.

3. If F 3 G is an equivalence of categories, then C and C′ are interchangeable as
regards having limits and colimits.

Proof. The proofs of (1) and (2) are dual (since an adjunction F 3 G gives rise
to an adjunction Gop 3 F op). Statement (3) is a consequence of the observation
that when F 3 G is an equivalence of categories, then F 3 G and G 3 F are both a
reflection and a coreflection. We prove, say, (2). Since right adjoints preserve limits
(Proposition 1.5.6), G(lim FD) is a limit of GFD. But D and GFD are isomorphic
diagrams, since εD is iso. Hence G(lim FD) is a limit of D. !

1.7 Monads

If we have an adjunction F 3 G between two categories C and C′, what can we say
that concerns only C? First, there is an endofunctor T = GF : C → C. Second, the
unity reads now as η : id → T . Finally, by pre and postcomposing ε, we obtain a
natural transformation µ = GεF : TT → T . This leads us to the following definition.

Definition 1.7.1 Let C be a category. A monad on C is a triple (T, η, µ) where
T : C → C, η : idC → T and µ : TT → T , and where η and µ satisfy the following
three equations:

µ ◦ (µT ) = µ ◦ (Tµ) µ ◦ (ηT ) = idT µ ◦ (Tη) = idT

We say that a functor T gives rise to a monad structure if there exists η, µ that turn
it into a monad.

The notion of monad is closely related to that of adjunction. This will be explained
at length in section 2.5. Here we content ourselves with giving a number of examples
in the following exercises. These exercises should convince the reader of the relevance
of monads for programming languages.

Exercise 1.7.2 Show that the powerset functor P and that the list functor List each
gives rise to a monad on Set.

Exercise 1.7.3 Let S be a fixed set. Show that the functor ( × S)S gives rise to
a monad on Set. (This monad is called the state monad,: think of S as a set of
states, and that an expression’s value depends on the state and that its evaluation
may have side-effects on the state.)

Exercise 1.7.4 Let R be a fixed set. Show that the functor RR gives rise to a
monad on Set. (This monad is called the continuation monad: think of R as a
set of final results, and of functions c : A → R as continuations, or as contexts of
evaluation.)
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Chapter 2

String diagrams

In this chapter, we introduce the graphical language of string diagrams (Section 2.1).
With these new glasses we revisit adjunctions (Section 2.2), limits (Section 2.3), and
equivalences of categories (Section 2.4).

2.1 String diagrams

We represent a natural tranformation µ : GF → H as follows:

F G

µ

H

Under this representation, functors are 1-dimensional (like in the usual pasting di-
agrams), natural transformations are 0-dimensional (think of the circle around ρ as
just a node in a graph). As for the categories, if F : C → C′, G : C′ → C′′, and
H : C → C′′, then, seeing the edges of the graph as half-lines, the above figure
delineates twree regions, corresponding to the three categories. In other words, in
this representation, categories are 2-dimensional:

31
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F

C′
G

C µ C′′

H

The situation is thus Poincaré dual to that of pasting diagrams:
categories functors natural transformations

pasting diagrams 0 1 2
string diagrams 2 1 0

We represent the vertical composition of µ with a natural transformation ν : G′F ′ →
GF as follows:

F ′ G′

ν

F G

µ

H

With this notation, Godement’s rule amounts to the following identity:
F G

µ

ν

F ′ G′ ≡

F G

ν

µ

F ′ G′

and that is the key quality of this notation: we have exchanged naturality diagrams
(which are often a bit boring to check) against the ability to freely move up and down
parts of drawings, just like elevators, as long as they circulate in non-overlapping
cages. Such diagrams are called string diagrams.

String diagrams deal with identity functors and natural transformations implic-
ity. We represent, say, µ : id → F (with F : C → C), and id : G → G (with
G : C → C′) as
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µ

F and

G

respectively.
Note that our diagrams are still annotated with the usual textual syntax for

functors and natural transformations. We must therefore include the relevant com-
mutation rules between the graphical representation and the textual one:

F G

=

GF

F

ν ◦ µ

H =

F

µ

G

ν

H

FG

Fµ

FG′ =

G

µ F

G′

GF

µF

G′F =

G

F µ

G′

Sometimes, it will be useful to add explicit coercions (with H = GF )

H

=

F G and

F G

=

H

between the two sides ot the top left equality above (more on this in Section 2.3).



34 CHAPTER 2. STRING DIAGRAMS

We ask these coercions to satisfy some equations (see Section 2.3.2).

We can also use string diagrams to describe morphisms f : A → B in a category
C. It suffices to see A and B as functors from the terminal category 1 to C, yielding

A

f

B

with the left and right half plane corresponding to 1 and C, respectively. And for
Ff , we can write indifferently (cf. above)

A

f F

B or

A F

Ff

B F

2.2 Adjunctions

The following two equations express the definition of adjunction F 3 G with unit η
and counit ε.

EQUATION η − ε:

η
F

G F

F

ε

F =

EQUATION ε− η:

G
η

F G

ε

G =
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We now show how this definition allows us to induce the definition of adjunction
in terms of the natural bijections between C[FA,B] and C′[A,GB]. Given

A F

f

B

we define ζ(f) as follows:

A

η

F

f

B G

which by forgetting the details in the box is an arrow from A to GB as required.

The naturality of ζ is straightforward by construction. For example ζ(h◦ f) and
Gh ◦ ζ(f) are obtained respectively as
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A

η

F

f

B

h

B′ G and

A

η

F

f

B

h

B′ G

which coincide once we remove the boxes highlighting the respective constructions
(or “sequentialisations”, to borrow a terminology from linear logic):

A

η

F

f

B

h

B′ G

Conversely, given g : A → GB, we construct ξ(g) as follows:
A F

g

G

B

ε
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The functions ζ and ξ are inverse. For example, let us draw ζ(ξ(g)):
A

η

g F

G

B

ε

G

We can then move up g (Godement’s rule), which allows us to isolate an (ε − η)
redex. A

g

η

ε

B G

after reduction of which all what remains of the box is a wire G, i.e., we have proved
ζ(ξ(g)) = g.

Suppose conversely that two natural bijections ζ and ξ of the above types are
given. We synthesise ηA and εA′(on every object, thus) as follows:

A

ζ(idFA)

A F G

A′ G F

ξ(idGA′)

A′

We check the naturality of η, making use of the naturality of ζ (i.e., ζ(f) ◦ g =
ζ(f ◦Fg) and Gh◦ζ(f) = ζ(h◦f)). We work on both ends. We transform GFf ◦ηA
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as follows:

A

ζ(idFA)

f

B F G =

A

ζ(idFA)

Ff

B F G =

A

ζ(Ff ◦ idFA)

B F G

On the other hand, we transform ηB ◦ f as follows:

A

f

ζ(idFB )

B F G =

A

ζ(idFB ◦ Ff)

B F G

and we are done, since Ff ◦ idFA = idFB ◦ Ff .
We now check Equation (ε− η) at A′. We have, by naturality of ζ:

A′ G

ζ(idFGA′)

A′ G F

ξ(idGA′)

A′ G =

A′ G

ζ(ξ(idGA′) ◦ idFGA′)

A′ G

and we conclude, since ζ(ξ(idGA′)) = id .

We conclude this section by showing the uniqueness of adjoints up to iso.
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Solution of Exercise 1.5.7. Suppose that we have F 3 G with unit η and
counit ε on one hand, and F 3 G′ with unit η′ and counit ε′ on the other hand.
Then there exists a unique iso α : G → G′ such that αF ◦ η = η′, or, equivalently,
there exists a unique iso β : G′ → G (the inverse of α) such that ε ◦ Fβ = ε′. We
synthesise α from the requirement. If

η η′

G

α

F G′ = F G′

then by plugging ε on both sides on the F wire, we get on the right hand side

G
η′

F

ε

G′

while the left hand side simplifies to α using Equality (ε − η), after having moved
down α, as shown below:

G
η

F G

ε

α

G′

Hence α must be equal to the diagram above.
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We synthesise β similarly:

G′

η

F

ε′

G

It is straightforward that α (resp. β) fulfills the requirement. We check that β ◦α =
id . Moving down the ε and moving up the η we obtain

G
η

η′

ε′

ε

G

Then reducing the central (η − ε) redex leaves us with an (ε − η) redex, whose
reduction in turn leaves us with a G wire, i.e. the identity natural transformation
from G to G, as claimed.

2.2.1 Relating adjunctions*

Let F 3 G and F ′ 3 G′ be two adjunctions between the same categories C and C′.. These
data induce a bijective correspondence between C′C[F ′, F ] and CC′

[G, G′] that maps σ :
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F ′ → F to G

η′

F ′

σ

F

ε

G′

This natural transformation is called the conjugate of σ This correspondence is bijective
(its inverse is defined in a dual way), and contravariantly functorial in the sense that if
F ′′ 3 G′′ is a further adjunction between C and C′, then the conjugate of σ ◦ σ′ is the
inversed composition of the conjugates of σ′ and σ.

We illustrate this by proving a result on parameterised adjunctions. Let F : C′′×C → C′

be a bifunctor, and suppose that for all A′′, λx.F (A′′, x) (a functor from C to C′) has a
right adjoint GA′′ . We shall prove that the family formed by the GA′′ ’s induces a functor
G : C′′ × C′ → C. We describe this functor in curried form (and we also use F in curried
form):

• GA′′ = GA′′ ,

• Gf is the conjugate of Ff .

We check that this is correctly typed. If f : A′′ → B′′, then we have Ff : FA′′ → FB′′

(where, say, FA′′ is what we previously wrote without abuse of notation as λx.F (A′′, x)),
and hence Gf : GB′′ → GA′′. So we have defined a contravariant functor from C′′ to CC′

,
i.e., in uncurried form, we have defined as required a functor G : C′′op × C′ → C such that
by construction λx′.G(A′′, x′) = GA′′ , for all A′′.

We next relate adjunctions that are not necessarily between the same categories. We
define a category Adj whose objects are adjunctions. Let F1 3 G1 beween C1 and C′

1,
and F2 3 G2 beween C2 and C′

2. Then Adj[(F1 3 G1), (F2 3 G2)] consists of the pairs of
functors H : C1 → C2 and H ′ : C′

1 → C′
2 such that

• F2H = H ′F1,

• HG1 = G2H ′,

• and H ′ commutes with counities:

G1 H F2

=

F1

ε1

H ′ =

G1 H F2

=

G2

H ′

ε2
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The third condition (in the presence of the first two conditions) is equivalent to the following
symmetric condition of commutation with unities:

η1

H

G1

=

F1 H ′ G2
=

H
η2

F2

=

F1 H ′ G2
(2.1)

To establish this, we apply an (η − ε) expansion to the F1 wire on the right. Then, pushing
η1 upwards on both sides, we are left to show:

G1 H
η2

F2

id

F1

ε1

H ′ G2
=

G1 H

id

H ′ G2

Indeed, we get from the left hand side to the right hand side by successively applying the
commutation of H ′ with counities, pushing id up, and then reducing the rest of the diagram
to a G2 wire thanks to (ε− η).

So far, we have two notions of morphisms between adjunctions: the notion just defined,
and for adjunctions between the same categories: in the latter case a morphism is a natural
transformation σ : F ′ → F . But it is more symmetric to look at it as the pair formed by σ
and its conjugate τ , where σ and τ are mutually defined via the following equation:
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G F ′

σ

F

ε
=

G F ′

τ

G′

ε′

There is a more general notion of morphism between two adjunctions, that has the
previous ones as instances. The general definition takes as morphism from F1 3 G1 to
F2 3 G2 the quadruples of the form (H, H ′,σ : F2H → H ′F1, τ : HG1 → G2H ′) such that
the following commutation property hoids with respect to counities:

G1 H F2

σ

F1

ε1

H ′ =

G1 H F2

τ

G2

H ′

ε2

This equality is equivalent to a dual commutation property with respect to unities (obtained
by composing the two diagrams above with η1 on the left and η2 on the right. The conju-
gation instance corresponds to the case where H = H ′ = id , and that of morphism in the
category Adj to the case where σ = τ = id .

2.3 Adjunctions and limits

We devote this section to a graphical proof of Proposition 1.5.6. On the way, we
shall also give a graphical solution to Exercise 1.5.9. We are facing a difficulty:
given a diagram D : I → C, how should we draw a cone of domain ∆C to D? The
domain is a functor from 1 to CI, hence we have no choice but to consider D also
as a functor from 1 to CI. But when we shall deal with the diagram FD (with
F : C → C′, we shall want D to be now a functor from I to C. Under this guise,
we denote it as D.

Note that in any CCC, there is a bijective correspondence betwen the morphisms
from A to B and the points of BA, cf. Exercise 1.3.5. We shall use here underlining
as an explicit coercion from the latter to the former.

2.3.1 Coercions in string diagrams

Graphically, we shall introduce boxes of the following kind:
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D1

I C

1
D1

CI

µ

D2

I C

D2

where the contents of the box is a string diagram living in Cat[1,CI] while the whole
diagram, once coerced, lives in Cat[I,C], and can be inserted in a larger diagram
(e.g. by placing a wire F : C → C′ on the right.

We have the following law of commutation between coercion and composition:

D

D

µ

D′

µ′

D′′

D′′ =

D

D

µ

D′

D′

D′

µ′

D′′

D′′ (2.2)

2.3.2 The laws of explicit equality

We pause here to resume our discussion of explicit equality nodes in string diagrams.
We axiomatize them through the following equalities.
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H

=

F G

=

H =

H

(2.3)

F G H

=

GF

=

HGF =

F G H

=

HG

=

HGF

HGF

=

GF

=

F G H =

HGF

=

HG

=

F G H
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GF H

=

G

=

F HG =

GF H

=

=

F HG (2.4)

F HG

=

G

=

GF H =

F HG

=

=

GF H (2.5)

The associativity equation allows us to define unambiguously equality nodes of
arbitrary arities:

Fn . . . F1

=

F1

. . .

Fi

. . .

Fn
and

F1
. . .

Fi
. . .

Fn

=

Fn . . . F1

And finally, when Fm . . . F1 = Gn . . . G1 (= H), we shall write
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F1
. . .

Fi
. . .

Fm

=

G1

. . .

Gj

. . .

Gn

as an abbreviation of

F1
. . .

Fi
. . .

Fm

=

H

=

G1

. . .

Gj

. . .

Gn

(2.6)
Our set of equations for the equality nodes has the following completeness, or

coherence property: any connected string diagram with m input wires and n input
wires that is written only with equality nodes is provably equal to to a single wire
when m = n = 1, and to some diagram of the form (2.6) otherwise. We shall call
such a diagram an equality normal form. In the proof, we tacitly assume that the
notation (2.6) just means the wire H when m = n = 1. The proof is by induction
on the size of the diagram. Let us push upwards one of the top equality nodes in
the diagram. Applying induction to the rest, we are in one of the following four
situations:

1.
F ′

1 F ′
2

=
F1

. . . Fi . . .
Fm

=

H

=

G1

. . .

Gj

. . .

Gn
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In this case, there is nothing to do, since the whole diagram is also in equality
normal form.

2. F ′

=
F1

. . . Fi−1 Fi . . .
Fm

=

H

=

G1

. . .

Gj

. . .

Gn

In this case, we conclude using Equation (2.3). Note that if m = 2 and n = 1,
we get a single wire as the result.

3. The chosen top operator is as in case (2), but i = 1. Then we conclude using
Equation (2.4):

F1F0 F2
. . .

Fm

=

=

F1 H

=

HF1

=

F0 G1

. . .

Gn
=

F1F0 F2
. . .

Fm

=

H

=

=

HF1

=

F0 G1

. . .

Gn
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(whrere H = Fn . . . F2).

4. The chosen top operator is as in case (2), but i − 1 = m. We apply Equation
(2.5).

But this is not yet enough. We also need a rule that allows us to remove an equal-
ity node when it relates a sequence F1, . . . , Fm to the identical sequence F1, . . . , Fm.
So we also require the converse of Equation 2.3:

F G

=

F G =

F G

(2.7)

By associativity and by induction, this equality extends easily to sequences of func-
tors:

F1
. . .

Fi
. . .

Fm

=

F1

. . .

Fi

. . .

Fm
=

. . . . . .

F1 Fi Fm

(2.8)

2.3.3 Coercions in action

We can now go ahead with the subject of this section. The action of the functor
F I is described on objects by the equality F ID = FD and thus graphically by the
following operators:



50 CHAPTER 2. STRING DIAGRAMS

F ID

=

D F and

D F

=

F ID

and on morphisms by the following equation:

F ID

D

µ F I

D′

F ID′ =

F ID

=

D

D

µ F

D′

D′

=

F ID′ (2.9)

Solution of Exercise 1.5.9. We have to prove that if F 3 G (with F : C → C′),
and if I is a graph, then F I 3 GI.

We define ηI as follows:
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D

D ηI

F I GI

GIF ID =

D
η

F G

=

GIF ID

We define εI similarly:

F IGID′

GI F I

D′ εI

D′ =

F IGID′

=

G F

D′
ε

We show, say, that Equation (η − ε) holds for ηI and εI. We have to prove
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F ID

ηI
F I

D GI

F I
εI

F ID =

F ID

=

D F

=

F ID

Using equation (2.2), we can decompose the left hand side as the vertical compostion
of

F ID

ηI

D F I

F I GI

F IGIF ID

and
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F IGIF ID

GI F I

D F I εI

F ID

Applying equation (2.9) and then unfolding the definition of ηI in the top diagram,
we get

F ID

=

η

D F

F G

=

F IGIF ID

Applying the definition of εI, the bottom diagram becomes
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F IGIF ID

=

F ID G F

=

D F

=

F ID

ε

and we conclude using Equations 2.8 and (η − ε). !

