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Abstract
The language of Algebraic Geometry combines two comple-
mentary and dependent levels of discourse: on the geometric
side, schemes define spaces of the same cohesive nature as
manifolds ; on the vectorial side, every scheme X comes
equipped with a symmetric monoidal category of quasico-
herent modules, which may be seen as generalised vector
bundles on the scheme X . In this paper, we use the func-
tor of points approach to Algebraic Geometry developed
by Grothendieck in the 1970s to establish that every co-
variant presheaf X on the category of commutative rings —
and in particular every scheme X — comes equipped “above
it” with a symmetric monoidal closed category PshModX
of presheaves of modules. This category PshModX defines
moreover a model of intuitionistic linear logic, whose ex-
ponential modality is obtained by glueing together in an
appropriate way the Sweedler dual construction on ring
algebras. The purpose of this work is to establish on firm
mathematical foundations the idea that linear logic should
be understood as a logic of generalised vector bundles, in
the same way as dependent type theory is understood today
as a logic of spaces up to homotopy.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; • Social and professional
topics → History of programming languages;

Keywords algebraic geometry, functor of points, linear
logic, presheaves of modules, Sweedler dual construction
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1 Introduction
The first calculus ever designed in human history is probably
elementary arithmetic with addition, subtraction and multi-
plication. Beautiful but still somewhat rudimentary, the core
calculus becomes much more intricate and challenging when
one extends it with division. The critical novelty of division
with respect to the other operations is that, indeed, it is not

LICS’20, July 8–12, 2020, Beijing, China
2020.

a total function, because one needs to check that the denom-
inator y is not equal to zero before performing the fraction
x{y of a value x by the value y. Understood with program-
ming languages in mind, elementary arithmetic extended
with division thus provides the basic example of a language
admitting “syntax errors” and meaningless expressions such
as 3{0 or 0{0. In an extraordinarily fruitful insight, Descartes
understood that elementary arithmetic is intrinsically related
to geometry, and that every system of polynomial equations
(constructed with addition, subtraction and multiplication)
describes an algebraic variety defined as the set of solutions
of the system of equations. Typically, the circle C of radius 1
with center positioned at the origin may be described as the
set of coordinates px ,yq P RˆR in the cartesian plane, satis-
fying the well-known quadric equation x2 ` y2 “ 1. Hence,
the domain of definition D of the two-variable polynomial f
with division

f : px ,yq ÞÑ 1
x 2`y2´1 : D R (1)

is precisely defined as the complement set D “ R2zC of the
circle C in the plane R2. It should be noted that the algebraic
curve C defines a closed set in the usual euclidian topology
as well as in the Zariski topology, and that the domain D of
definition thus defines an open set in both topologies. There
lies a basic lesson and important principle of continuity:
every time an operation such as f obtained by dividing two
polynomials can be performed on a given point x of the
space, there exists a “sufficiently small” neighborhoodU of
the point x such that the operation f can be performed on
every point y P U of that neighborhood.

Basic Principles of Algebraic Geometry. A number of ex-
ceptionally talented mathematicians were able to turn, gener-
ations after generations, the study of this basic and primitive
calculus of polynomials with division into a sophisticated
and flourishing field of investigation — called Algebraic Ge-
ometry — at the converging point of algebra, geometry and
logic, see for instance [6, 8, 9, 19, 22]. Thanks to the vision-
ary ideas by Grothendieck, who played a defining role in
this specific turn, the prevailing point of view of Algebraic
Geometry today is operational and functorial at the same
time. Operational, because the notion of geometric space
elaborated in the theory is not primary but secondary, and
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derived from the intuition that every space X should de-
fine a topological space pX ,ΩX q equipped for every open
set U with a set OX pU q of local operations, called regular
functions. These regular functions are typically defined as
polynomials with division, in the same fashion as (1). This
set OX pU q of regular functions is closed under addition, sub-
traction and multiplication, and thus defines a commutative
ring. Functorial, because every space in Algebraic Geometry
gives rise to a ringed space [11, 14] defined as a topological
space pX ,ΩX q equipped with a contravariant functor