We now turn to limit preservation. We first state two equations that are satisfied
by the functor ∆:

GI∆′ = ∆G and ∆µA′ = µ∆′A′

We refer to the discussion following Proposition 1.5.6 for a proof of the first equality
(on objects). For the second equality, we have (on objects), for every i : I:

∆µA′
i
= µA′ = µ∆′A′i = (µ∆′A′)i

We also observe that we have ∆GA′ = G∆′A′ as a special case of the second equality;
it can also be obtained from the first one and from the equality F ID = FD, as
follows:

∆GA′ = GI∆′A′ = G∆′A′

Somehow, the equation ∆µA′ = µ∆′A′ says that µ survives safely the intermediate
passage through GI (cf. the definition of ηI and εI above). Graphically, this equation
is expressed as follows:
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∆GA′

G

A′ µ ∆

G′

∆G′A′ =

∆GA′

=

G

∆′A′ µ

G′

=

∆G′A′ (2.10)

Proof of Proposition 1.5.6.

Let F 3 G be an adjunction between two categories C and C′, let D′ : I → C′

be a diagram that has a limiting cone κ′ : ∆′C → D′. We want to show that the
following cone κ from GC ′ to GD′ (which we must write here a GID′, since D′ is
treated as going from 1 to CI, just as ∆′C ′), is a limiting cone.

C ′ G ∆

=

∆′

κ′

D′ GI

(κ is a cone by construction, since a string diagram denotes a natural transforma-
tion).

Consider next an arbitrary cone λ : ∆C → GID′. We look for a mediating arrow
from C to GC ′. For this we use λ to construct a cone λ′ over D′, as follows:
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C F ∆′

=

∆

λ F I

GI

D′
εI

and then we get our candidate mediating arrow ζ(λ) as follows:

C
η

F

ζ(λ′)

C ′ G

We have to check that κ ◦ ∆ζ(λ) = λ. The left hand side of this equality is the
following diagram:

C
η

∆

F G

ζ(λ′) =

C ′ ∆′

κ′

D′ GI

where we have isolated a subregion which can be replaced by λ′, since ζ ′(λ′) is the
mediating arrow for λ′. After replacement, the diagram is as follows:
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C ∆

η

G

=

F
∆′

=

∆

λ F I

GI

D′
εI

GI

We shall prove the following equality:

η
∆

G

=

F
∆′

=

∆ F I GI =

ηI

∆

F I GI (2.11)

from which we will be able to conclude, since by using (2.11), followed by the equality
(ε− η) (applied to F I 3 GI), we get λ, as required.

We prove (2.11) pointwise, by placing either ot the two sides of the equality in
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the following context (a context E is a string diagram with a hole, which we denote
by a dashed box with empty content):

∆C

∆

C

∆ F I GI

H

where H = GIF I∆C = ∆GFC. In this context, we can replace ηI with its definition
(performing an = expansion of the H wire) yielding

∆C
η

F G

=

H

On the other hand, writing the left hand side of Equation (2.11) as
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η
∆

F G

=

K

=

∆ F I GI

where K = H, it is apparent that we arrive at the same result, applying Equation
(2.10) and Equation (2.2).

It remains to show the uniqueness of the mediating arrow, i.e., that if h : C →
GC ′ is such that

C ∆

h

G

C ′ =

∆′

κ′

D′ GI =

C ∆

λ

D′ GI

then h = ζ(λ). We shall prove:
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C F

h

G

C ′
ε

=

C F

ζ(λ′)

C ′

from which h = ζ(λ) will follow by (ε − η). To prove this equality, it suffices to
prove that the left hand side is mediating from λ′ to κ′ (since κ′ is a limiting cone
by assumption). Now, replacing λ in the definition of λ′, we get the following string
diagram for λ′:

C F ∆′

h =

G ∆

C ′ = F I

∆′ GI

κ′ εI

D′

and we are done thanks to the following equality:
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G F ∆′

=

∆

= F I

GI

∆′
εI

=

G F

∆′

ε

which is proved in the same way as Equation (2.11).

2.4 Equivalences of categories

In this section, we provide proofs for the two propositions stated in Section 1.6.
Proof of Proposition 1.6.1. We recall that we are given an adjunction F 3 G.
We have to prove that: (1) G is faithful if and only if every component of the counit
is an epi, (2) G is full if and only if every component of the counit is a split mono,
and (3) G is full and faithful if and only if the counit is iso. (1) Let us suppose first
that each component of ε is epi, and suppose that Gf ′ = Gg′ (for f ′, g′ : A′ → B′).
Then we can replace Gf ′ with Gg′ in

A′ G F

f ′

B′
ε

Pushing up ε, we get thus

A′ G F

ε

f ′

B′ =

A′ G F

ε

g′

B′
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and we conclude f ′ = g′ from the assumption. Suppose conversely that G is faithful
and that we have f ′εA′ = g′εA′ . Then by plugging η on top of both sides of the
equality, and applying (ε− η), we get Gf ′ = Gg′, and hence f ′ = g′.

(2) Suppose first that G is full. We are looking for a family of morphisms χA′ :
A′ → FGA′ such that χA′ ◦ εA′ = idFGA′ . Since G is full, we can first look for a
morphism from GA′ to GFGA′, and one tempting such morphism is ηGA′ . We thus
take for χA′ a morphism such that

A′

χA′ G

A′ G F =

η

A′ G

F G

We have to prove:

A′ G F

ε

χA′

A′ G F =

A′ G F

This is achieved by moving ε down (and to the right), so as to be able to highlight
GχA′ :

A′ G F

χA′

A′ G F

ε

from where the conclusion is easy, replacing GχA′ with its definition and applying
(η − ε).
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Conversely, suppose that we have a family of morphisms χA′ , each left inverse for
εA′ . Let f : GA′ → GB′. We are looking for a morphism from A′ to B′, depending
on f and whose definition makes use of χA′ . A natural candidate is

A′

χA′

A′ G F

f

G

B′
ε

We have tho check that, adding a G wire on the right, we recover f . We in fact add
an (ε− η) expansion of G so as to prepare the ground for the elimination of χA′ :

A′ G
η

F

ε

χA′

A′ G F

f

G

B′
ε

G

Now we apply our assumption and replace the region by three wires:
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A′ G
η

F

f

G

B′
ε

G

and we get f as wished, after pushing f up and applying (ε− η).

(3) The last part of the statement is an obvious consequence of the first two parts,
keeping in mind that a natural transformation is an iso if and only if all its compo-
nents are iso (cf. Exercise 1.3.9). !

Proof of Proposition 1.6.2. We recall that, given a functor F : C → C′, we
have to prove that the following properties are equivalent: (1) there exists a functor
G : C′ → C and two natural equivalences ι : GF → idC and ι′ : FG →C′ , (2)
F is part of an adjunction F 3 G in which the unit and the counit are natural
isomorphisms, and (3) F is full and faithful and ∀C ′ : C′ ∃C : C (C ′ ∼= FC).

Obviously, (2) implies (1). We show that (1) implies (3). For C, take GC ′.
To prove the faithfulness of G in Proposition 1.6.1, we used only the existence of
a natural transformation ε : FG → id whose components are epi. We might thus
as well have used the transformation ι′. So we note that (1) implies that G is
faithful, a fact that we shall exploit to prove the fullness of F . Using likewise that
all components af ι−1 are (a fortiori) mono, we get that also F is faithful. We now
prove that F is full,. Let f ′ : FA → FB. Following the steps taken in the proof of
Proposition 1.6.1, a natural candidate for a preimage f is
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A

ι−1

F

f ′ G

F

B′
ι

We cannot proceed directly to prove Ff = f ′. But we know that G is faithful, so it
suffices to prove GFf = Gf ′. Making once more use of the inverse isomorphisms ι
and ι′, we can display GFf as

A

ι−1

F G

F ι

f ′ G

F ι−1

B′
ι

F G

We can then rearrange the picture so as to make two new cancellations of inverses
visible:
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A F G

ι

ι−1

F

f ′ G

F

ι

ι−1

B′ F G

and we rare done, i.e. after reducing the top and bottom inverse isomorphisms, we
get Gf ′ as required.

We prove finally that (3) implies (2). We set GC ′ = C, and we call εC′ the iso
given in the statement. Let f : FC → C ′. We have to find g : C → GC ′ such that
εC′ ◦Fg = f , i.e., such that Fg = ε−1

C′ ◦f . Such an arrow exists and is unique since F
is full and faithful. We have thus an adjunction. The fact that F is full and faithful
then also implies that all components of the unit of this adjunction are iso. This
completes the proof.

(Remark: one may be curious of a direct proof of (1)⇒(2): one can take ι′ as ε,
but then an attempt to define η directly as a string diagram in terms of ι, ι′ and
their inverses does not lead us anywhere; one has instead to establish first that F
is full and faithful, and from there we can define ηC as the unique preimage of ι′−1

FC ;
thus, the above organisation of the proof, that we borrowed from [36], is the right
one.) !

2.5 Monads

We recall from Section 1.7 that, given an adjunction F 3 G between two categories
C and C′, we can focus on C and consider the endofunctor T = GF : C → C. We
then read the unit as η : id → T , and, by placing an F on the left and a G on the
right, we get a natural transformation µ : TT → T :
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G F

F ε G

We also recall that a monad is given by a category C, an endofunctor T and two
natural transfomations η and µ:

η

T

T T

µ

T

satisfying three equations, which we give here in graphical form:

EQUATION µ − µ:

T T T

µ

T

µ

T =

T T T

µ

T

µ

T

EQUATION µ − η:

T
η

T

µ T

T =
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EQUATION η − µ:

η
T

T

µ T

T =

Let us check that the material we got above from an adjunction indeed satisfies
the equation. The left and right members of equation (µ − µ) are, respectively:

G F G F

ε G

F ε

and

G F G F

F ε

ε G

and hence are equal by Godement’s rule.

The left hand side of (µ − η) is

G
η

F F

ε

F

which reduces by (ε − η) to two wires F and G, that is, to a wire T , as required.
The verification of (µ − η) is symmetric.

2.5.1 Algebras over a monad

Given a monad (T, η, µ) over a category C, an algebra over (T, η, µ) is a pair (A,α)
of an object of C and a morphism α : TA → A that satisfies two axioms relating α
with η and µ, respectively.

EQUATION α− η:
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A
η

T

α A

A =

EQUATION α− µ:

A T T

µ

T

α

A =

A T T

α

A

α

A

T -algebras are organised into a category CT , where CT [(A,α), (B,β)] is the set
of morphisms f ∈ C[A,B] preserving the algebra structure, which amounts to the
following equality:

A T

α

A

f

B =

A T

f

B

β

B

We now construct an adjunction F T 3 GT between C and CT . We define:

• F T (A) = (TA, µA) , F T (f) = Tf ,

• GT (A,α) = A , GT (f) = f , i.e., GT is the forgetful functor (in Chapter 4,
we shall denote it with U , as usual).
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It is clear that GF = T and that G is a functor. We check that F T is well-defined.
The left and right hand sides of the equation F T (f) ◦ µA = µB ◦ T (F T (f)) are,
respectively

A T T

µ

f

B T =

A T T

f

µ

B T

and we conclude using Godement’s rule.

We next define ζ : CT [F T A, (B,α)] → C[A,B] and ξ : C[A,B] → CT [F T A, (B,α)].
Let g : (TA, µA) → (B,α) and f : A → B. We define ζ(g) and ξ(f) as follows:

A
η

T

g

B and

A T

f

B

α

B

We show that ξ(f) is indeed a morphism from (TA, µA) to (B,α), i.e. that ξ(f) ◦
µA = α ◦ T (ξ(f)). The diagram for the left hand side is
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A T T

f

B µ

T

α

B

and by applying (α− µ) as highlighted, we get α ◦ T (ξ(f)).
Next we check that ζ and ξ are inverse. Drawing ζ(ξ(f)) and pushing f , the

rest of the diagram shrinks to a wire B by applying (α − η), and thus ζ(ξ(f)) =
f . Conversely, we transform ξ(ζ(g)) as follows (using the fact g is a T -algebra
morphism):

A
η

T

T

g

B

α

B =

A T

η

µ

T

g

B

We get g as required by transforming the (η − µ) redex.
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2.5.2 The Kleisli construction

We now provide another way to associate an adjunction with a monad. The Kleisli
category CT associated with a monad (T, η, µ) on a category C has the same objects
as C, while CT [A,B] = C[A,TB]. The identity morphism at A is ηA : A → TA,
and the compostion of φ : A → TB and ψ : B → TC is defined as follows:

A

φ

B

ψ T

T

µ

C T

We construct an ajunction FT 3 GT between C and CT as follows:

• FT (A) = A and GT (A) = TA,

• FT (f) and GT (φ) are as follows, respectively:

A

f η

B T

A T

φ

T

µ

B T

We check that FT and GT preserve the composition of morphisms. The compo-
sition of FT (f) and FT (g) in CT is
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A

f η

B

g η T

T

µ

C T

from where we get FT (g◦f) after applying (η−µ). As for GT , the proof is as follows,
using rule (µ − µ):

A T

φ

B

ψ T
T

µ

T

µ

C T =

A T

φ

T

B µ

ψ T

T

µ

C T
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We now check that GT FT = T . This is clear on objects. On morphisms, we get
GT (FT f) = Tf by applying (η − µ) as indicated below:

A T

f η

T

µ

B T

We have an ajunction situation by construction, since

CT [FT A,B] = CT [A,B] = C[A,TB] = C[A,GT B]

2.5.3 Initial and final adjunctions associated to a monad*

We show that the adjunctions constructed in the previous two subsections are “canonical”
in the sense that the first one is final and the second one is initial in the category of all
adjunctions that induce a given monad (T, η, µ) on a category C. We first define this category
as the subcategory of Adj (cf. subsection 2.2.1) whose objects are the adjunctions inducing
T , and whose morphisms are of the form (id , K). Note that all adjunctions in this category
are between C (fixed) and some C′, and that they all have the same unit η. Note also that
in the definition of morphism, the condition of commutation with units (and hence with
counits) is satisfied for free. Indeed both hand sides of Equation (2.1) are equal to η, since

F2

= G2

F1 K =

T

=

G1

F1 =

K G2

So, all we have to do now is to prove that, given any adjunction F 3 G between C and
C′ that induces (T, η, µ):

• there exists a unique functor KT : C′ → CT such that GT KT = G and KT F = FT ,
and

• there exists a unique functor KT : CT → C′ such that KT FT = F and GKT = GT ,
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We first show the uniqueness of KT . The equality GT KT = G says that, for all A′, KT A′

has GA′ as carrier and that KT acts as G on arrows. The equality KT F = FT imposes
KT (FA) = (GFA, µA) for all A, hence in particular KT (FGA′) = (GFGA′, µGA′). Further,
KT (εA′) = GεA′ has to be a morphism from K(FGA′) to KA′, i.e., the following string
diagrams have to be equal (remember that µA = G(εFA), where ε is the counit of the
adjunction F 3 G):

A′ G F G F G

ε

KA′

A′ G =

G F G F

A′ ε G

ε

Now we can plug ηGA′ on the top on both sides, which leaves us after reduction with a
(uniquely determined) definition of KT A′:

G F

A′

ε
G

It remains to show that KT “exists”, i.e., is well-defined and satisfies the required properties.
We check that, for any f ′ : A′ → B′, KT f ′ is a morphism from GεA′ to GεB′ . Indeed, both
KT f ′ ◦ GεA′ and GεB′ ◦ T (KT f ′) read as

A′ G F

f ′ ε G

B′

We have GT KT = G by construction, and KT F = FT is also easy:

• KT FA = GεFA = µA (since F 3 G induces T );

• KT Ff = GFf = Tf = FT f .

We now synthesize KT . The equality KT FT = F imposes KT A = FA. The equality
GKT = GT imposes GKTφ = GT (φ). Now, by (η − ε) expansion, KTφ can be represented
as
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A
η

F

F

KTφ G

B F

ε

By this trick we can use our contextual information about KT (φ), namely that GKTφ =
GT (φ), and replace the highlighted region with

A F

φ G

G

B F

ε

We pause here a second to note that both diagrams – the previous one, and the region above
– indeed have the same interface, namely

A F G

B F G

It is a good discipline to make this kind of type-checking often when reasoning with string
diagrams.

Coming back to our synthesis, we notice that after replacement it is still possible to
undo the (η − ε) expansion, since the former and the new region have the same shape on
the right: just two wires G and F . And this leads us to the following (uniquely determined)
value of KTφ:
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A F

φ

G

B F

ε

The preservation of composition is a simple game of naturality, as illustrated below:

A F

φ

B

ψ F

G G

ε

ε

C F =

A F

φ

B G

ε

ψ F

G

ε

C F

2.6 Presheaves and string diagrams

In this section, we revisit Yoneda lemma and the result that every presheaf is a
colimit of representable presheaves, using the language of string diagrams. Let
P,Q : Cop → Set be presheaves, and consider a natural transformation µ : P → Q.
We would like to be able to draw diagrams not only for µC , but also for µC(p) for
some p ∈ PC. This is possible if we consider p as a morphism from 1 (the terminal
object of Set) to PC:
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1

p

P

µ

C Q

This diagram involves three categories: the terminal category 1 on the left, the
category Cop in the middle, and the category Set on the right.

When P = C[ , B], then p is a morphism from C to B. But since it is here
viewed as a morphism from 1 to C[ , B]C, we shall use an explicit coercion and
signal it with an overlining. We next give a diagrammatic definition of the left and
right homfunctors, respectively.

EQUATION Homleft :

1

id

B

fop

A C[ , B] =

1

f

A C[ , B]

EQUATION Homright :
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1

id

C[ , A]

C[ , f ]

A C[ , B] =

1

f

A C[ , B]

These two equations define the action of C[f,B] and of C[A, f ] on the identity
morphism, but this is enough to derive the full definition of both homfunctors. We
get

1

g

B

fop

A C[ , C] =

1

g ◦ f

A C[ , C]

by applying Equation (Homleft) on both sides, and then the equality

C

gop

B

fop

A =

C

(g ◦ f)op

A

In our description of the left homfunctors, the reversal of f , g witnesses that
these functors are contravariant.
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The full definition of the right homfunctor is the following:

1

g

C[ , A]

C[ , f ]

C C[ , B] =

1

f ◦ g

C C[ , B]

and we derive it by first transforming the left hand side thanks to equation Homleft ,
as follows:

1

id

C[ , A]

A C[ , f ]

gop

C C[ , B]

and then applying Equation (Homright) to the highlighted region, which leaves us
with the equation defining the full action of the left homfunctor, that we have already
established.

We now give a graphical proof of Yoneda lemma. Let P : Cop → Set and
p ∈ PC. We define iC(p) : SetC

op
[C[ , C], P ] as follows:
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1

f

B C[ , C]

iC(p)B

B P =

1

p

C

fop

B P

The naturality of iC(p) is expressed as:

1

f

B

gop C[ , C]

B′

iC(p)B′

B P =

1

f

B C[ , C]

iC(p)B

B

gop

B′ P

in which the highlighted region is equal to f ◦ g by the definition of C[g,C] (cf.
above), from which the naturality equality easily follows, by unfolding the definition
of iC(p). Now let µ : SetC

op
[C[ , C], P ]. We define jC(µ) as
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1

id

C[ , C]

µ

C P

We check that iC and jC are inverse bijections. Pushing fop up and µ down,
iC(jC(µ))B(f) is

1

id

C

fop C[ , C]

µ

B P

which by Homleft is µB(f). Conversely, jC(iC(p)) is
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1

p

C

idop

C P

which is p.

We prove now graphically that every presheaf is a colimit of representable pre-
sheaves.

Proof of Proposition 1.4.3. Let P : Cop . We consider the diagram formed by
the C[ , C]’s indexed over all (C, p) where p ∈ PC. In other words, we have a copy
of C[ , C] for each p. The morphisms of the diagram are all the C[ , f ]’s between a
copy of C[ , C1] at p1 and a copy of C[ , C2] at p2 such that p1 = Pfp2. We show
that the family of the iC(p)’s provides us with a cocone to P . First, for each (C, p),
we have indeed iC(p) : C[ , C] → P . We have to show that, for all C1, C2, f, p2, the
following triangle commutes:

P

C[ , C1]

iC1(Pfp2)

C[ ,f ]
C[ , C2]

iC2 (p2)

i.e., that, for all C, g (and turning to string diagrams):
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1

g

C C[ , C1]

C[ , f ]

C[ , C2]
iC2(p2)

C P =

1

p2

C2

fop

C1

gop

C P

We have highlighted a region on the right to ease the parsing of (iC1(Pfp2))C(g).
The region on the left can be transformed to f ◦ g, and the conclusion follows by
definition of iC2(p2) since (f ◦ q)op = gop ◦ fop.

Consider now an arbitrary cone formed by a family of λ(C,p)’s with codomain
Q. We look for ν such that ν ◦ iC(p) = λ(C,p) for all (C, p). In particular, we have
(λ(C,p))C(id) = νC((iC(p))C(id):

1

id

C[ , C]

λ(C,p)

C Q =

1

id

C C[ , C]

iC(p)

C P

νC

C Q =

1

p

C P

νC

C Q

where the right hand side provides us with the (uniquely determined) definition of
ν.
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We check that ν is natural, namely that we have, for all u, p′:

1

p′

C ′

uop P

C

νC

C Q =

1

p′

C ′ P

νC′

C ′

uop

C Q (2.12)

We set Pup′ = p and we apply the definition of ν, so that the equality to be proved
is:

1

id

C[ , C]

λ(C,p)

C Q =

1

id

C ′ C[ , C ′]

uop λ(C′,p′)

C Q

Since λ is a cocone, we can replace λ(C,p) with

C[ , C]

C[ , u]

C[ , C ′]

λ(C′,p′)

Q
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and we conclude using Equations (Homleft) and (Homright).
We are left to check that ν is a cocone morphism, i.e., that the following triangle

commutes, for all (C ′, p′):

Q

P

ν

C[ , C ′]

λ(C′,p′)

iC′ (p′)

The drawing for ν ◦ iC′(p′) at C, u is the left hand side of Equality (2.12), which we
have to match with

1

u

C[ , C ′]

λ(C′,p′)

C Q

which can be transformed into the right hand side of Equality (2.12) by applying
Equation (Homleft) to u. This completes the proof. !



Chapter 3

Kan extensions

In this chapter, we introduce left and right Kan extensions, that allow us to capture
in a unified framework the notions of limits, adjunctions, as well as the Yoneda
embedding. In Section 3.1, we define Kan extensions and we show how to construct
them in terms of limits and colimits. In Section 3.2, we introduce dinatural trans-
formations, ends and coends, which play a role similar to natural transformations,
limits and colimits for contravariant/covariant functors and we recast the construc-
tions of Section 3.1 in these terms. In Section 3.3, we discuss special cases.

3.1 Kan extensions: definitions and constructions

Recall that in the definition of adjunction, knowing, say, a functor G : C′ → C, it
is useful to give a name to the pair (FA, ηA : A → GFA): it is called the universal
pair from A to G (cf. Definition 1.5.4). Likewise, when defining a right adjoint to
a functor F : C → C′, the pair (GA′, εA′ : FGA′ → A′) is called couniversal from
F to A′. This terminology becomes useful when the universal pair does not exist
for every A. Then G may have no left adjoint, but still a universal pair may exist
for certain objects A. Or it may just be that the focus of the discussion concerns a
particular object A.

Let K : M → C be a functor, and let A be a category. We consider the
following problem: does the functor AK : AC → AM have left and right adjoints?
The corresponding universal and couniversal problems are the following.

• A right Kan extension of T : M → A along K is given by a functor RanK(T ) :
C → A and a natural transformation εT : RanK(T )K → T such that (RanK(T ),
εT ) is couniversal from AK to T .

• A left Kan extension of T : M → A along K is given by a functor LanK(T ) :
C → A and a natural transformation ηT : T → LanK(T )K such that (LanK(T ),
ηT ) is universal from T to AK .

The following diagrams illustrate the situation:

87
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M

T

K C

RanK(T )

ε

A

M

T

K C

LanK(T )

η

A

We will show that provided A has enough limits, the right Kan extension exists,
and is defined by the following formula:

RanK TC = lim(Tπ) εM = λidKM

where π : (C ↓ K) → M is the projection functor, where C ↓ K is the category
whose objects are the pairs (M,f : C → KM), with

(C ↓ K)[(M,f), (M ′, g)] = {h : M → M ′ | g = (Kh)f}

and where (lim(Tπ),λ) is the limit cone. In order to understand the definition of
ε, we note that for C = KM the diagram Tπ is indexed by the morphisms from
KM to KM ′, among which is idKM . The idea underlying the indexation is that of
approaching C by objects of M , so as to be able to “extend” T from M to C. This
is only an image, as we do not seek to have T = (RanKT )K, in general (but see
below for an important special case).

We first observe that the universal property of a limit allows us to define the
action of RanKT on morphisms. Let g : C → C ′. If λ and λ′ are the cones
respectively associated with the limits RanK TC and RanK TC ′, we build a new cone
λ′′ by composition with g, i.e., λ′′f = λfg, and we define RanKTg as the mediating
arrow from λ′′ to λ′, so that we have

λ′f ◦ RanKTg = λfg for all f : C ′ → KM (3.1)

In particular, for C ′ = KM and f = id , we obtain

εM ◦ RanKTg = λg (3.2)

Let µ : SK → T . We seek a morphism µ̂ : S → RanKT such that ε ◦ µ̂K = µ:
K S

µ

T =

K S

µ̂

ε

T



3.1. KAN EXTENSIONS: DEFINITIONS AND CONSTRUCTIONS 89

In order to synthesize µ̂C , it is enough to find a cone from SC to the TM ’s, indexed
by the morphisms f : C → KM . We take µM ◦ Sf as component at f . This indeed
defines a cone, i.e., we have Th ◦ (µM ◦ (Sf)) = µM ′ ◦S((Kh)f) for all h : M → M ′,
by naturality of µ. We then define µ̂C as the mediating arrow associated with this
cone. We have by construction λf ◦ µ̂C = µM ◦ Sf . In particular, for C = KM
and f = id , we have εM ◦ µ̂KM = µM , i.e., ε ◦ µ̂K = µ. We are left to show that
µ̂ is unique. Let µ′ : S → RanKT be such that ε ◦ µ′K = µ. It is enough to prove
that µ′

C satisfies the characteristic property of µ̂C , that is, λf ◦ µ′
C = µM ◦ Sf , or

equivalently, using Equation 3.2:

εM ◦ RanKTf ◦ µ′
C = µM ◦ Sf

This follows from the naturality of µ′ and from the assumption on µ′.

Note that we did not need any property of C, we only had to assume the existence
of some limits in A.

We show now that when K is full and faithful, ε is iso, and hence RanK is full
and faithful. For all g : KM → KM ′, we have a unique g′ : M → M ′ such that
g = Kg′. We then build a cone of vertex TM by taking Tg′ as component at g. We
use the faithfulness of K to prove that this is indeed a cone. We now show that the
cone is also limiting. It is easy to check that the property that K is full and faithful
is equivalent to the property that (M, id) is initial in KM ↓ K, for all M . Then the
claim follows from the following general result.

Proposition 3.1.1 If F : D → C is a diagram and if D has an initial object I,
then FI is a limit of F , together with the cone formed by the family of the morphisms
F (f) where the f ’s are the unique morphisms of source I to the objects of D.

Proof. Left to the reader. !

We next note that by construction the limiting cone of vertex TM has the
identity as component at id , and since TM is RanK T (KM) up to iso (all limits of
a given diagram are isomorphic), we have proved that ε is iso. We can even choose
(as we just did) RanKT in such a way that RanKT ◦ K = T and ε = id .

Left Kan extensions are obtained similarly, replacing limits by colimits:

LanK TC = colim (Tπ) ηM = λidKM

where now π the projection functor from the category K ↓ C whose objects are the
pairs (M,f : KM → C), and where (colim (Tπ),λ) is the colimit cone.

If K is full and faithful, we also have that η is iso, and hence that LanK is full
and faithful.
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3.2 Dinatural transformations

We pause here to define a notion similar to that of natural transformation, which
we shall put to use to give alternative, handier formulas for manipulating Kan ex-
tensions.

There are many families of morphisms indexed by the objects of a category that
do not form a natural transformation becase of a conflit between covariance and
contravariance. For example, in a CCC, we would like to say that eval : BA ×
A → B is “natural” in A. But A appears twice in the type of eval , once in a
contravariant position and once in a covariant position. We shall develop several
notions, summarized by the following correspondence table:

dinatural transformation natural transformation
wedge cone
end, coend limit, colimit

Let S, T : Cop × C → C′. A dinatural transformation is a family of morphisms
αC indexed by the objects of C such that for all C,C ′, f : C → C ′ we have:

T (id , f) ◦ αC ◦ S(f, id) = T (f, id) ◦ αC′ ◦ S(id , f)

This commuting diagram is called Mac Lane’s hexagon:

S(C,C)
αC

S(f,C)

T (C,C)

T (C,f)

S(C ′, C) T (C,C ′)

S(C ′, C ′) αC′

S(C′,f)

T (C ′, C ′)

T (f,C′)

Natural transformations can be seen as a special case of dinatural transforma-
tions: natural transformations between two functors F,G : Cop → C′ are in one-
to-one correspondence with the dinatural transformations between λ(x, y).Fx and
λ(x, y).Gx.

But there is a serious limitation of this parallel development: dinatural trans-
formations do not compose vertically (try!). However, the composition of a natural
transformation and a dinatural transformation (or in the reverse order) is easily seen
to be a dinatural transformation, i.e., say, given µ : F → G and ν : λ(x, y).Gx → S,
then ν ◦ µ (defined pointwise) is a dinatural transformation from λ(x, y).Fx to S.
These compositions will be enough for our purposes.

Next, we replace diagrams F : D → C by functors F : Dop × D → C. The
constant functors ∆C are now defined from : Dop×D to C. A wedge from C to F is a
dinatural transformation from ∆C to F . An end of F is a pair (C,λ : ∆C → F ) that
is couniversal from ∆ to F . Note that the compositions involved in this definition are
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well-defined, since we can write ∆C as λ(x, y).∆Cx. We use the notation
∫
d F (d, d)

for C.
A coend is defined similarly as a universal wedge from F to ∆, whose vertex is

denoted by
∫ d F (d, d).

As an illustration, we prove the following formula:

(C′C)[U, V ] =
∫

c
C′[Uc, V c] (3.3)

for arbitrary U, V : C → C′. A wedge from X to C′[U , V ] is a family of fonctions
λC : X → C′[UC, V C] such that

C′[UC1, V f ] ◦ λC1 = C′[Uf, V C2] ◦ λC2

for all C1, C2, f : C1 → C2. This amounts to say that for all x ∈ X the family λC(x)
indexed by the objects of C defines a natural transformation from F to G: we have
thus defined a fonction from X dans (C′C)[U, V ]. The limiting wedge is defined by
taking λµ.µC as component at C.

Going back to Kan extensios, by grouping the copies of objects TM , we obtain
the following equivalent formulations for RanKT and LanKT in terms of ends and
of coends:

RanKTC =
∫

M
TMC[C,KM ] LanKTC =

∫ M

C[KM,C] · Tm

where TMC[C,KM ] (resp. C[KM,C]·TM) denotes the product (resp. the coproduct)
of as many copies of TM as there are morphisms in C[C,KM ] (resp. C[KM,C]).

3.3 Kan extensions are everywhere

We retrieve a number of fundamental notions as instantiations of that of Kan ex-
tension.

3.3.1 Limits

If C is the terminal category, then C ↓ K reduces to M, and the right (respectively
left) Kan extension boils dow to the limit (respectively colimit) of T .

3.3.2 Adjunctions

If M = A and T = id , it is tempting to see there the notion of adjunction. But
the situation is a bit more complex. In order to make the link precise, we need a
definition.

Definition 3.3.1 Let F : A → A′. We say that F preserves the right Kan extension
(RanKT, ε) if (FRanKT, F ε) is a right Kan extension of FT along K.
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Proposition 3.3.2 The following properties are equivalent, for K : A → C and
R : C → A:

1. R 3 K, with ε as counit.

2. (R, ε) is a right Kan extension of id along K that is preserved by all functors.

3. (R, ε) is a right Kan extension of id along K that is preserved by K.

Proof. (1) ⇒ (2). Let µ : SK → id . We look for µ′ : S → R such that ε◦µ′K = µ.
Writing this equality as a string diagram, and plugging the unit η, we see that µ′ is
necessarily equal to µR ◦Sη and that this definition of µ′ fits. Let now F : A → A′,
and let µ : HK → F . We see likewise that µR ◦ Hη is the unique transformation
from H to FR that fits.

(3) ⇒ (1). We apply the assumption that (KR,Kε) is a Kan extension, with
id : C → C. This yields a transformation η that satisfies one of the two laws of
adjunction. For the second one, we observe that ν = εR ◦Rη satisfies the condition
ε ◦ νK = ε and hence ν = id by uniqueness.

3.3.3 Yoneda lemma

If M = C and K = id , it is easy to see that (T, id) is both a left and right Kan
extension of T along id , using the fact that K is a fortiori full and faithful. For what
concerns the right extension, we have thus

TC =
∫

C′
(TC ′)C[C,C′]

and when A = Set, then (TC ′)C[C,C′] is the set of all fonctions from C[C,C ′] to TC ′,
I.e., we have (TC ′)C[C,C′] = Set[C[ , C ′], TC ′]. Therefore, by 3.3,

∫
C′ TC ′C[C,C′] is

the set of natural transformations from C[C, ] to T . We have thus retrieved Yoneda
lemma as instance of the right Kan extension construction.

3.3.4 Dense functors

In this section, we consider two further sepcial cases of Kan extensions (Definition
3.3.3 and Proposition 3.3.4).

Definition 3.3.3 If A = C, T = K and (id : C → C, id : K → K) is a left Kan
extension of K along K, we say that K is dense in C.

Indeed, this definition amounts to say that for any object C of C, the evident cone
from Kπ to C (whose component at f is f) is a colimit (using a “left” version of
Equation 3.1).
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Proposition 3.3.4 Let C = SetM
op

and K = Y (the Yoneda embedding). Then
LanY T exists if and only if the curried version of A[T , ] : A × Mop → Set, i.e.,
the functor RT defined by RT (A) = A[T ,A], has a left adjoint, and is then this left
adjoint.