OX : Ω
op
X Ring

from the category ΩX of open sets of X ordered by inclusion
to the category Ring of commutative rings. The purpose of
the functorial action of OX is to describe the restriction
functions

OX pV Ď U q : OX pU q OX pV q.

which take an operation f P OX pU q defined on an open
setU and restrict it to an operation

f |V :“ OX pV Ď U qpf q

on an open subset V Ď U . This operational and functorial
(rather than directly geometric) understanding of the notion
of space is supported by the fundamental observation that
every commutative ring R defines a ringed space

SpecR “ pSpecR,OSpecRq (2)
on the set of prime ideals p of the commutative ring R. This
ringed space SpecR is called the affine scheme associated
to the commutative ring R. Every space X of the theory,
called a scheme, is then defined as a patchwork of affine
schemes SpecRi carefully glued together using the functorial
language of presheaf and sheaf theory.

Modules and Vector Bundles. One distinctive feature of
Algebraic Geometry is that every scheme X comes equipped
with a symmetric monoidal category qcModX of quasico-
herent sheaf ofOX -modules. By a presheaf ofOX -modules
M of a ringed space pX ,OX q, one simply means a contravari-
ant functor

M : Ω
op
X Ab (3)

to the category Ab of abelian groups, and such that each
abelian group MpU q defines a OX pU q-module in the usual
algebraic sense. An important result of Algebraic Geometry
called the Serre-Swann theorem states that a vector bun-
dle on a suitable ringed space pX ,OX q can be equivalently
encoded as its sheaf of sections, which defines a locally
free and projective sheaf of OX -modules, see [26, 31]. Ac-
cordingly, a sheaf of OX -modules is called quasicoherent
when it is locally presentable – in the expected sense that it
is locally the cokernel of a morphism of free modules. The
category qcModX extends the category of vector bundles
in order to define an abelian category where kernels and

direct images can be computed. Consequently, a sheaf of
OS -modules A over a scheme S should be understood as
some kind of very liberal notion of vector bundle over S .

This leads us to the foundational dichotomy between
schemes and sheaves of modules which lies at the heart
of contemporary Algebraic Geometry:

manifolds „ schemes
vector bundles „ sheaves of modules

Linear logic. Our main purpose in the paper is to associate
to every scheme X a specific model of intuitionistic linear
logic, where formulas are interpreted as generalised vector
bundles, and where proofs are interpreted as suitable vec-
tor fields. In order to achieve that aim, we will construct a
model of intuitionistic linear logic, which we find convenient
to formulate directly as a linear-non-linear adjunction.
Recall that in this formulation of the categorical semantics
of intuitionistic linear logic, the formulas of the logic are
interpreted as the objects of a symmetric monoidal closed
category pLinear,b,⊸, Iq equipped with an adjunction

Multiple Linear

Lin

J

Exp

(4)

where (1) the category Multiple has finite products with
cartesian product ˆ and terminal object 1 and (2) the functor
Linear is symmetric monoidal (in the strong sense) from
pMultiple,ˆ,1q to pLinear,b, Iq. The resulting comonad

! :“ Lin ˝ Exp (5)

on the category Linear interprets the exponential modality
of linear logic, whose effect is to relax the linearity constraint
on the formulas of the form !Awhich may be thus duplicated
and erased. Note that the category Multiple itself is not
required to be cartesian closed. The reason is that for every
object K of the category Multiple and for every object L
of the category Linear, the object K ñ L defined in the
category Linear in the following way:

K ñ L :“ LinpKq ⊸ L

comes equipped with a natural bijection:

MultiplepK ˆK 1,ExppLqq – MultiplepK 1,ExppK ñ Lqq.