Having a morphism from LanY TF to A (where F and A are arbitrary objects of
SetM

op
and A, respectively) amounts to having a cone λ from Tπ to A. Such a

cone is indexed by the pairs (M,µ : Y M → F ), or equivalently (by Yoneda lemma!)
by the pairs (M,x) such that x ∈ FM . And in turn, such a family of λx’s describes
a natural transformation from F to A[T ,A]. !

As a corollary of Proposition 3.3.4, we retrieve the result that every presheaf is
a colimit of representable functors (Proposition 1.4.3), which amounts to say that
Y is a dense functor. Indeed, this follows from the fact RY is (isomorphic to)
the identity functor, and from the obvious fact that the left adjoint of the identity
functor is the identity functor. Indeed, we have RY (F )C = SetM

op
[Y C,F ], and

hence RY (F )C ∼= FC by Yoneda lemma.
We end the section by examining some properties of dense functors.

Proposition 3.3.5 When K is dense, it is equivalent to have the following struc-
tures:

1. a left Kan extension of T along K such that η = id;

2. A functor H that preserves the colimits of all diagrams of the form Kπ (for
all objects C of C) and is such that H ◦ K = T .

Proof. (1) ⇒ (2) . We have:

LanKT (colim Kπ) = LanKT (c) (by definition of density)
= colim Tπ (by construction of LanKT )
= colim ((LanKT ◦ K)π) (since η = id implies a fortiori

LanKT ◦ K = T )

More precisely, we must check that the obvious cone of vertex C is mapped by LanKT
to the colimiting cone (LanKTc,λ), i.e., that λf = LanKTf for all f = C → KM ,
and this follows from the assumption η = id and from Equation 3.1.

(2) ⇒ (1) Applying H to the obvious cone of vertex C, we obtain a colimit of
Tπ = HKπ, with vertex HC, by our assumptions on K and H. These colimits give
us the left Kan extension(LanKT, η), with H = LanKT . Moreover, η is given by the
component at id , which is Hid = id . !

The characterisation given in Proposition 3.3.5 holds in particular for the func-
tors K that are dense, full, and faithful. Then the assumption η = id holds for free in
the statement, and LanK establishes a one-to-one correspondence between functors
T from M to A and functors H from C to A that preserve the colimits of the form
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Kπ. Indeed, if LanK T1 = LanK T2, then T1 = (LanK T1) ◦ K = (LanK T2) ◦ K = T2,
and for every H we have H = LanK(HK).

When C = SetM
op

and K = Y , then LanKT preserves all exisitng colimits
(since left adjoints preserve colimits). Since SetM

op
has all (small) colimits, LanKT

preserves all (small) colimits. Therefore the above one-to-one correspondence, in
this case, can be rephrased as a one-to-one correspondence between functors T from
M to A and functors H from C to A that preserve all colimits. In other words (and
with a little extra work), the functor Set

op
is left adjoint to the forgetful functor

from CoComp to Cat, with unit Y , where CoComp is the category of cocomplete
categories (i.e. that have alll colimits) and functors that preserve all colimits.

Exercise 3.3.6 Show that every right adjoint preserves all right Kan extensions.



Chapter 4

Algebras, coalgebras, bialgebras

4.1 Free versus initial

Let us recall from Section 1.5 that, given a category C and a functor Σ : C → C
(viewed as an abstract signature), a Σ-algebra is a pair (A, a), where A is an object
of C (called the carrier of the algebra) and a is a morphism from ΣA to A, and that
a Σ-algebra morphism between two algebras (A, a), (B, a) is a morphism from A to
B that preserves the algebra structure. In symbols, we have a category CΣ whose
objects are the Σ-algebras, and whose homsets are defined by the following formula:

CΣ[(A, a), (A′, a′)] = {f : a → a′ | f ◦ a = a′ ◦ Σf}

We recall that the free algebra functor TΣ associated with Σ is defined as left
adjoint to the forgetful functor U such that U(A, a) = A and Uf = f . We shall
give an equivalent description of TΣ. We set TΣ(A) = (TA, ν : ΣTA → TA). By
definition of an adjunction, for all A there exists a morphism ηA : A → TA (the unit)
such that, for all X, for all Σ-algebra (A, a), and for all morphism f : X → A, there
exists a unique morphism, which we shall denote as [f, a]#, such that the following
diagram commutes:

X
ηX

f

TX
νX

[f,a]#

ΣTX

Σ([f,a]#)

A
a ΣA

The left triangle is the familiar adjunction triangle (with the unit), while the right
square expresses the fact that the extension [f, a]# is a morphism of Σ-algebras. If
C has coproducts, we can write the diagram equivalently as follows:

X + ΣTX
[ηX ,νX ]

id+Σ([f,a]#)

TX

[f,a]#

X + ΣA
[f,a]

A

95
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or, setting ΣX(Y ) = X + ΣY :

ΣX(X)
[ηX ,νX ]

ΣX([f,a]#)

TX

[f,a]#

ΣX(A)
[f,a]

A

We have thus expressed the adjunction TΣ 3 U in terms of initial algebras: U
has a left adjoint if and only if all functors ΣX have an initial ΣX-algebra.

When these datas exist, we have a monad on C, which we denote simply by T ,
i.e., T = UTΣ. We spell out the definition of the multiplication µ of this monad.
Recall that when a monad is induced by an adjunction F 3 G, its multiplication
is defined by µA = GεFA. So we first spell out the definition of the counity of the
adjunction. We have ε(A,a) = [idA, a]#:

A
ηA

id

TA
νA

ε(A,a)

ΣTA

Σε(A,a)

A
a ΣA

(4.1)

Thus, µA is the unique arrow that makes the following diagram commute:

TA
ηTA

id

TTA
νTA

µA

ΣTTA

ΣµA

TA
νA ΣTA

We now revisit the concrete case of a signature. Let ΣY = Y + (Y × Y ) (corre-
sponding to the signature Σ = {a, f} of Section 1.5). The initial ΣX-algebra is the
algebra of terms generated by the following syntax:

t ::= x | a | f(t, t)

The function ηX “is” the variable case, and νX corresponds to the other cases of the
syntax. The function [f, a]# is defined by induction on the size of t.

We also describe the multiplication of the associated monad in concrete terms.
We can write the terms of TTX with the following syntax:

C ::= t | a | f(C,C)

The function µX removes the stratification (which is formalised here by underlining),
i.e.:

µX(t) = t µX(c) = c µX(f(C1, C2) = f(µX(C1), µX(C2))

But these are “retrospective” verifications: we ‘knew already” that the initial
algebra is a term algebra. The following categorical generalisation of Kleene’s fixed
point theorem allows us to synthesise it.
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Proposition 4.1.1 If C is a category that has all ω-colimits, i.e., the colimits of
all diagrams of the form · → · →∗ · → · →∗, and if F : C → C is a functor that
preserves all ω-colimits, then F has an initial algebra.

Proof. We shall build the initial algebra (A, a) as a colimit. The carrier of the
initial algebra is the vertex of the colimiting cone (A,λ) of the diagram D formed by
taking f1 : 0 → F0 (given by initiality), then f2 = F (f1) : F0 → FF0, etc... F sends
the colimit cone to a colimit of the image under F of the diagram, which is the same
as D but truncated of its first morphism. Since (A,λ) is a fortiori a cone over this
diagram, we can take a to be the mediating arrow from FA to A. By construction,
a satisfies a ◦ Ffn = fn+1, for all n. Let b : FB → B be another algebra. We can
build a cone from D to B whose first component g1 : 0 → B is given by initiality
and whose other components are defined by induction, as follows: gn+1 = b ◦ Fgn.
We are left to show that a morphism g : A → B is mediating if and only if g is a
morphism of coalgebras, since the uniqueness of the mediating morphism will then
translate into the uniqueness of the algebra morphism. Let g : a → b, i.e., such that
g ◦ a = b ◦ Fg. We show that g is mediating, i.e. that g ◦ fn = gn (by induction on
n):

g ◦ fn+1 = g ◦ a ◦ Ffn = b ◦ Fg ◦ Ffn = b ◦ Fgn = gn+1

Conversely, if g is mediating, the same equalities show

g ◦ a ◦ Ffn = b ◦ Fg ◦ Ffn

for all n, and this is enough, as the components of a colimit are collectively mono
(cf. Exercise 1.2.13). !

Kleene’s theorem is the special case of Proposition 4.1.1 where C is a partial
order.

It is easily checked that the concrete signature functor ΣX preserves ω-colimits.
We also check easily that ΣX0 is the set of variables, that ΣX(ΣX0) is the set formed
by the variables, a, and the terms of the form f(x, y). By induction, we see that Σn

X0
is the set of all terms of depth n, and that the morphisms fn are inclusions. Under
these conditions, the colimit is the union of these sets. We have thus synthetised
TΣ(X).

4.2 Freely generated monads

In this section, we relate the notion of Σ-algebra (as considered in the previous
section) with that of T -algebra, as considered in Section 2.5, for T = UTΣ. We
show that there exists a bijective correspondence between Σ-algebras and T -algebras
which makes the categories CΣ and CT isomorphic. The wording “T -algebra” should
be understood as an abuse of language for (T, η, µ)-algebra, since one requires the
T -algebras α : TA → A to respect η and µ, i.e. one imposes the two equations
α ◦ ηA = idA and α ◦ µA = α ◦ Tα. These equations are the price to pay to go from
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Σ to T . The case of concrete signatures will help to make this point clear. Given
the above signature, we have the following grammars for Σ(X) and TΣ(X):

Σ(X) t ::= a | f(x, x)
TΣ(X) t ::= x | a | f(t, t)

The first equation imposes that α(x) = x, while the second imposes that the inter-
pretation is compositional, i.e., writing α(f)(x, y) = α(f(x, y)):

∀ t1, t2 α(f(t1, t2)) = α(f)(α(t1),α(t2))

We first check that η : id → T and ν : ΣT → T are natural transformations.
This is a consequence of the definition of T itself as a functor, starting from the
definition of adjunction in terms of the unit and of the object part of T :

T (f : X → X ′) = [ηX′ ◦ f, νX′ ]#

which as a drawing reads as

X
ηX

f

TX
νX

Tf

ΣTX

ΣTf

X ′
ηX′

TX ′
νX′

ΣTX ′

We shalll use the following terminology. We say that T = UTΣ is freely generated
by Σ, and by abstraction of the special case of concrete signatures, we say that Σ
is the signature functor (even if it arbitrarily chosen!), and that T is the syntactic
monad (for Σ). An adjunction F 3 G is called monadic when it coincides (up to
isomorphism) with the adjunction induced by the construction of the category of
T -coalgebras. We have thus shown that the adjunction TΣ 3 U is monadic. We are
now ready to prove the claimed isomorphism.

Proposition 4.2.1 If Σ is an endofunctor, and T is the corresponding freely gen-
erated monad, then CΣ and CT are isomorphic. This isomorphism Φ is such that

CΣ Φ

U

CT

U

C

commutes (in particular, Φ is the identity on morphisms).

Proof. With a T -algebra α : TA → A we associate a Σ-algebra as follows:

α̂ = α ◦ νA ◦ ΣηA
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Conversely, we note that the counit εA,a of the adjunction is a morphism from
TΣU(A, a) = TA to A which fits. We thus set ǎ = ε(A,a) = [idA, a]#, We must
first verify that ǎ is a T -algebra. The equation (ǎ− η) is exactly the triangle of the
diagram (4.1). For the second equation, we shall write ǎ ◦ µA and ǎ ◦ T ǎ as two
morphisms of ΣTA-algebras, with the same domain and codomain, which will imply
their equality by initiality. Here is the diagram for ǎ ◦ µA:

TA
ηTA

=

TTA
νTA

µA

ΣTTA

ΣµA

TA
id

=

TA
νA

ǎ

ΣTA

Σǎ

TA
ǎ

A
a ΣA

(the left right square commutes by definition of ǎ). For ǎ ◦ T ǎ, we have to change
the intermediate ΣTA-algebra:

TA
ηTA

=

TTA
νTA

T ǎ

ΣTTA

ΣT ǎ

TA
ηA◦ǎ

=

TA
νA

ǎ

ΣTA

Σǎ

TA
ǎ

A
a ΣA

(the upper brick commutes by naturality of η and ν). We check now that the two
transformations are inverse. We have:

ˆ̌a = ǎ ◦ ν ◦ Ση = a ◦Σǎ ◦ Ση = a ◦ Σ(ǎ ◦ η) = a

In the converse direction, by initiality it suffices to verify that α satisfies the speci-
fication of ˇ̂α, i.e.:

A
ηA

id

TA
νA

α

ΣTA

Σα

A
α̂ ΣA

The triangle is the equation (α − η). We prove the commutation of the square by
successive transformations, starting from α̂ ◦ Σα:
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A T
η

Σ

T

ν

α T

T

α

A

Applying Equation (α− µ), we get:

A T
η

Σ

T

ν

T

µ

T

α

A

Using the commuting rectangle in the definition de µ, we get:
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A T Σ

η

T

µ

T

ν

T

α

A
and we reach α ◦ νA after an application of Equation (µ − η).

Finally, we need to turn ˆ and ˇ into inverse functors. We show that they in fact
both act as the identity on morphisms. The implication (f : α → β ⇒ f : α̂ → β̂)
follows easily from the naturality of ν and η. For the implication (f : a → b ⇒ f :
ǎ → b̌), one shows (cf. above) that b̌ ◦ Tf and f ◦ ǎ are two ΣA-algebra morphisms
with the same (initial) domain and codomain. !

We end the section with a variant (called the variant with accumulators) of
the construction of the unique morphism from the initial algebra. The initial ΣX-
algebra is such that for all pairs (f, a) such that f : X → A and a : Σ(TX ×A) → A
there exists a unique morphism, denoted by [f, a]', such that the following diagram
commutes:

X
ηX

f

TX
νX

[f,a]!

ΣTX

Σ<id ,[f,a]#>

A
a Σ(TX × A)

It is easy to check that π2◦ < νX ◦ Σπ1, a ># fits. That the rectangle commutes is
proved using the following proprerty (setting k =< νX ◦ Σπ1, h >#):

k =< id ,π2 ◦ k >

By “surjective pairing”, this property is an immediate consequence of the following
one:

π1 ◦ k = id
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By initiality, this latter equality follows from the fact that π1 is a morphism from
the codomain of k to the domain of k. As for the uniqueness, we remark that if k′

makes the above diagram commute, then < id , k′ > is a ΣX-algebra morphism with
the same domain and codomain as k, hence

k′ = π2◦ < id , k′ >= π2 ◦ k = π2◦ < νX ◦ Σπ1, h >#

In the case of a concrete signature, the construction of k′ = [f, a]' by induction
looks like this (for f of arity 2):

k′(f(t1, t2)) = a((t1, k′(t1), (t2, k′(t2))

This is the primitive recursion schema!

4.3 Coalgebras

We can make the dual constructions, starting from a functor B : C → C, and
defining (DX, εX , γX) (if it exists) as the final BX-coalgebra, where BX is defined
by BX(Y ) = X × BY . We use the following notations:

X DX
εX γX

BDX

A

f
<f,b>•

b
BA

B<f,b>•

When X = 1, we write simply b•. We say that D is cofreely generated by B,
that B is the behaviour functor and that D is the observational comonad (for this
behaviour).

We now give concrete examples of behaviour functors. We consider first the
functor

BX = 1 + Act × X

A coalgebra h : X → BX formalises a very constrained transition system: X is a
set of states. A state, if not terminal, can make a unique transition, labelled by an
action a. To make this apparent, we write (a, x′) ∈ h(x) as x

a−→ x′ and ∗ ∈ h(x) as
x → ∗ ( “x is terminal”). One verifies quite easily that, for this example, DX (the
comonad generated by finality) is the set of complete transition sequences, which
are of two kinds:

finite x1
a1−→ x2

a2−→ x3 · · ·
an−1−→ xn → ∗

infinite x1
a1−→ x2

a2−→ x3 · · ·
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The functions ε and γ are defined as follows:

ε(x1
a1−→ x2

a2−→ x3 · · ·
an−1−→ xn → ∗) = x1

γ(x1
a1−→ x2

a2−→ x3 · · ·
an−1−→ xn → ∗)

= (a1, (x2
a2−→ x3 · · ·

an−1−→ xn → ∗)) (n > 1)
γ(x → ∗) = ∗

ε(x1
a1−→ x2

a2−→ x3 · · · ) = x1

γ(x1
a1−→ x2

a2−→ x3 · · · ) = (a1, (x2
a2−→ x3 · · · ))

The unique morphism < f, b >• is defined as follows. We build successive prefixes
πn by induction on n:

π0 = f(y)

πn = f(y) a1−→ · · · an−→ f(y′) b(y′) = (a, y′′)

πn+1 = f(y) a1−→ · · · an−→ f(y′) a−→ f(y′′)

πn = f(y) a1−→ · · · an−→ f(y′) b(y′) = ∗

< f, b >• (y) = f(y) a1−→ · · · an−→ f(y′) → ∗
We define < f, b >• (y) as the largest (possibly infinite) πn.

This final coalgebra construction can be synthetised using the dual of Proposition
4.1.1. If C has all ωop-limits, i.e., the limits of the diagrams of the form

· ← ·∗ ← · ← ·∗ ←

and if F : C → C preserve these limits, then F has a final coalgebra, obtained by
taking the limit of the diagram formed by f1 : F1 → 1 (the unique morphism to
1), f2 = Ff1 etc... Applying this construction to our example, we obtain that an
element of DX is a vector (z1, . . . , zn, . . .) such that zn = fn(zn+1) for all n. In
details, we have z1 = ∗ (the unique element of 1), then, say, z2 = (x1, (a1, ∗)). The
constraint z2 = f2(z3) forces then z3 to have the form z3 = (x1, (a1, (x2, u))), where
u is ∗ or (a2, ∗). If u = ∗, then the constraints zn = fn(zn+1) force zn = z3 for all
n > 3, otherwise one continues. It is clear that in this way we generate the above
transition sequences.

The situation is not much different if we now take

BX = 1 + (Act → X)

that describes a general deterministic automaton (whose terminal states do not
admit any transitions). In this case, DX consists of the trees of the form

t = x1






a−→ t1
b−→ t2
c−→ t3

...



104 CHAPTER 4. ALGEBRAS, COALGEBRAS, BIALGEBRAS

with finite branching, and whose edges starting from a given node are all labelled
by distinct actions. The branches of t are infinite or end with a transition x → ∗.
The morphism ε extracts the root of the tree, and the morphism γ extracts the
immediate sub-trees of t.

The situation is more complex in presence of non-determinism. We set now

BX = P̌(1 + Act × X)

where P̌(Y ) is the set of finite non empty subsets of Y .
A B-coalgebra is now a non deterministic transition system. The natural idea

is to take the same definition as above for DX, forgetting the constraint of distinct
actions. But this coalgebra, call it D′X (with the corresponding morphisms ε′ and
γ′), is only weakly final. The above method allows us to build a morphism k1 that
fits relatively to D′X:

X D′X
εX γX

BD′X

A

f
k1

b
BA

Bk1

But the morphism k1 is not unique. The commutation of the diagram says exactly
that k1(y) is a tree whose root is labelled by f(y), and which is such that (neglecting
* for simplicity) b(y) is equal to the set of pairs (a, t) such that k1(y) a−→ t (i.e., t is
a sub-tree whose root is related to the root of k1(y) by an edge labelled by a). But
the right tree below satisfies also this specification:

k1(y) = f(y)






a−→ t1
a−→ t2

...
b−→ tn

...

f(y)






a−→ t1
a−→ t1
a−→ t2

...
b−→ tn

...

These two trees have the same immediate sub-trees, and therefore γ′ does not dis-
tinguish between them. We are led to define a suitable quotient of D′X. Morally,
one wishes to quotient by the equivalence relation generated by the contraction of
two identical sub-trees with the same father. But it is more complicated than just
that, due to the potential infinity of the trees. For example, we should equate

· a−→ · a−→ · . . . · a−→ · . . . and ·






a−→ · a−→ · . . . · a−→ · . . .
a−→ ·

{ a−→ · a−→ · . . . · a−→ · . . .
a−→ ·

{ ...

Note that in the second tree, there is no pair of equal subtrees with the same father.
The solution is provided by the notion of bisimuation, invented by Aczel precisely
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for the construction of final coalgebras (in the framework of non well-founded set
theory).

This complication of the construction with respect to the non-deterministic case
is related to the non ωop-continuity of the functor P̌( ).

Proposition 4.3.1 The functor P̌( ) on Set is not ωop-continuous.

Proof. We recall that the limit of an ωop-chain

X0 X1
f1 · · · Xn−1 Xn

fn · · ·

is the set L of the sequences (xn) such that fn(xn) = xn−1 for all n. Take X0 = 1,
f1 = 1 (the unique morphism to 1), Xn+1 = P̌(Xn) and fn+1 = P̌(fn). We note
that there exists a sequence (xn) in L such that the sequence card(xn) is strictly
increasing. This comes from the fact that the sequence of the cardinals of the Xn’s
is increasing and from the fact that the functions fn are surjective. We have thus

fn(Xn−1) = P̌(fn−1)(Xn−1) = Xn−2

and the sequence defined by xn = Xn−1 fits. If P̌( ) were continuous, P̌(L) would
also be a limit of this chain. There would thus exist a cone morphism k : L →
P̌(L), and in particular the image by k of the sequence (xn) would be a finite set
{(y1)n, . . . , (yp)n} of sequences, of cardinal p. But the fact that k is a cone morphism
imposes that, for all k, xk is the set {y1

k, . . . , y
p
k}, which has a fixed cardinal. !

This negative result explains why we cannot apply the general final coalgebra
construction of (the dual of) Proposition 4.1.1.

We define now the notion of bisimulation, which will allow us to complete the
construction of the observational comonad D. Let (A1, f1, b1), (A2, f2, b2) be two
BX-coalgebras. A bisimulation between b1 and b2 is a relation R ⊆ A1 × A2 such
that if x1Rx2, then:

• f1(x1) = f2(x2),

• if x1 → ∗, then x2 → ∗,

• if x1
a−→ y1, then there exists y2 such that x2

a−→ y2 and x2Ry2,

• if x2 → ∗, then x1 → ∗,

• if x2
a−→ y2, then there exists y1 such that x1

a−→ y1 and x1Ry1.

On can define the notion of bisimulation for any functor B , as follows. A bisimu-
lation between b1 : A1 → BA1, b2 : A2 → BA2 is given by a coalgebra r : R → BR
and two coalgebra morphisms π1 : r → b1 and π2 : r → b2. Such a figure forms a
span (in the category of coalgebras).

Let us check that, for our functor B (and more generally for BX), this definition
instantiates to the concrete one above. In one direction, we have to endow R with
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a coalgebra structure r : R → R. To this aim, we set ∗ ∈ r(x1, x2) if and only if
x1 → ∗ (and hence x2 → ∗), and (x1, x2)

a−→ (y1, y2) if x1
a−→ y1 and x2

a−→ y2.
We take π1(x1, x2) = x1 and π2(x1, x2) = x2. We check that, say, π1 is a coalgebra
morphism. Let x1Rx2. The commutation b1 ◦ π1 = Bπ1 ◦ r amounts to say that
x1

a−→ y1 if and only if there exists y2 such that (x1, x2)
a−→ (y1, y2), hence there

exists y2 such that x2
a−→ y2. y1Ry2 and y1

a−→ y2.
In the other direction, if r : R → BR, π1 and π2 are given (note that R is not

necessarily a relation!), we can define a relation R by x1Rx2 if and only if there
exists z ∈ R such that x1 = π1(z) and x2 = π2(z). This relation is a bisimulation:
for example, if π1(z) a−→ u, then, by the commutation b1 ◦ π1 = Bπ1 ◦ r, we know
that u is of the form π1(v), with z

a−→ v, from which we deduce (using the fact that
π2 is a coalgebra morphism) that π2(z) a−→ π2(v), and we have u = π1(v)Rπ2(v),
as desired, by definition of R.

We now consider a single coalgebra b : A → BA. We write x1 ≈ x2 if there exists
a bisimulation ((R, r),π1,π2) between b and b, and z ∈ R such that x1 = π1(z) and
x2 = π2(z). In our concrete case, this amounts to say that there exists a (concrete)
bisimulation R such that x1Rx2. The relation ≈, which we call the bisimilarity
relation, is reflexive and symmetric (immediate). It is also transitive. In the case
of the above B, it follows from the easily verified property that the composition (in
the sense of relations) of two bisimulations is a bisimulation (see Exercise 4.3.5 for
a more general proof).

We shall need the following property. Let b : A → BA and b′ : A′ → BA′ be two
coalgebras and let f : b → b′. Then we have x ≈ y if and only if f(x) ≈ f(y). The
proof in the concrete case (i.e., for, say, the functor BX = P̌(1+Act×X)) is left as an
exercise. Instead, we give a general proof that illustrates the categorical definition
of the notion of bisimulation. If x ≈ y, by definition there exists ((R, r),π1,π2),
z ∈ R such that x = π1(z) and y = π2(z). Il suffices then to prolungate this span
by f , on both sides: ((R, r), f ◦ π1, f ◦ π2) is a bisimulation (note that f ◦ π1 is a
coalgebra morphism). Note that we have made use of the comfort of being able to
use arbitrary spans, rather than just those arising from relations.

The other direction is more complicated. We start from f(x) ≈ f(y), and hence
from ((R, r),π1,π2), z ∈ R such that f(x) = π1(z) and f(y) = π2(z). We then form
the pullbacks of f and π1 (thus, the category C is required to have pullbacks), and
of f and π2. If g : R1 → R (resp. h : R2 → R) is the morphism from (the vertex
of) the first (resp. second) pullback to R, we form again the pullback R3 of g and
h. Then R3 provides the carrier of the bisimulation that we need to witness that
x ≈ y. Indeed, f(x) = π1(z) guarantees the existence of z1 ∈ R1 that gets mapped
to x1 and to z (by g), and likewise there exists z2 ∈ R2 that is mapped to z (by
h) and to x2. Finally, since gz1 = hz2, there exists z3 in the upper pullback that is
mapped to z1 and to z2, and hence to x1 and x2.

But we are still lacking coalgebra structures on R1, R2, R3, and the verification
that all the morphisms that we have constructed are coalgebra morphisms. It is
indeed the case, thanks to the following proposition.
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Proposition 4.3.2 If B : C → C sends all pulbacks to weak pullbacks, then for
every span f : b1 → b and g : b2 → b of coalgebras, the pullback h : A3 → A1, k :
A3 → A2 of f, g (in the category C) can be completed to a commutative diagram in
the category of coalgebras, i.e. there exists a coalgebra structure b3 : A3 → BA3 such
that h and k are coalgebra morphisms. A weak pullback is defined as a pullback,
omitting the uniqueness condition of the mediating morphism.

Proof. We show how to construct b3. Since the figure Bf,Bg,Bh,Bk is a weak
pullback, it suffices to find two morphisms h′, k′ from A3 to BA1 and BA2, respec-
tively, such that Bf ◦ h′ = Bg ◦ k′. It is easy to see that h′ = b1 ◦ h and b2 ◦ k
fit. Finally, the commutations Bh ◦ b3 = h′ and Bk ◦ b3 = k′ say that h and k are
coalgebra morphisms. !

We can now state what we have proved above.

Proposition 4.3.3 Let B : Set → Set. If B satisfies the assumption of Proposition
4.3.2, and if f : (A, b) → (A, b′) is a coalgebra morphism, then for all x, y:

x ≈ y if and only if f(x) ≈ f(y) .

Proof. It is easy to check that the functor P̌( ) (and hence our example B) satisfies
the required preservation condition (and does not preserve pullbacks in the strong
sense). !

We can finally come back to the construction of the cofree coalgebra DX. We
take DX = D′X/ ≈. We first see that ε′ and γ′ still make sense with the quotient,
and that the surjection D′X → DX defines a morphism of BX-coalgebras. Indeed,
if t ≈ t′, then ε′(t) = ε′(t′), and we set [t] a−→ [t′] if t

a−→ t′ (this does not depend
on the choice of the representative of the equivalence class of t). As a consequence,
we have, for any elements [t1], [t2] of DX:

[t1] ≈ [t2] if and only if [t1] = [t2] . (4.2)

Indeed, by Proposition 4.3.3, we have [t1] ≈ [t2] if and only if t1 ≈ t2.
We set now k(y) = [k1(y)]. Suppose that k2 : A → DX is another morphism of

BX coalgebras. Then k and k2 form a bisimulation over DX, in the abstract sense.
Hence the relation R defined by [t]R [t2] if and only if there exists y ∈ A such that
[t] = k(y) and [t2] = k2(y) is a bisimulation, in the concrete sense. Hence, by (4.2),
we have k(y) = [t] = [t2] = k2(y). We have thus the uniqueness of k, i.e., we have
transformed our weakly final coalgebra D′X into a final coalgebra DX.

The intimate relation between the free coalgebra construction and bisimilarity
is stressed by the following result:

Proposition 4.3.4 For any BX-coalgebra, we have

x ≈ y if and only if k(x) = k(y)

where k is the unique coalgebra morphism to the final coalgebra DX.
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Proof. By Proposition 4.3.3 and by (4.2). !

We remark finally that by the result that we have proved above, we have, for all
y1, y2 ∈ A:

y1 ≈ y2 ⇔ k1(y1) ≈ k1(y2) ⇔ k(y1) = k(y2)

This justifies the terminology of observational comonad: the morphism to the final
coalgebra identifies exactly the bisimilar points, i.e. the observationally equivalent
points.

Exercise 4.3.5 Show that if B : Set → Set satisfies the assumption of Proposition
4.3.2, then bisimilarity (with respect to B) is a transitive relation.

4.4 Distributive laws

In this section, we are interested in the following question. Given a category C and
two endofunctors F : C → C an G : C → C, we would like to be able to define a
functor F ′ : CG → CG such that UF ′ = FU , where CG is the category of G-algebras
U : CG → C is the forgetful functor def (cf. Section 4.1). Such a functor is called a
functorial lifting of F . In detail, it means that we want, for any algebra a : GA → A
of carrier A, an algebra S′a : G(FA) → FA (so that UF ′ = FU holds on objects),
and such that the following implication holds, for all f : (A, a) → (B, b):

A G

f

B

b

B =

A G

a

A

f

B ⇒

A F G

f

B

F ′b

B F =

A F G

F ′a

A

f

B F
(4.3)

Note that F ′f = f is forced by UF ′ = FU on morphisms. The above implication
just says that F ′ is “correctly typed”, i.e. that F ′f : F ′(A, a) → F ′(B, b), or
F ′f : F ′a → F ′b for short.

Thus, for lifting F to F ′, we want to find a morphism from GFA to FA, given
a morphism a : GA → A. Since Fa goes from FGA to FA, it seems that we would
be done if we had a natural transformation λ : GF → FG. And indeed, it works, as
we show now. We proceed by steps, in a “boot-strapping” manner.
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Step 1. Given a : GA → A, we define F ′a = Fa ◦ λA, i.e., as

A F G

λ

G

a

A F (4.4)

We show that this defines indeed a lifting F ′ : CG → CG of F to the category of
G-algebras. We have to prove the implication (4.3). Replacing F ′b by its definition
in F ′b ◦ GFf we get (pushing up λ, that is, using the naturality of λ:

A F G

λ

G

f

B

b

B F

and we are done, using the assumption of the implication. What we have so far is
the following.

Proposition 4.4.1 If G,F are endofunctors on a category C, a natural transforma-
tion λ : GF → FG induces a functorial lifting F ′ of F to the category of G-algebras,
and a functorial lifting of G to the category of F -coalgebras.

Proof. The second part of the statement is dual (in Catop) to the first part. !
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Step 2. But can we conversely define a natural transformation λ : GF → FG,
given a functorial lifting F ′ of F to CG? The answer is: yes, when G is the functor
part of a monad (T, η, µ), because then we can define λA as follows:

A
η

F T

T

F ′µA

A T F (4.5)

We check that λ is natural.

A
η

F T

T

F ′µA

A

f

B T F =

A F T

f

B η

T

F ′µB

B T F

Pushing the right η up, we conclude using the implication (4.3). whose assumption
is here the naturality of µ.

Step 3. We would like these transformations to be inverse. Starting from λ, we
obtain the following natural transformation (by replacing F ′µA by its definition in
the diagram (4.5):
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η
F T

T λ

A T

µ

T F

and we retrieve the original λ after pushing λ up and applying (η − µ). Conversely,
starting from a lifting F ′, and replacing λ by its definition in the diagram (4.4), we
obtain

A
η

F T

T

F ′µA

A T

a

A F

which we must equate to F ′a. We are stuck, unless we replace CG above by CT , the
category of T -algebras, in the sense of the algebras relative to a monad, not only a
functor. Then, replacing everywhere a, b by α,β, we can make use of the equation
(α − µ), which we can read as α : µA → α, as assumption of the implication (4.3),
and we obtain (after having pushed up η):
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A
η

F T

T

α

A

F ′α

A F

and we conclude using (α− η).

Step 4. The decision to move from the category of algebras over the underlying
functor of the monad T to the category of T -algebras, whose objects respect the
structure of T -algebra (which anyway was the natural thing to do) forces us to
revisit step 1, since, given λ : TF → FT , we must show that our lifting of step 1
sends a T -algebra to a T -algebra.

• Equation (α− η). We have to prove:

A F
η

T

λ

T

α

A F =

A F

and we are stuck again, but for the last time! We shall impose two equations,
(λ − η) and (λ − µ), concerning the interaction of λ with η and µ, which the
reader will find in Definition 4.4.2. Thanks to (λ − η), we can transform the
left hand side into
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A
η

T

α F

A

and we conclude by (α− η) applied to α.

Conversely, if F ′α is a satisfies (α − η) for all T -algebras α, then it holds in
particular for µA, which is a T -algebra over TA:

T F
η

T

λ

A T

µ

T F =

A T F

and, then plugging η on the top on both sides, and applying (η − µ) on the
left (pushing λ up), we get equation (λ− η).

• Equation (α− µ). We have to prove:
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A F T T

µ

T

λ

T

α

A F =

A F T T

λ

T

α

A F

λ

T

α

A F

This follows by applying (λ − µ) followed by (α − µ). Conversely, we can
synthesize the equation (λ − µ) by specialising this equations as above with
α = µA and and by plugging an η above on both sides.