This form of currification is sufficient to interpret the simply-
typed λ-calculus, in the category Multiple, using the hierar-
chy of types of the form ExppLq for L in the category Linear,
see [3, 23] for details. The reader will notice here impor-
tant and fascinating connections with the properties of mo-
noidal adjunctions in Algebraic Geometry, see for instance
[2, 10, 20].
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The functor of points approach. In order to associate a
model of linear logic (4) to every scheme X , one thus needs
to define a symmetric monoidal closed category Linear. In
order to keep the construction simple, and to avoid using
sheafification [19] and quasi-coherators [16, 18, 34], we take
the radical step to define Linear as the category PshModX
of presheaves of OX -modules, and module homomorphisms
between them. The category

Linear “ PshModX

is symmetric monoidal closed [13] and thus comes with a
tensor product bX , a tensorial unit OX (the structure sheaf)
and an internal hom⊸X . Following a well-established tradi-
tion in linear logic, we then define Multiple as the cartesian
category

Multiple “ PshCoAlgX

of commutative comonoids in the category PshModX ,
which are called commutative coalgebras in that context.
In order to work in a convenient setting, we will make great
usage of the functor of points approach to Algebraic Ge-
ometry, developed by Grothendieck and his school in the
1970s [5, 13, 18]. This approach is based on the observation
that the Spec construction (2) defines a functor

Spec : Ringop Ñ Scheme (6)

into the category Scheme of schemes. The functor (6) induces
in turn a nerve functor

nerve : Scheme rRing,Sets

which associates to every commutative ring R the set of
R-points in the scheme X , simply defined as

SchemepSpecR,X q

The nerve functor is fully faithful and enables one to see
every scheme X as a specific covariant presheaf

nervepX q : Ring Set

over the category Ring of commutative rings. We find con-
venient to work in that functorial setting, and to extend our
inquiry from schemes to Ring-spaces, defined as covariant
presheaves over the category Ring of commutative rings.
So, to every such Ring-space X , we will associate a specific
model of intuitionistic linear logic, where formulas are inter-
preted in PshModX as presheaves ofOX -module, understood
as generalised vector bundles on the Ring-space X . The con-
struction of the linear-non-linear adjunction (4) and of the
exponential modality (5) is performed using the Sweedler
dual construction, which reveals a fascinating duality be-
tween algebras and coalgebras [1, 4, 15, 27, 30].

Outline of the paper. We start by introducing the cate-
goryRing of commutative rings in §2 and the categoryModR
of R-modules in §3. The categoriesMod andMod
 of mod-
ules are formulated in §4 and §5. We then equip in §6 every
categoryModR with a tensor product noted bR , and deduce
in §7 that Mod is symmetric monoidal as a ringed category.
We then construct in §8 and §9 the categoriesAlg andCoAlg
of commutative algebras and coalgebras. The cofree com-
mutative comonoid computed by Sweedler double dual is
described in §10. We then introduce the functor of points ap-
proach in §11 and express in §12 the notion of presheaf mod-
ules in that language. The categories PshMod and PshMod


of presheaves of modules are introduced in §13 and §14. Our
main technical result comes in §15 with the observation that
PshMod is symmetric monoidal closed above the cartesian
closed category rRing,Sets. From this, we deduce in §16 that
the category PshModX is symmetric monoidal closed. After
introducing in §17 the category PshCoAlg of presheaves of
commutative coalgebras, we construct the linear-non-linear
adjunction in §18 and conclude in §19.

2 The category Ring of commutative rings
We suppose given a symmetric monoidal category pA ,b,1q

with reflexive coequalizers, preserved by the tensor product
on each component. The basic example we have in mind is
the category A “ Ab of abelian groups and linear maps
between them. For that reason, we choose to use the terminol-
ogy of Algebraic Geometry, and define a ring as a monoid
object pR,m ,eq in the monoidal category pA ,b,1q. In other
words, a ring pR,m ,eq is a triple consisting of an object R of
the category A and two mapsm : R bR Ñ R and e : 1 Ñ R
making the diagrams below commute:

R b R b R R b R

R b R R

mbR

Rbm m

m

R b R

R R

R b R

mebR

Rbe

idR

m

A commutative ring is a ring pR,m ,eq such that the dia-
gram below commutes

R b R R b R

R
m

γR,R

m

where γA,B : A b B Ñ B b A denotes the symmetry map at
instance A,B of the symmetric monoidal category A . Note
that a commutative ring is just the same thing as a commu-
tative monoid object pR,m ,eq in the symmetric monoidal
category A . Given two rings R and S , a ring homorphism

u : pR,mR ,eRq pS ,mS ,eS q

3
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is a map u : R Ñ S of the category A , making the diagrams
below commute:

R b R S b S

R S

mR

ubu

mS

u

1

R S

eR eS

u

The category Ring has the commutative rings as objects, and
the ring homomorphisms u : R Ñ S between them as maps.
It is worth mentioning that the category Ring has finite sums,
defined by the tensor product R,S ÞÑ RbS of the underlying
category A , together with the initial object defined as the
monoidal unit 1 seen as a commutative monoid.

3 The categoryModR of R-modules
Given a commutative ring R defined in §2 as a commutative
monoid object in the category A , an R-module pM ,actq is
a pair consisting of an objectM and of a map

act : R b M Ñ M

in the category A , making the diagrams below commute:

R b R b M R b M

R b M M

mRbM

Rbact act

act

R b M

M M

acteRbM

idM

Equivalently, an R-module is an Eilenberg-Moore algebra
for the monad A ÞÑ R b A associated to the commutative
ring R in the category A . A R-module homomorphism
f : M Ñ N between two R-modules M and N is a map
f : M Ñ N making the diagram below commute:

R b M R b N

M N

Rbf

actM actN
f

(7)

We writeModR for the category of R-modules and R-module
homomorphisms f : M Ñ N between them.

4 The categoryMod of modules and
module homomorphisms

In the same spirit, a module is defined as a pair pR,Mq con-
sisting of a commutative ring R and of an R-moduleM . Now,
a module homomorphism,

pu, f q : pR,Mq Ñ pS ,N q

is a pair consisting of a ring homomorphism u : R Ñ S and
of a map f : M Ñ N making the diagram below commute:

R b M S b N

M N

ubf

actM actN
f

(8)

The category Mod has the modules pR,Mq as objects, and
the module homomorphisms pu, f q : pR,Mq Ñ pS ,N q as
morphisms. There is an obvious functor

π : Mod Ring (9)

which transports every module pR,Mq to its underlying com-
mutative ring R, and every module homomorphism pu, f q :
pR,Mq Ñ pS ,N q to its underlying ring homomorphism u :
R Ñ S . For that reason, we often find convenient to write

u : R S |ù f : M N

for a module homomorphism pu, f q : pR,Mq Ñ pS ,N q as de-
fined in (8). The notation is inspired by [24] and the intuition
that every ring homomorphism u : R Ñ S induces a “fiber”
consisting of all the module homomorphisms of the form
pu, f q : pR,Mq Ñ pS ,N q living “above” and refining the ring
homomorphismu : R Ñ S . Note moreover that the fiber of π
of a commutative ring R coincides with the category ModR
defined above.
As it is well-known, the functor π : Mod Ñ Ring de-

fines a Grothendieck fibration. The reason is that every pair
consisting of a ring homomorphism u : R Ñ S and of a
S-module pN ,actN q induces an R-module noted

resuN “ pN ,act1N q

with same underlying object N as the original S-module, and
with action map act1N : RbN Ñ N defined as the composite:

act1N “ R b N S b N N
ubN actN

The S-module pN ,actN q comes moreover with a module
homomorphism

u : R S |ù idN : resuN N (10)

which is weakly cartesian (or cartesian in the original sense
by Grothendieck [12], Exposé VI, Def. 5.1) in the sense that
every module homomorphism

u : R S |ù f : M N

factors uniquely as

M resuN N
pidR ,hq pu,idN q

for a map h : M Ñ resuN in the categoryModR . Note that
the unique solution h is in fact equal to the original map
f : M Ñ N , seen this time as a map between R-modules.
Given a ring homomorphism u : R Ñ S , the existence of a
weakly cartesian map of the form (10) for every S-module N
ensures the existence of a functor

resu : ModS ModR (11)

called restriction of scalar along u. This added to the fact
that the composite of two weakly cartesian maps is a weakly
cartesian map, establishes that the functor π : Mod Ñ Ring
is a Grothendieck fibration.