We collect the fruits of this construction in the following definition and proposi-
tion

Definition 4.4.2 Let C be a category. A monad-functor distributive law on C is a
natural transformation λ : TF → FT , where F is an endofunctor on C and (T, η, µ)
is a monad on C, that satisfies the following two equations:
EQUATION (λ− η):

F
η

T

λ

T F =

η

F

T

EQUATION (λ− µ):
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F T T

µ

T

λ

T F =

F T T

λ

F

T λ

T

µ

T F

Proposition 4.4.3 There is a one-to-one correspondence between monad-functor
distributive laws λ : TF → FT on a category C and functorial liftings to the category
of algebras over a monad (where T is the monad and F is the lifted endofunctor).

We can further enrich and narrow the structure, when F is a monad S or when
F is a comonad D. For example, if F = D is a comonad, it is natural to require the
forgetful functor U : CT → C to be a comonad morphism, in the following sense
(cf. the second notion of morphism of adjunctions introduced in Section 2.2.1).

Definition 4.4.4 Let H : C1 → C2 be a functor, and let D1 and D2 be two comon-
ads on C1 and C2, respectively, such that D2H = HD1. We say that H is monad
morphism if it commutes with the counity and the multiplication, as follows:

D2

H

ε
=

D2

H

ε

and

D2

H δ

D2 D2
=

D2

δ H

D2 D2

Definition 4.4.5 Let C be a category.

1. A monad-comonad distributive law on C is a natural transformation λ : TD →
DT , where (D, ε, δ) is a comonad on C and (T, η, µ) is a monad on C, which
is monad-functor distributive law (for the functor underlying D) that satisfies
moreover the following two equations:

EQUATION (λ− ε):
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D T

λ

D

T

ε
=

D

T

ε

EQUATION (λ− δ):

D T

λ

D

δ

T D D =

D T

δ

D

D λ

T

λ

T D D

2. A monad-monad distributive law on C is a natural transformation λ : TS →
ST , where (S, η, µ) is a monad on C and (T, η, µ) is a monad on C, that
satisfies moeover two equations (η − λ) and (µ − λ), similar to the equations
(λ− η) and (λ− µ), except now that in the left hand side, the η and the µ are
now plugged on the left, on top of S.

Proposition 4.4.6 1. There is a bijective correspondence between monad-comonad
distributive laws λ : TD → DT on a category C and comonad liftings to the
category of algebras over a monad (where D is the lifted comonad), where by
comonad lifting we mean a functorial lifting for which U : CT → C becomes a
comonad morphism.

2. Likewise there is a bijective correspondence between monad-monad distributive
laws λ : TS → ST on a category C and monad liftings to the category of
algebras over a monad (where S is the lifted monad).
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Proof. We prove only (1), the proof of (2) being similar. Suppose that (λ − ε)
holds. We have to prove that εA : D′α→ α for any T -algebra α, i.e.:

A D T

λ

T

α D

A

ε
=

A D T

ε

α

A

But (λ − ε) does precisely this for us. Moreover, like in the proof of Proposition
4.4.3 (step 4), we can conversely synthesise (λ − ε) by specialising this equality to
α = µA.

The commutation of δ with U is handled likewise. The following simple type-
matching should convince the reader that the proposition indeed works both for
F = D and F = S. We have on one side F ′(α) and on the other side F ′(F ′(α)), as
follows:

A F T

λ

T

α

A F

A F F T

λ

T

λ

T

α

A F F

Then observe that in order to match the interfaces (one top F versus two top F ,
one bottom F versus two bottom F ), we have the choice of:

1. having on both sides one top F and two bottom F ’, with the help of a comul-
tiplication δ: this is the monad-comonad case, with F = D.
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2. having on both sides two top F ’s and one bottom F , with the help of a
multiplication µ: this is the monad-monad case, with F = S. !

By dualisation, we obtain the following two new notions (only two, because the
notion of monad-comonad distributive law is self-dual): corresponding to the self-
dual notion

• functor-comonad distributive laws, which are natural transformations λ : GD →
satisfying (λ − ε) and (λ − δ), that are in bijective correspondence with the
functorial liftings of G to the category CD of D-coalgebras

• comonad-comonad distributive laws λ : ED → DE which satisfy moreover
two equations (ε − λ) and (δ − λ), that are in bijective correspondence with
the comonad liftings of E.

For the monad-comonad case, we get another bijective correspondence:

• Monad-comonad distributive laws λ : TD → DT are in bijective correspon-
dence with the monad liftings of T to the category CD of D-coalgebras.

The only combination that does not work is comonad-monad, because we need G to
be a monad or F to be a comonad to get a bijective correspondence with a notion
of lifting.

We make two final observations. In the proof of Proposition 4.4.6, when proving
that (D 9→ D′) is a comonad lifting, we did not make use of the monad structure of
T . We thus have the following enrichment of Proposition 4.4.1.

Proposition 4.4.7 1. A functor-comonad distributive law λ : GD → DG in-
duces induces a comonad lifting D′ of D to the category of G-algebras.

2. A monad-functor distributive law λ : TF → FT induces a monad lifting T ′ of
T to the category of F -coalgebras.

Proof. The second part of the statement follows from the first by duality. !
Our second observation is that if G,B are two endofunctors on C, in such a way

that there is a functorial lifting of G to G′ : CB → CB, where CB is the category of
B- coalgebras (the letter B, for “behaviour”, witnesses that we are taking coalgebras
and not algebras), then, by Proposition 4.2.1, we have also a functorial lifting of G to
the the category of D-coalgebras, where D is the freely generated comonad associated
with B. If moreover G = T is a monad, and if the initial lifting is in fact a monad
lifting (i.e. G′ = T ′ is a monad, and the forgetful functor commutes with the unities
and multiplications), then the lifting of T to the category of D-coalgebras is also a
monad lifting. This is clear, since the monad lifting property says that the unit and
multiplication are B-algebra morphisms, and hence D-algebra morphisms since the
isomorphism between CB and CD is the identity on objects. We summarize (the
second part of) this second observation in the following statement.



4.4. DISTRIBUTIVE LAWS 119

Proposition 4.4.8 Let C be a category. If T is a monad on C, and if B is an
endofunctor of C with associated cofreely generated comonad D, then the following
are equivalent:

1. there exists a monad lifting of T to CB,

2. there exists a monad lifting of T to CD.

Bialgebras. We now concentrate on the monad-comonad case. We suppose thus
that we have one of the following equivalent structures relating a monad T and a
comonad D on a category C:

1. a monad-comonad distributive law λ : TD → DT ,

2. a monad lifting T ′ of T to CD (D-coalgebras),

3. a comonad lifting D′ to CT (the T -algebras).

It is quite natural to consider then objects A carrying both a structure of T -
algebra and a structure of D-coalgebra. This leads us to the following definition.

Definition 4.4.9 A bialgebra is a triple (A,α,β) where (A,α) is a T -algebra and
(A,β) is a D-coalgebra that satisfies one of the following three equivalent conditions:

1. the following equation is satisfied:

A T

α

A

β

A D =

A T

β

D

A λ

T

α

A D (4.6)

2. α : T ′β → β is an algebra morphism,

3. β : α→ D′α is a coalgebra morphism.

A morphism of bialgebras is a morphim that is both an algebra and coalgebra
morphism. We write Cλ for the category of bialgebras and bialgebra morphisms.
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Proposition 4.4.10 The forgetful functor Π′ : Cλ → CD that maps (A,α,β) to
(A,β) and acts as identity on morphisms has a left adjoint F λ, defined on objects
by F λ(A,β) = (TA, µA,λA ◦ Tβ).

Proof. Let us fix (A1,β1) and (A2,α2,β2). Let f : (A1,β1) → (A2,β2) and g :
(TA1, µA1 ,λA1 ◦Tβ1) Adapting what we have done in Section 2.5.1, we define ζ(g) =
g ◦ ηA1 and ξ(f) = α2 ◦ Tf . We already know from there that the transformations
are inverse. We just need to wheck that ζ(g) and ξ(f) are coalgebra morphisms.
For ξ(f), starting from the string diagram for β2 ◦ ξ(f),

A1 T

f

A2

α2

A2

β2

A2 D

we apply Equation (4.6), and then the equation expressing the assumption that
f : (A1,β1) → (A2,β2) is a coalgebra morphism, and we obtain D(ξ(f))◦(λA1 ◦Tβ1)
as desired. For ζ(g), starting from the string diagram for β2 ◦ ζ(g),

A1

η

T

g

A2

β2

A2 D
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we apply the equation expressing the assumption that g : (TA1,λ − A1 ◦ Tβ1) is
a coalgebra morphism, and then Equation (λ − η), and we obtain D(ζ(g)) ◦ β1 as
desired. !

Proposition 4.4.11 The forgetful functor Π : Cλ → CT that maps (A,α,β) to
(A,α) and acts as identity on morphisms has a right adjoint Gλ, defined on objects
by Gλ(A,α) = (DA,Dα ◦ λA, δA).

Proof. This statement is dual to the statement of Proposition 4.4.10. !

Corollary 4.4.12 Assuming that C has a terminal object, the category Cλ has a
terminal object, namely Gλ(1, alpha), where α is the unique morphism from T1 to
1.

Proof. It is immediate to check that (1,α) is a terminal T -algebra. The conclusion
follows from the fact that right adjoints preserve limits. !

Likewise, if C has an initial object, then Cλ has an initial object.

4.5 Bialgebras and operational semantics

We consider the behaviour functor:

BX = (PfX)Act

where Pf denotes the finite powerset functor. It is a simplified variant of the be-
haviour BX = P̌(1 + Act ×X) of Section 4.3 (note that (PfX)Act ≈ Pf (Act ×X)).

We consider the following mini-langage (a fragment of CCS):

t ::= x || nil || a.t || (t|t)

whose operational semantics is specified by the following rules:

a.x
a−→ x

x1
a−→ x′

1

x1|x2
a−→ x′

1|x2

x2
a−→ x′

2

x1|x2
a−→ x1|x′

2

These rules allow us to construct proof trees of judgements of the form P
a−→ Q,

i.e., they define a B-coalgebra of carrier T0 (where 0 is the initial object of Set, i.e.,
the empty set). More generally, if we are given a B–coalgebra β : A → BA, and if
we add the following rules to the ones above:

v ∈ β(a)(u)

u
a−→ v

we can define a coalgebra β : TA → BTA by setting Q ∈ β(a)(P ) if and only if
P

a−→ Q is provable by the rules of our fragment of CCS plus the rules imported
from β. In particular, choosing A = 0, β is necessarily the morphism given by
initiality and there is nothing to import.
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Theorem 4.5.1 The bisimilarity on the coalgebra β : TA → BTA is a congruence.

In particular, taking A = 0, we have that bisimilarity for this fragment of CCS is
a congruence, i.e., ift ≈ t′, then a.t ≈ a.t′ and if t1 ≈ t′1 et t2 ≈ t′2, then t1|t2 ≈ t′1|t′2.

Its proof of this important result will take profit of the material accumulated so
far: the characterization of bisimulation given in Section 4.3, the enrichment of a
coalgebra structure into a bialgebra structure provided by Proposition 4.4.10, and
the final bialgebra construction provided by Corollary 4.4.12. We thus embark into
showing how the transformation that maps β to β can be synthetised.

The CCS rules induce a transformation

ρ : Σ(id × B) → BT

where Σ is the signature functor associated with the syntax, i.e.

ΣX = 1 + X + . . . X + X × X

where there are as many copies of X as there are actions in Act. The transformation
ρA = [ρnil, . . . , ρa., . . . , ρ|] : Σ(A × BA) → BTA is defined as follows:

ρnil(a) = ∅ (for all a) ρa.(y,β)(b) =
{

{y} (b = a)
∅ (b '= a)

ρ|((y1,β1), (y2β2))(a) = {y′1|y2 | y′1 ∈ β1(a)} ∪ {y1|y′2 | y′2 ∈ β2(a)}

This way of defining ρ is systematic. We suppose that for each operator f of arity
n of a signature Σ we are given a finite set of rules of the form

x1
a1−→ Xa1

1 x1
a2−→ Xa2

1 . . . xn
a1−→ Xa1

n . . .

f(x1, . . . , xn) c−→ t

where, for exemple, x1
a1−→ Xa1

1 is an abbreviation for {x1
a1−→ x′

1 | x′
1 ∈ Xa1

1 }, and
where:

1. the Xa
i ’s are pairwise disjoint finite sets of variables, disjoint from {x1, . . . xn};

2. the variables appearing in t appear in the union of the Xa
i ’s and of {x1, . . . xn}.

For all A, we define ρf : (A × BA)n → BTA (and hence, globally, ρA = [ρf , . . .]) as
follows: ρf ((y1,β1), . . . , (yn,βn))(c) is the set of the terms ρ(t) such that

• ρ is a substitution defined on the set of variables appearing in the rules that
define the operational semantics of f , and such that ρ(x1) = y1, . . . , ρ(xn) =
yn;

• there exists a rule for f such that ρ(Xa1
1 ) ⊆ β1(a1), ρ(Xa2

1 ) ⊆ β1(a2),. . . ,
ρ(Xa1

n ) ⊆ βn(a1),. . . .
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The fundamental property of ρf (and hence of ρnil, . . . , ρa., . . . , ρ|, and hence of ρ)
is the following:

ρf is a natural transformation.

Let h : A → C. We have to verifiy the following equality: BTh ◦ ρf = ρfΣ(f ×Bf):

• (BTh◦ρf )((y1,β1), . . . , (yn,βn))(a) is the set of the (σ ◦ρ)(t)’s, where σ is the
substitution that maps each element y ∈ A to h(y) ∈ C;

• Σ(f × Bf)((y1,β1), . . . , (yn,βn)) = (h(y1),β′1), . . . , h(yn),β′n), where β′i(a) =
hβi(a)).

We have to compare the set of the (σ ◦ ρ)(t)’s with the set of the ρ′(t),’s where
ρ′(x1) = h(y1),. . . , ρ′(xn) = h(yn), ρ′(Xa1

1 ) ⊆ h(β1(a1)), ρ(Xa2
1 ) ⊆ h(β1(a2)),. . . ,

ρ(Xa1
n ) ⊆ h(βn(a1)),. . . . Clearly, every σρ is a ρ′ that fits. Conversely, we have to

show that every ρ′ that fits can be factorised as ρ = σ◦ρ′. We construct ρ as follows:

• for each xi, we set ρ(xi) = yi (impose);

• for each Xa
i , since ρ′(Xa

i ) ⊆ h(βi(a)), for each x′ ∈ Xa
i ) we can choose an

element y of βi(a) such that h(y) = ρ′(x), and set ρ(x′) = y. These choices do
not interfer with those made on x1, . . . , xn and on the other Xa

i ’s, by condition
(1).

• The function ρ′ does not need to be defined elsewhere, by condition (2) (note
that if we had allowed t to contain another variable z, we could then choose
ρ′(z) outside the image of h, and hence ρ′ would not factorise through A).

We show now how ρ allows us to define the transformation that associates β to β.

• We first define
ρ′ = Bµ ◦ ρ : Σ(T × BT ) → BT

This transformation formalises the instantiation of a rule. For example, the
instantiation of the first | rule with t1, t′1, t

′
2 yields the term t′1|t2 = µ(t′1|t2),

where the underlining recalls that ρTA goes to BTTA.

• Then we obtain β by (the variant with accumulators of) initiality:

A
ηA

BηA◦β

TA
νA

β

ΣTA

Σ<id,β>

BTA
ρ′AΣ(TA × BTA)

This diagram formalises the inductive construction of a proof tree by repeated
application of the (instantiated) rules.

From now on, we can ignore syntactic details, Our only assumptions are that we
have the following structures available:
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• a category C with products,

• an endofunctor Σ on C that freely generates a monad T ,

• an endofunctor B on C,

• and a natural transformation ρ : Σ(id × B) → BT .

As we have just seen, these data allow us to define an operation β 9→ β mapping
a coalgebra (A,β) to a coalgebra having TA as carrier. We shall show that this
constitutes a monad lifting of T to CB (cf. Section 4.4). For convenience, we recall
the properties that we have to prove:

1. for every f : β1 → β2, we have Tf : β1 → β2;

2. for every coalgebra β : A → BA, ηA and µA are coalgebra morphisms, i.e.

ηA : β → β µA : β → β

We establish (1) by showing that under the assumption Bf ◦ β1 = β2 ◦ f , BTf ◦ β1

and β2 ◦ Tf satisfy the same universal property:

A1

ηA1

BηA2◦β2◦f

TA1

νA1 ΣTA1

Σ<id , >

BTA2

ρ′A2
◦Σ(Tf×id)

Σ(TA1 × BTA2)

• For BTf ◦ β1, the commutation of the triangle follows from the commutation
of the triangle relative to β1, from the hypothesis on f and from the naturality
of η, and the commutation of the rectangle follows from the commutation of
the rectangle relative to β1 and (modulo the reorganisation Σ(Tf × BTf) =
Σ(Tf × id) ◦ Σ(id × BTf)) from the naturality of ρ′ (that follows itself from
the naturality of ρ).

• For β2 ◦ Tf , the commutation of the triangle follows from the naturality of η
and from the commutation of the triangle relative to β2, and the commutation
of the rectangle follows from the naturality of ν and from the commutation of
the rectangle relative to β2, modulo the reorganisation

Σ(< id ,β2 > ◦ΣTf = Σ(Tf × id) ◦Σ(id × β2) ◦Σ(< id , T f >)

We show now the property (2). For η, this is precisely the property of commutation
of the triangle relative to β. For µ, we proceed as for (1), taking now the following
universal problem:

TA
ηTA

β

TTA
νTA ΣTTA

Σ<id, >

BTA
ρ′A◦Σ(µ×id)

Σ(TTA1 × BTA)
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• β ◦ µ: by definition of µ and modulo a rearrangement of Σ(< id ,β >) ◦ Σµ.

• Bµ ◦ β. By definition of β, we have to prove:

BµA ◦ ρ′TA = ρ′A ◦ Σ(µA × id) ◦ Σ(id × BµA)

which follows from the definition of ρ′, from the naturality of ρ, and from the
associativity of µ:

BµA ◦ ρ′TA = (BµA ◦ BµTA) ◦ ρTA

= BµA ◦ (BTµA ◦ ρTA)
= BµA ◦ ρA ◦ Σ(µA × BµA)
= ρ′A ◦Σ(µA × id) ◦Σ(id × BµA)

This completes the proof of the fact that there is a monad lifting of T to the category
of B-coalgebras. Hence, by Proposition 4.4.8, there exists also a monad lifting of T to
the category of D-coalgebras, and this in turn is equivalent to having a distributive
law λTD → DT . Summarizing, we have proved the following statement:

Proposition 4.5.2 Let C be a category with products, let Σ : C → C with asso-
ciated freely generated monad T , let B : C → C with associated cofreely generated
comonad D, and let ρ be a natural transformation from Σ(id × B) to BT . Then
these data induce a monad-comonad distributive law λ : TD → DT .

The precise definition of λ can be inferred from the successive transformations
that we have described, but we shall not need to spell it out.

We are now ready to prove our main theorem.

Proof of Theorem 4.5.1. We have to show that ≈ is a congurence. By
Proposition 4.5.2, we have a monad-comonad distributive law. By Corollary 4.4.12,
we have a final bialgebra of carrier D1 (with the coalgebra structure given by δ1). By
Proposition 4.4.10, we can enrich β (more precisely the associated D-coalgebra) into
a bialgebra structure on TA (with the algebra structure given by µA). Therefore,
we have a diagram

TD1

Tk

D1

k

DD1

Dk

TTA
µA

TA DTA

where the right square, expressed as B-coalgebra morphism, says that k is the unique
coalgebra morphism from β to ν1. Therefore, by Proposition 4.3.4, if s1 ≈ t1, then
k(s1) = k(t1). Let f be an operator of the signature Σ (of arity 2), and let s1 ≈ t1 and
s2 ≈ t2. Consider f(s1, s2) ∈ TTA (the underlining of f serves to stress that we have
here a term of TTA over s1, s2 considered as variables in TA). Since k(s1) = k(t1)
and k(s2) = k(t2), we have (by definition of Tk)

(Tk)(f (s1, s2)) = f(k(s1), k(s2)) = (Tk)(f(t1, t2))
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Since on the other hand µA(f(s, t)) = f(s, t) for all s, t ∈ TA, by commutation of
the left square, we get k(f(s1, s2)) = k(f(t1, t2)), i.e., f(s1, s2) ≈ f(t1, t2), which
concludes the proof. !



Chapter 5

Lambda-calculus and categories

In this chapter, we provide an introduction to the syntax of the λ-calculus (Section
5.1), and we relate it to cartesian closed categories, viewed as a syntax (Section
5.3). An intermediate syntax, which has an interest on its own, is presented in
Section 5.2. Finally, the connection between λ-calculus and cartesian closed cate-
gories is exploited in Sections 5.4 and 5.5 to describe and study the properties of
an implementation technique for the λ-calculus. The underlying device, called the
Categorical Abstract Machine (CAM), has been used to implement the first version
of the programming language CAML (whose name was formed as a merge of “CAM”
and “ML”). The last section presents an interesting blend of theory and practice,
since at the same time a purely categorical theorem concerning free cartesian closed
categories is proved.

5.1 Untyped λ-calculus

In this section, we present the λ-calculus and its basic computation rule – the β-
reduction.

Definition 5.1.1 (λ-calculus ) The syntax of the untyped λ-calculus (λ-calculus
for short) is given by:

M ::= x || MM || λx.M,

where x is called a variable, M1M2 is called an application, and λx.M is called an
abstraction. The set of all λ-terms is denoted by Λ.

The following are frequently used abbreviations and terms:

λx1 · · · xn.M = λx1.(· · · λxn.M · · · )
MN1 · · ·Nn = (· · · (MN1) · · ·Nn)

I = λx.x K = λxy.x
∆ = λx.xx S = λxyz.(xz)(yz) .

127
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Definition 5.1.2 (head normal form) A term λx1 · · · xn.xM1 · · ·Mp, where x may
or may not be equal to one of the xi’s, is called a head normal form (hnf for short).

Remark 5.1.3 Any λ-term has exactly one of the following two forms: either it is
a hnf, or it is of the form λx1 · · · xn.(λx.M)M1 · · ·Mp (n ≥ 0, p ≥ 1).

Occurrences and contexts, which we introduce next, provide a notation allowing
us to manipulate subterms.

Definition 5.1.4 (occurrence) Let M be a term, and u be a word over the al-
phabet {0, 1, 2}. The subterm of M at occurrence u, written M/u, is defined as
follows:

M/ε = M
M/u = N

λx.M/0u = N

M1/u = N
M1M2/1u = N

M2/u = N
M1M2/2u = N

where ε is the empty word. The term M/u may well not be defined. If it is defined,
we say that u is an occurrence of M . The result of replacing the subterm M/u by
another term N is denoted M [u ← N ].

Example 5.1.5 (λx.xy)/02 = y (λx.xy)[02 ← x] = λx.xx .

Definition 5.1.6 (context) The contexts (with a unique hole) are defined by the
following syntax (where i ∈ ω):

C ::= [ ]i || x || CM || MC || λx.C .

where M is a λ-term

In Figure 5.1, we define the operation of filling the hole of a context by a term M . Of
course, this just means replacing the hole by M , in the most naive way! Occurrences
and contexts are related as follows.

Proposition 5.1.7 (occurrences/contexts) For every term M and every occur-
rence u of M , there exists a unique context C such that M = C[M/u].

Free occurrences of variables are defined in Figure 5.2 through a predicate Free(u,M).
We define Bound (u, v,M) (u is bound by v in M) by:

M/v = λx.P u = v0w M/u = x Free(w,P )
Bound(u, v,M)

.

If we are not interested in the actual occurrences at which variables appear bound
or free, we can define the sets FV (M) and BV (M) of free and bound variables of
M by:

FV (M) = {x | ∃u M/u = x and Free(u,M)}
BV (M) = {x | ∃u, v M/u = x and Bound(u, v,M)} .



5.1. UNTYPED λ-CALCULUS 129

[ ][N ] = N
x[N ] = x
(MC)[N ] = M(C[N ])
(CM)[N ] = (C[N ]M
(λx.C)[N ] = λx.(C[N ])

Figure 5.1: Filling the holes of a context

Free(ε, x)

Free(u, M)
Free(1u, MN)

Free(u, N)
Free(2u, MN)

Free(u, M) M/u '= x

Free(0u,λx.M)

Figure 5.2: Free occurrences

If M is a term and x '∈ FV (M), one often says that x is fresh (relative to M).

The definition of substitution of a term for a (free) variable raises a difficulty. We
expect λy.x and λz.x to be two different notations for the same thing: the constant
function with value x. But careless substitution leads to:

(λy.x)[x ← y] = λy.y (λz.x)[x ← y] = λz.y ,

only the second of which is intended. What has gone wrong is that, in the first
equality, the free variable y of the substituted term has been captured. This leads
to the capture-avoiding definition of substitution given in Figure 5.3. The choice
of z satisfying the side condition in the last clause of Figure 5.3 is irrelevant: we
manipulate terms up to the following equivalence ≡, called α-conversion:

(α) C[λx.M ] ≡ C[λy.(M [x ← y])] (y '∈ FV (M)) ,

for any occurrence context C and any term M .

We now introduce the basic computation rule of the λ-calculus.

Definition 5.1.8 (β-rule) The β-rule is the following relation between λ-terms:

(β) C[(λx.M)N ] → C[M [x ← N ]] ,

x[x ← N ] = N
y[x ← N ] = y (y '= x)
(M1M2)[x ← N ] = (M1[x ← N ])(M2[x ← N ])
(λy.M)[x ← N ] = λz.(M [y ← z][x ← N ]) (z '∈ FV (M) ∪ FV (N))

Figure 5.3: Substitution in the λ-calculus
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(λx.M)N → M [x ← N ]

(ν)
M → M ′

MN → M ′N
(µ)

N → N ′

MN → MN ′ (ξ)
M → M ′

λx.M → λx.M ′

Figure 5.4: β-reduction

where C is an occurrence context and M,N are arbitrary terms. A term of the form
(λx.M)N is called a redex.

In Figure 5.4, we give an alternative presentation of β-reduction, by means of an
axiom and inference rules.

Exercise 5.1.9 Show that the substitution algorithm as specified in Figure 5.3 is correctly
defined, i.e., terminates.

The λ-calculus, equipped with the β–reduction, is an example of a rewriting
system. We shall use the following (standard) notation: we denote by →∗ the
reflexive and transitive closure of → , and use → + to express that at least one
step is performed. The reflexive, symmetric, and transitive closure of → is denoted
simply with =.

Here are some examples of derivations, i.e., of sequences of successive rewritings.

Example 5.1.10 (1) II → I.

(2) SKK →∗ I.

(3) ∆∆ → ∆∆.

(4) (λx.f(xx))(λx.f(xx)) → f((λx.f(xx))(λx.f(xx))).

The last two examples show that there are infinite reduction sequences. Moreover,
the last example indicates how fixpoints can be encoded in the λ-calculus . If we set

Y = λf.(λx.f(xx))(λx.f(xx)),

then we have Y f =β f(Y f). The term Y is known as Curry’s fixpoint combinator.

Example 5.1.11 Church numerals:

Succ = λnfx.f(nfx)
0 = λfnx.x

Here are two different ways to program addition, multiplication and exponential:

m + n m Succ n λfx.m(f(nfx))
m × n m (λx.n + x) n λf.m(nf)
nm m (λx.n × x) n mn
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Another rule, in addition to β, is often considered:

(η) C[λx.Mx] → C[M ] (x '∈ FV (M)) .

This is an extensionality rule, asserting that ‘every term is a function’ (if it is read
backwards).

We state without proof the following result, which is one of the fundamental
theorems of the λ-calculus.

Theorem 5.1.12 (Church-Rosser) The β-reduction is confluent: If M →∗ N
and M →∗ P , then N →∗ Q and P →∗ Q for some Q.

The following exercise (based on [16]) states a negative result due to Klop.

Exercise∗ 5.1.13 Suppose that three constants D, F, S are added to the λ-calculus, together
with the following new rewriting axiom:

(SP ) D(Fx)(Sx) → x .

Show that confluence fails for β+(SP ). Hints: Consider the following so-called Turing
fixpoint combinator:

YT = (λxy.y(xxy))(λxy.y(xxy)) .

The advantage of this term over Y (cf. example 5.1.10) is that YT f is not only convertible
to, but reduces to, f(YT f). Set C = YT (λxy.D(F (Ey))(S(E(xy)))) and B = YT C, where
E is a free variable. Notice that B →∗ A and B →∗ CA, where A = E(CB). Show that A
and CA have no common reduct, by contradiction, taking a common reduct with a minimum
number of E’s in head position.

5.2 A more precise look at substitution

In this section, we come back in more detail to the definition of substitution and of
α-conversion, and provide a precise and rigorous treatment of these notions through
de Bruijn notation (introduced below). This notation allows a “unique” represen-
tation of an α-equivalence class of terms. Note however that this unique choice is
parameterized by a list of variables containing the free variables of the term. The
treatment that follows allows us to separate substitution from α-conversion.

We begin by giving another version of the definition of substitution (due to
Goubault [28]) which is now partial. It is based on the following definition of free
and bound variables:

FV (x) = {x} BV (x) = ∅
FV (MN) = FV (M) ∪ FV (N) BV (MN) = BV (M) ∪ BV (N)
FV (λx.M) = FV (M) \ {x} BV (λx.M) = BV (M) ∪ {x}

This definition coincides with that of the previous section for free variables, but
not for the bound variables (for example, in the sense of the previous section we
have BV (λx.y) = ∅).
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m[n ← N ] =






m if m < n
τn
0 (N) if m = n

m − 1 if m > n
τn
i (j) =

{
j if j < i
j + n if j ≥ i

(M1M2)[n ← N ] = (M1[n ← N ])(M2[n ← N ]) τn
i (N1N2) = (τn

i (N1))(τn
i (N2))

(λ.M)[n ← N ] = λ.(M [n + 1 ← N ]) τn
i (λ.N) = λ.(τn

i+1(N))

Figure 5.5: Substitution in de Bruijn notation

Definition 5.2.1 We say that x is substitutable by N in M if and only if x '∈
BV (M) and FV (N) ∩ BV (M) = ∅.

The point of this definition is that if these conditions hold, then the naive defi-
nition of the substitution is riskless:

x[x ← N ] = N
y[x ← N ] = y (y '= x)
(M1M2)[x ← N ] = M1[x ← N ]M2[x ← N ]
(λy.M)[x ← N ] = λy.(M [x ← N ])

In the rest of this section, we shall use this simplified definition.

We now move to de Bruijn notation. We introduce the following syntax:

M ::= n | MM | λ.M

where n is a natural number. The idea is to code a variable by its depth of binding.
For the free variables, one searches this binding information in a list of variables
that form somehow the environment of the term. The translation of the λ-calculus
into the de Bruijn calculus is thus indexed by a list of variables (we write |5x| for the
length of 5x, x ∈ 5y for the fact that x appears in the vector 5y,. . . ).

DB +x1,x, +x2(x) = | 5x2| (x '∈ 5x2)
DB+x(M1M2) = DB+x(M1)DB+x(M2)
DB+x(λy.M) = λ.DB+x,y(M)

In de Bruijn notation, the substitution is defined as shown in Figure 5.5.
Here are some explanations. When N is substituted for (or reaches) a free

occurrence of x in M , the binding depth of the bound variables of N is not modified,
but that of the free variables needs to be adjusted (to avoid the capture of free
variables). This explains the τn

0 (N) and the two cases of the defintion of τn
i (j).

Moreover, a λ disappears in the β-reduction, and this induces an adjustment of
the free variables of λx.M , whence the m − 1 in the third case of the defintion of
m[n ← N ]. The crossings of λ are recorded by increments by 1.

The following exercises provide a justification for this rather involved definition.
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Exercise 5.2.2 For all M,N, 5x1, x, 5x2 such that FV (M) ⊆ 5x1, x, 5x2, FV (N) ⊆ 5x1,
x '∈ 5x2, FV (N) ∩ 5x2 = ∅ and x is substitutable by N in M , show:

DB +x1, +x2(M [x ← N ]) = DB +x1,x, +x2(M)[| 5x2| ← DB +x1(N)]

For all N, 5x1, 5x2, 5x3 such that FV (N) ⊆ ( 5x1, 5x3) and FV (N) ∩ 5x1 ∩ 5x2 ⊆ 5x3, show:

τ | +x2|
| +x3| (DB +x1, +x3(N)) = DB +x1, +x2, +x3(N)

We define the axiom of β-reduction in de Bruijn notation as follows:

(λ.M)N →β M [0 ← N ]

This is justified by the following proposition:

Proposition 5.2.3 For all M , N and 5x such that FV (M) ⊆ 5x and FV (N) ⊆ 5x, if
M →β N , then DB+x(M) →β DB+x(N).

Proof. The case of the axiom is a instance of the first statement in Exercise 5.2.2,
applied in the case where 5x2 is empty. !

In this section, α-equivalence =α is redefined as the smallest congruence gener-
ated by:

λx.M = λy.M [x ← y] (x substitutable by y in M and y '∈ FV (M))

Exercise 5.2.4 1. For all M and all finite sets A of variables, show that there
exists M ′ =α M such that BV (M ′) ∩ A = ∅.

2. For all M,x,N , show that there exists M ′ =α M such that x is substitutable
by N in M ′.

Exercise 5.2.5 Let M,N be two λ-terms. Show that the following properties are
equivalent:

1. M =α N ,

2. ∀ 5x (FV (M) ∪ FV (N) ⊆ 5x ⇒ DB+x(M) = DB+x(N)),

3. ∃ 5x (FV (M) ∪ FV (N) ⊆ 5x and DB+x(M) = DB+x(N)).

Finally, we redefine the β-reduction as follows, on α-equivalence classes:

N is substitutable to x in M

[(λx.M)] → [M [x ← N ]]

[M ] → [N ]

[λx.M ] → [λx.N ]

[M1] → [M ′
1]

[M1M2] → [M ′
1M2]

[M2] → [M ′
2]

[M1M2] → [M1M ′
2]
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Proposition 5.2.6 The β-reduction is correctly defined, i.e., if (λx.M)N =α (λx′.M ′)N ′,
if x is substitutable by N in M and if x′ is substitutable by N ′ in M ′, then

M [x ← N ] =α M ′[x′ ← N ′] .

Proof. Let 5z such that FV ((λx.M)N) ⊆ 5z. Then

DB+z((λx.M)N) = DB+z((λx′.M ′)N ′) (by Exercise 5.2.5),

hence DB+z(N) = DB+z(N ′) and DB+z,x(M) = DB+z,x′(M ′). We obtain

DB+z(M [x ← N ]) = DB+z,x(M)[0 ← DB+z(N)]
= DB+z,x′(M ′)[0 ← DB+z(N ′)] = DB+z(M ′[x′ ← N ′])

by a double application of Exercise 5.2.2. We finally conclude by applying again
Exercise 5.2.5. !