4
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At this stage, we use the fact that the category A has
reflexive coequalizers, preserved by the tensor product com-
ponentwise, in order to show that the functor (11) has a left
adjoint noted

extu : ModR ModS .

The functor extu is constructed as follows. Every ring homo-
morphism u : R Ñ S induces a R b S-module noted R bu S
and defined as the reflexive coequalizer of the diagram:

R b R b S R b S

mRbS

pRbmS q˝pRbubSq

RbeRbS

computed in the category A . Now, given three commutative
rings R, S1 and S2, we define the functor

⊛R : ModS1bR ˆ ModRbS2 ModS1bS2 (12)

which transports a pair pM ,N q consisting of a S1bR-moduleM
and a RbS2-moduleN to the S1bS2-moduleMbRN defined
as the reflexive coequalizer of the diagram:

M b R b N M b N

actM b N

M b actN

M b eR b N

computed in the category A . Here, the two maps actM :
MbR Ñ M and actN : RbN Ñ N are deduced by restriction
of scalar from the S1bR-module structure ofM and theRbS2-
module structure of N . The left adjoint functor extu is then
defined in the following way

extu : M ÞÑ M ⊛R pR bu Sq

by applying the construction (12) to the R-moduleM and to
the R b S-module R bu S defined earlier, in order to obtain
the S-moduleM bR pR bu Sq.

5 The categoryMod
 of modules and
module retromorphism

Here, we make the extra assumption that the category A
is symmetric monoidal closed, with coreflexive equalizers.
The internal hom-object in A is noted rM ,N s. A module
retromorphism

pu, f q : pS ,N q Ñ pR,Mq

is a pair pu, f q consisting of a ring homomorphism u : R Ñ

S and of a map f : N Ñ M making the diagram below
commute:

R b M R b N S b N

M N

actM

Rbf ubN

actN

f

(13)

The categoryMod
 has ring modules as objects and module
retromorphisms pu, f q : pS ,N q Ñ pR,Mq as morphisms.

There is an obvious functor

π : Mod
 Ring (14)

which transports every module retromorphism pu, f q to the
underlying ring homomorphism u : R Ñ S . Note that the
functor π is a Grothendieck fibration, which coincides in
fact with the opposite Grothendieck fibration of π defined
in (9), see [17, 32]. It turns out that the functor π is in fact
a bifibration. Given a ring homomorphism u : R Ñ S , the
functor defined by coextension of scalar along u

coextu : ModR ModS

transports every R-module pM ,actM q to the S-module

rS ,Msu (15)

defined as the coreflexive equalizer, in the category A , of
the diagram below:

rS ,Ms rR b S ,Ms

rubS,Ms˝rmS ,Ms

rRbS,actM s˝rRb ,́Rb´s

reRbS,Ms

Note that the coreflexive equalizer rS ,Msu provides an in-
ternal description, in the category A , of the set of maps
f : S Ñ M making the diagram below commute:

R b M R b S

S b S

M S

actM

Rbf

ubS

mS

f

(16)

or equivalently, as the set of R-module homomorphisms
f : resuS Ñ M . In summary, putting together the results and
constructions of §3, §4 and §5, every ring homomorphism u :
R Ñ S induces three functors

ModR ModS
coextu

extu

resu

organized into a sequence of adjunctions

extu % resu % coextu

where extension of scalar extu is left adjoint, and coextension
of scalar coextu , right adjoint to restriction of scalar resu .