Exercise 5.2.7 Show that the definitions of α–conversion and of substitution given
in the previous section are correct, i.e., two terms are α–convertible in the sense of
this section if and only if and only if they are so in the sense of the previous section,
and for all M,x,N there exists M ′ such that M ′ =α M , x is substitutable by N in
M ′ and M [x ← N ] =α M ′[x ← N ], where the substitution on the left is that of the
preceding section and the one on the right is that of this section. (Indication: go
through de Bruijn notation).

5.3 Categorical combinators

In this section, we relate λ-calculus and (cartesiant closed) categories, by means of
a syntactic translation from λ-calculus (in De Bruijn notation) to CCC’s, viewed as
a syntax. On the way, we introduce the simply typed λ-calculus. We describe an
implementation of the λ-calculus, based on this translation.

We provide a syntax of types:

A ::= int || A → A

(int is a basic type, there could be other such basic types). The simply typed terms
are the λ-terms accepted by the following typing system, where Γ is a list of variable
type declarations of the form x : A:

x does not appear in ∆

Γ, x : A,∆ < x : A

Γ < M : A → B Γ < N : A

Γ < MN : B

Γ, x : A < M : B

Γ < λx.M : A → B

The simply typed λ-calculus in de Bruijn notation is defined via the following
typing rules (where the contexts are now lists of types):

i ≤ n

An, . . . , A0 < i : Ai

Γ < M : A → B Γ < N : A

Γ < MN : B

Γ, A < M : B

Γ < λ.M : A → B
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We now move to cartesian closed categories, which we present here in a purely
syntactic (and self-contained) way. The language of types is enriched with finite
products (1 standing for the empty product):

A ::= int || 1 || A × A || A → A

The (untyped) terms, also called categorical combinators, are given by the following
syntax:

f ::= id || f ◦ f || 〈f, g〉 || π || π′ || Λ(f) || ev || !

The typed terms are the terms accepted by the following typing system, where the
judgements have the form A < f : B (cf. Chapter 1).

A < id : A

A < f : B B < g : C

A < g ◦ f : C A <! : 1

A < f : B A < g : C

A < 〈f, g〉 : B × C A × B < π : A A × B < π′ : B

A × B < f : C

A < Λ(f) : B → C (A → B) × A < ev : B

We consider categorical combinators up to provable equality with respect to the
following set of equations:

(f ◦ g) ◦ h = f ◦ (g ◦ h)
f ◦ id = f
id ◦ f = f

π ◦ 〈f, g〉 = f
π′ ◦ 〈f, g〉 = g
〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉
〈π,π′〉 = id

ev ◦ 〈Λ(f), g〉 = f ◦ 〈id , g〉
Λ(f) ◦ g = Λ(f ◦ 〈g ◦ π,π′〉)
Λ(ev) = id

f =!

All the equations (except the last one) can be considered without reference to types,
i.e., define also a calculus or untyped categorical combinators. The equation f =!
makes sense only for A < f : 1. We shall forget it temporarily.
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We next shall compile the λ-calculus in de Bruijn notation into the syntax of
categorical combinators, as follows. Types are translated into themselves. As for
(typed) terms, a judgement of type Γ < M : A is translated into a morphism

[[Γ]] < [[Γ < M : A]] : A

We first need to interpret contexts:

[[ ]] = 1 [[Γ, A]] = [[Γ]] × A

Il is instructive to represent this translation in a tree form, as it will then be straight-
forward to read the interpretation of variables beneath as an access path in a tree.
The translation of the typing judgements is the following:

[[An, . . . , A0 < i : Ai]] = (. . . (1 × An) × . . .) × A0 < π′ ◦ πi : Ai

[[Γ < MN : B]] = ev◦ < [[Γ < M : A → B]], [[Γ < N : A]] >
[[< λ.M : A → B]] = Λ([[Γ, A < M : B]])

Even if this translation is easier to understand in a typed framework, it can be as
well and more soberly expressed in an untyped framework:

[[i]] = π′ ◦ πi [[MN ]] = ev◦ < [[M ]], [[N ]] > [[λ.M ]] = Λ([[M ]])

We shall now show how the categorical equations (oriented from left to right)
allow us to simulate the β-reduction. A β-reduction step will be simulated by sev-
eral categorical rewriting steps. This is due to the fact that in the λ-calculus, the
substitution is defined outside the calculus itself, while the substitution process is
gradual in categories: in a substitution M [x ← N ], N traverses M progressively
down to the leaves x. In order to fill this gap, we extend the syntax of the λ-calculus
of de Bruijn with operators that render explicit, or internalise, substitution, and
with corresponding rules (oriented from left to right):

M ::= n || MM || λ.M || M [n ← N ] || τn
i (N)

The following exercise should make it easier to understand the details of the
definition of substitution in de Bruijn notation.

Exercise 5.3.1 Write typing rules for M [n ← N ] and τn
i (N).

We complete the categorical interpretation as follows:

[[M [n ← N ]]] = [[M ]] ◦ Pn(〈id , [[N ]]〉) [[τn
i (N)]] = [[N ]] ◦ P i(πn)

where P (f) = f × id = 〈f ◦π,π′〉 (and hence Λ(f)◦g = Λ(f ◦P (g))). The powers of
the operator P correspond to the successive traversals of λ nodes. The simulation
begins as follows (we omit the symbols [[ and ]]).

(λ.M)N → M [0 ← N ] reads as ev ◦ 〈Λ(M), N〉 → M ◦ 〈id , N〉

This allows us to assert a first slogan:
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substitution = composition

The defintion of [[M [n ← N ]]] for n > 0 (as well as that of [[τn
i (N)]]) is “dictated”

by the traversal of λ nodes. The rule (λ.M)[n ← N ] = λ.(M [n + 1 ← N ]) (resp.
τn
i (λ.N) = λ.(τn

i+1(N))) is then simulated using the rule

Λ(f) ◦ g → Λ(f ◦ 〈g ◦ π,π′〉)

The traversal of applications is simulated thanks to the associativity rule and to the
rule

〈f, g〉 ◦ h → 〈f ◦ h, g ◦ h〉

This allows us to assert a second slogan:

passage of the substitution = natural transformation

We recommend to the reader to check that these two categorical equations indeed
express the naturality in A and C of the bijections between C[A,B] × C[A,C] and
C[A,B × C] and between C[C × A,B] and C[C,A → B], respectively.

We are left with the variable case:

[[m[n ← N ]]] = (π′ ◦ πm) ◦ Pn(< id, [[N ]] >)

We note that by definition of P , and thanks to the two projection rules and to the
right identity rule, we have:

π ◦ P (f) → f ◦ π π′ ◦ P (f) →∗ π′

We examine the three cases (cf. Figure 5.5):

• m < n. Repeating the commutation of π and P , we obtain:

π′ ◦ πm ◦ Pn(〈id, [[N ]]〉) →∗ π′ ◦ Pn−m(〈id , N〉) ◦ πm →∗ πm

(proceeding with care, one may use the associativity rule only from left to
right).

• m = n. We have in this case:

π′ ◦ πn ◦ Pn(〈id , [[N ]]〉) →∗ π′ ◦ 〈id , N〉 ◦ πn →∗ [[N ]] ◦ πm

whence the defintion of [[τn
0 (N)]].

• m > n. We have:

π′ ◦ πm ◦ Pn(〈id , [[N ]]〉) →∗ π′ ◦ πm−n ◦ 〈id , [[N ]]〉 ◦ πn →∗ π′ ◦ πm−1

Finally, we examine [[τn
i (j)]].
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• j < i. We have:

π′ ◦ πj ◦ P i(πn) →∗ π′ ◦ P i−j(πn) ◦ πj →∗ π′ ◦ πj

• j ≥ i.
π′ ◦ πj ◦ P i(πn) →∗ π′ ◦ πj−i ◦ πn ◦ πi →∗ π′ ◦ πj+n

which completes the proof of correctness of the simulation.

Remark 5.3.2 1. We did not use the equation Λ(ev) = id. It allows us to
validate the rule of η-conversion λx.Mx = M .

2. We could have extended the λ-calculus to product types:

M ::= x || MM || λx.M || fst(M) || snd(M) || (M,M) || !

The simulation of the β-reduction extends without difficulty. The rule 〈π,π′〉 =
id allows us to validate the “η-conversion of the product”, or surjective pairing,
which is the following rule:

(fst(M), snd(M)) = M

In fact, there is a complete equivalence between λ-calculus with products and
categorical combinators.

3. Categorical combinators [15] have been the first calculus to provide an explicit
computational treatment of substitution. Since then, syntaxes closer to that of
the λ-calculus have been proposed, the first one being the λσ-calculus [1, 17].

Exercise 5.3.3 Justify the claims about η and about surjective pairing made in
Remark 5.3.2.

5.4 The Categorical Abstract Machine

In this section, we show how to execute categorical combinators, not by rewriting,
but by defining an evaluation function, by inference rules, From the specification of
the evaluation function, we shall in turn extract an abstract machine expressed by
a transition system.

The idea underlying the definition of the evaluation function is to formalise the
set-theoretical functions underlying the combinators. In the following rules, the
notation 〈f |s〉 = t should read as: “the value of f at s is t.
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〈id |s〉 = s

〈f |s〉 = s1 〈g|s1〉 = s2

〈g ◦ f |s〉 = s2

〈f |s〉 = s1 〈g|s〉 = s2

〈〈f, g〉|s〉 = (s1, s2) 〈π|(s1, s2)〉 = s1 〈π′|(s1, s2)〉 = s2

〈Λ(f)|s〉 = Λ(f)s

〈f |(s, t)〉 = s1

〈ev |(Λ(f)s, t)〉 = s1

On the way, we have defined a syntax for new syntactical objects s, that we call
values:

s ::= () || n || (s, s) || Λ(f)s

The value () is used for evaluating a closed term, while n is a constant of basic type.
For example:

〈Λ(π′)|()〉 = Λ(π′)() 〈ev◦ < Λ(π′),π′ > |2〉 = 2

The construction Λ(f)s is inspired from the practice of functional programming
languages implementation: it is a closure that stores the code of a function together
with its environment at declaration time. In a functional langage like CAML or
Haskell, evaluation is weak, i.e., does not compute under λ’s: for example, λx.(λy.y)x
is not evaluated, but (λx.(λy.y)x)2 is (yielding value 2). The passage of λx.(λy.y)x
to λx.x is a program transformation, or optimisation, which can be taken care of by
different tools, such as partial evaluation.

The above formal system is deterministic, since there is exactly one rule per
combinator. We shall show that it is total, in the sense that 〈f |s〉 is always well
defined (if f and s are correctly typed, and if their types match).

But we first derive an abstract machine from our specification of the evaluation
function. Since this specification is recursive terminal, it is straightforward to turn
it into an iterative one, by means of a stack. We now view a term as a piece of code:
composition becomes code concatenation, and the symbols of the pairing combinator
become instructions PUSH, SWAP and CONS, respectively. Here are the transitions of
the machine:

code(id) = SKIP code(π) = CAR code(π′) = CDR code(ev) = ev
code(g ◦ f) = code(f); code(g) code(Λ(f)) = Λ(code(f))
code(〈f, g〉) = PUSH; code(f); SWAP; code(g); CONS
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〈SKIP;C | s | S〉 → 〈C | s | S〉
〈CAR;C | (s1, s2) | S〉 → 〈C | s1 | S〉
〈CDR;C | (s1, s2) | S〉 → 〈C | s2 | S〉
〈PUSH;C | s | S〉 → 〈C | s | s · S〉
〈SWAP;C | s1 | s2 · S〉 → 〈C | s2 | s1 · S〉
〈CONS;C | s2 | s1 · S〉 → 〈C | (s1, s2) | S〉
〈Λ(C);C ′ | s | S〉 → 〈C ′ | Λ(C)s | S〉
〈ev ;C ′ | (Λ(C)s, t) | S〉 → 〈C;C ′ | (s, t) | S〉

This machine is called the CAM (Categorical Abstract Machine) [14]. The three
components are called code, environment and stack, respectively. The two evaluation
mechanisms are related as follows.

Proposition 5.4.1 If 〈f |s〉 = t, then 〈f | s | 〉 →∗ 〈 | t | 〉 (the empty space means
empty stack or empty code).

Proof. Left to the reader.

5.5 Termination of the CAM and hierarchical coherence

In this section, we show that the (typed) CAM terminates, i.e. does not admit infi-
nite sequences of successive transitions, and we prove an invariant of the evaluation
fonction, a consequence of which is the following theorem, due to Lafont [33].

Theorem 5.5.1 The embedding of a category C in the free cartersian closed cate-
gory CCC (C) generated by C is full and faithful.

We have to accommodate the datas of the category C. To this aim, we adjust
the syntax of types and categorical combinators:

A ::= A || 1 || A × A || A → A
f ::= f || id || f ◦ f || 〈f, g〉 || π || π′ || Λ(f) || ev || !

The clauses A and f import the objets and the morphisms of C.
We add the following typing judgement:

f ∈ C[A,B]

A < f : B

The free cartersian closed category CCC (C) is the category whose objets are the
types A generated by the syntax of types, and the morphisms are the categorical
terms that are generated by the syntax of terms, quotiented by the equations given
above, together with

id = id
f ◦ g = f ◦ g
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We also adjust the syntax of values:

s ::= f || (s, s) || Λ(f)s || !

We shall type values by means of judgements of the form <A s : B, and at the
same time we shall define a “decompilation” s 9→ ′s from values to terms (such that
A < ′s : B):

f ∈ C[A,B]

<A f : B ′f = f <A! : 1 ′! =!

<A s : B <A t : C

<A (s, t) : B × C ′(s, t) = 〈′s, ′t〉

C × B1 < f : B2 <A s : C

<A Λ(f)s : B1 → B2
′(Λ(f)s) = Λ(f) ◦ ′s

Note that the transformation ′ is essentielly an inclusion from values to terms: we
could as well have written 〈s, t〉 instead of (s, t) and Λ(f) ◦ s instead of Λ(f)s in
the first place, but the notation change underlines the fact that this subset of terms
plays a distinct role.

We extend the definition of the evaluator by the following clauses:

〈f |g〉 = f ◦ g 〈!|s〉 =!

The key property is stated in the following proposition.

Proposition 5.5.2 If B < f : C and <A s : B, then there exists a (unique) t such
that 〈f |s〉 = t. Moreover, we have <A t : C.

Proof. We use a realisability technique (in a particularly simple form) . We write
〈f |s〉 ↓ if there exists t such that 〈f |s〉 = t. We define the predicate s ‖−AB (s
realises B) as follows:

<A f : B

f ‖−AB

s ‖−AB t ‖−AC

(s, t) ‖−AB × C

∀ t (t ‖−AB1 ⇒ 〈f |(s, t)〉 ↓)

Λ(f)s ‖−AB1 → B2

The statement is an immediate consequence of the following properties:

(A) If B < f : C and s ‖−AB, then there exists t such that 〈f |s〉 = t, and moreover
t ‖−AC. This is proved by induction on f . In the case of the composition,
we use the clause “moreover t ‖−AC”. The definition of Λ(f)s ‖−AB1 → B2 is
precisely designed to pass the case ev. All the other cases are evident.
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(B) If <A s : B, then s ‖−AB. We proceed here by induction on s. The only
non trivial case is Λ(f)s. By induction, we have s ‖−AC. Let t be such that
t ‖−AB1. We have (s, t) ‖−AC × B1, hence by property (A) (which we have
proved independently), we have 〈f |(s, t)〉 ↓. Hence Λ(f)s ‖−AB1 → B2. This
concludes the proof. !

Corollary 5.5.3 The CAM (executed on correctly typed terms) terminates.

Proof. Cf. Proposition 5.4.1. !
But there is more to this story. We now prove a coherence result.

Proposition 5.5.4

(B < f : C , <A s : B , 〈f |s〉 = t) ⇒ < f ◦ ′s = ′t

Proof. The proof is by induction on the proof that 〈f |s〉 = t. We use the same
equations as for the simulation of β, with two differences:

1. we do not use the naturaliy of Λ (weak evaluation!);

2. we use a variant of the rule that allows us to initiate the β-reduction:

ev ◦ 〈Λ(f) ◦ h, g〉 = f ◦ 〈h, g〉

.

We can now prove the hierarchical coherence theorem

Proof of Theorem 5.5.1.

• The embedding is full. Let A < f : B, and let s = 〈f |id〉 (with <A id : A).
(We now that s exists by totality.) By the typing, we know that s = g, for
some g, with <A g : B. By coherence, we have < f ◦ ′id = ′g, hence < f = g.

• The embedding is faithful. We can show that for all categorical axioms f = g,
we have 〈f |s〉 = 〈g|s〉 for all (correctly typed) s. Thus if < f = g, we have
(using the clause of the evaluator for the constants f , g):

f = f ◦ id = 〈f |id〉 = 〈g|id〉 = g ◦ id = g

i.e., if f and g are equal modulo the equations that characterise CCC (C), then
f and g coincide. !

Note that Theorem 5.5.1 holds as well for a slightly weaker quotient (by the
equational theory described just before the proof of the hierarchical coherence prop-
erty.
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énumérative, Lecture Notes in Mathematics 1234, 126-159 (1986).

[31] M. Kelly, On the operads of J.P. May, Reprints in Theory and Applications of
Categories 13, 1-13 (2005).

[32] J.-L. Krivine, Lambda-calculus, types et modèles, Masson (1991).
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