6 The categoryModR is symmetric
monoidal closed

A well-known fact of algebra is that the categoryModR of
R-modules is symmetric monoidal closed. Its tensor product

bR : ModR ˆ ModR ModR
5
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transports every pair of R-modulesM , N into the reflexive
coequalizer of the diagram below

M b R b N M b N

actM b N

M b actN

M b eR b N

computed in the category A , and its tensorial unit is the
commutative ring 1R “ R itself, seen as an R-module. The
internal hom of the category ModR noted

r´,´sR : Modop
R ˆ ModR ModR

transports every pair of R-modulesM , N to the coreflexive
equalizer of the diagram below:

rM ,N s rR b M ,N s

ractM ,Ms

rRbM,actN s˝rRb ,́Rb´s

reRbM,N s

Note that the definitions of the tensor product bR and of
the internal hom r´,´sR are mild variations of the construc-
tions (12) and (15) described previously in §4 and §5.

7 The categoryMod as a symmetric
monoidal ringed category

The category Mod defined in §4 comes with a functor π :
Mod Ñ Ringwhose fibers are precisely the categoriesModR
of R-modules. For that reason, the family of tensor prod-
ucts bR described in §6 induces a fibrewise (or vertical)
tensor product on Mod above Ring, which may be conve-
niently described in the followingway. Consider the category
Mod ˆRing Mod defined by the pullback diagram below:

Mod ˆRing Mod Mod

Mod Ring

π

π

The fibrewise tensor product

bMod : Mod ˆRing Mod Mod (17)

transports every pair of modules pR,Mq and pR,N q on the
same commutative monoid R to the R-module pR,M bR N q,
and every pair of module homomorphisms

u : R S |ù h1 : M1 N1

u : R S |ù h2 : M2 N2

above the same ring homomorphismu : R Ñ S to themodule
homomorphism

u : R S |ù h1 bu h2 : M1 bR M2 N1 bS N2

where h1 bu h2 is defined as the unique map making the
diagram below commute:

M1 b R b M2 N1 b S b N2

M1 b M2 N1 b N2

M1 bR M2 N1 bS N2

h1bubh2

actM1bM2 M1bactM2 actN1bN2 N1bactN2

h1bh2

quotient map quotient map

h1buh2

The fibrewise unit is defined as the functor

1Mod : Ring Mod (18)

which transports every commutative ring R into itself, seen
as an R-module. The categorical situation may be under-
stood in the following way. A ringed category is defined
as a pair pC ,πq consisting of a category C and of a functor
π : C Ñ Ring to the category of commutative rings. The
slice 2-category Cat{Ring has ringed categories as objects,
fibrewise functors and natural tranformations as 1-cells and
2-cells. The 2-category Cat{Ring is cartesian, with carte-
sian product defined by the expected pullback above Ring.
Using that setting, one observes that the fibrewise tensor
product (17) and tensor unit (18) define a symmetric pseu-
domonoid structure on the ringed category pMod,πq in the
2-category Cat{Ring.

8 The category Alg of commutative
algebras

Given a commutative ring R in the category A , a commu-
tative R-algebra A is defined as a commutative monoid in
the symmetric monoidal category pModR ,bR ,1Rq. A com-
mutative algebra is defined as a pair pR,Aq consisting of a
commutative ring R and of a commutative R-algebra A. An
algebra map pu, f q : pR,Aq Ñ pS ,Bq is a pair pu, f q consist-
ing of a ring homomorphism u : R Ñ S and of a module
homomorphism f : M Ñ N making the diagrams commute:

A bR A B bS B

A B

f bu f

mA mB

f

1R 1S

A B

u

eA eB

f

We suppose that for every commutative monoid R, the sym-
metric monoidal category ModR has a free commutative
monoids. This means that the forgetful functor

ForgetR : AlgR ModR

has a left adjoint, which we note

SymR : ModR AlgR
6
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By glueing together the fibers ModR and AlgR , we obtain in
this way an adjunction

Mod Alg
Sym

J

Forget

which is moreover vertical (or fibrewise) above Ring.

9 The category CoAlg of commutative
coalgebras

Suppose given a commutative ring R. A commutative R-
coalgebra K is defined as a commutative comonoid in the
symmetric monoidal category pModR ,bR ,1Rq. In the same
way as in §8, we suppose that for every commutativemonoidR,
the symmetric monoidal categoryModR has a cofree com-
mutative comonoids. This means that the forgetful functor

ForgetR : CoAlgR ModR

has a right adjoint, which we note

CoFreeR : ModR CoAlgR

By glueing together the fibersModR and CoAlgR , we obtain
in this way an adjunction

CoAlg Mod
Forget

J

CoFree

(19)

which is moreover vertical (or fibrewise) above Ring.

10 The cofree construction for A “ Ab
One remarkable aspect of the adjunction (19) in §9 is that it
can be defined at a purely formal level, without the need for
an explicit description of the cofree construction CoFreeR
performed in each fiber ModR . This is important because
Murfet has given [4, 27] an explicit description of the con-
struction in the case when R “ k of an algebraically closed
field of characteristic 0, but the finite dual construction by
Sweedler [1, 15, 29, 30, 33] remains somewhat mysterious
in the case of a general commutative ring R. Let us give a
brief description of the construction here. First of all, the
free commutative algebra SymR can be computed as follows
with enough colimits in the category ModR :

SymR : M ÞÑ
à

nPN

M b
sym
R ¨ ¨ ¨ b

sym
R M

whereM b
sym
R ¨ ¨ ¨ b

sym
R M denotes the symmetrized tensor

product of M with itself, taken n times. In the case when
R “ k is a field, the Sweedler construction transports every
k-vector space V into the commutative k-algebra defined as

CoFreek pV q “ pSymRpV ˚qq˝

where the vector space V ˚ denotes the dual of the vector
space V , and A ÞÑ A˝ denotes Sweedler’s finite dual con-
struction, which transports everyR-algebraA (not necessar-
ily commutative) to a R-coalgebra A˝. In the general case of
a commutative ring R, one needs to apply instead the formal
construction designed in [29, 30] and adapted to the construc-
tion of the cofree commutative R-coalgebra CoFreeRpMq

generated by an R-moduleM in ModR .

11 Functors of points and Ring-spaces
Weworkwith covariant presheavesX ,Y on the categoryRing
of commutative rings, which we call Ring-spaces. To every
such Ring-space

X : Ring Set

we associate its Grothendieck category PointspX q whose
objects are the pairs pR,xq with x P X pRq and whose maps
pR,xq Ñ pS ,yq are ring homomorphisms u : R Ñ S trans-
porting the element x P X pRq to the element y P X pSq, in
the sense that

X puqpxq “ y.

The category PointspX q comes with an obvious functor

πX : PointspX q Ring

This functor, called the functor of point of X , defines in fact
a discrete Grothendieck opfibration above the category Ring.
A map f : X Ñ Y between Ring-spaces may be equivalently
defined as a functor

f : PointspX q PointspY q

making the diagram below commute:

PointspX q PointspY q

Ring

f

πX πY

Note that the functor f is itself necessarily a discrete opfibra-
tion: this follows from the fact that discrete fibrations define
a right orthogonality class of a factorization system on Cat,
with cofinal functors as elements of the left orthogonality
class. Note also that the Ring-space

SpecZ : R ÞÑ t˚Ru (20)

is the terminal object of the category rRing,Sets, and that its
Grothendieck category is isomorphic to category Ring itself.

12 Presheaves of modules
We suppose given a Ring-space

X : Ring Set

The following definition is adapted from [5, 18].
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Definition 12.1. A presheaf of modulesM on the Ring-
space X or more simply, an OX -moduleM , consists of the
following data:

‚ for each point pR,xq P PointspX q, a module Mx over
the commutative ring R,

‚ for each map u : pR,xq Ñ pS ,yq in PointspX q, a mod-
ule homomorphism

u : R S |ù θpu,xq : Mx Ny

living over the ring homomorphism u : R Ñ S .
The map θ is moreover required to satisfy the following
functorial properties: first of all, the identity on the point
pR,xq in the category PointspX q is transported to the identity
map on the associated R-module

idR |ù θpidpR,xqq “ idMx

and given two maps

pu,xq : pR,xq Ñ pS ,yq pv,yq : pS ,yq Ñ pT ,zq

in the category PointspX q, one has:

v ˝ u |ù θppv,yq ˝ pu,xqq “ θpv,yq ˝ θpu,xq

where composition is computed in the discrete opfibration
PointspX q Ñ Ring.

In the sequel, we will use the following equivalent formu-
lation of presheaves of modules:

Proposition 12.1. An OX -moduleM is the same thing as a
functor

M : PointspX q Mod

making the diagram below commute:

PointspX q Mod

Ring

M

πX π

Note that this specific formulation of presheaves of mod-
ules is the one used by Kontsevich and Rosenberg in their
work on noncommutative geometry [18]. See also the discus-
sion on the nLab entry [28]. It should be noted moreover that
every Ring-space X comes equipped with a specific presheaf
of module, called the structure presheaf of modules of X ,
and defined as the composite

OX : PointspX q Ring ModπX 1Mod (21)

where the functor O : Ring Ñ Mod denotes the section
of π : Mod Ñ Ring which transports every commutative
ring R to itself, seen as an R-module.

13 The category PshMod of presheaves of
modules and forward morphisms

We construct the category PshMod of presheaves of mod-
ules and forward morphisms, in the following way. A
presheaf of modules pX ,Mq is defined as a pair consisting
of a Ring-space

X : Ring Set

together with a presheaf OX -module M , as formulated in
§12. A forward morphism between presheaf of modules

pf ,φq : pX ,Mq pY ,N q

is defined as a morphism (= natural transformation) of Ring-
spaces f : X Ñ Y together with a natural transformation

PointspX q PointspY q

Mod

Pointspf q

M N

φ (22)

The natural transformation is moreover required to be verti-
cal (or fibrewise) above Ring, in the sense that the natural
transformation obtained by composing

π ˝ M π ˝ N ˝ Pointspf q
π˝φ

is equal to the identity natural transformation. Equivalently,
and expressed in a somewhat more fundamental way, one
asks that the natural transformation

πX π ˝ M π ˝ N ˝ Pointspf q πY ˝ Pointspf q
id π˝φ id

obtained by composing the three natural transformations
depicted below

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX

N

πYπ

φ

idid

coincides with the identity natural transformation from πX
to πY ˝ f . There is an obvious functor

p : PshMod rRing,Sets (23)

which transports every presheaf of modules pX ,Mq to its un-
derlying Ring-space X , and every forward morphism pf ,φq :
pX ,Mq Ñ pY ,N q to its underlying morphism f : X Ñ Y
between Ring-spaces. We thus find convenient to write

f : X Y |ù φ : M N

for a forward morphism pf ,φq : pX ,Mq Ñ pY ,N q between
presheaves of modules.

8
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The functor p is a Grothendieck fibration because every
morphism f : X Ñ Y between Ring-spaces X and Y induces
a functor

f ˚ : PshModY PshModX (24)

which transports every OY -module N into the OX -module
N ˝ Pointspf q obtained by precomposition with the discrete
fibration Pointspf q, as depicted below:

PointspX q PointspY q

Mod

Ring

Pointspf q

πX πY

N

π

In fact, it turns out that the functor p is also a Grothendieck
bifibration, but for less immediate reasons. In order to es-
tablish the property, we make the extra assumption that the
category Ring as well as every category ModR associated to
a commutative ring R has small colimits. Note that the prop-
erty holds in the case of the category A “ Ab of abelian
groups.

Proposition 13.1. For every morphism f : X Ñ Y between
Ring-spaces, there exists a functor

f ! : PshModX PshModY

left adjoint to the functor f ˚.

A proof of the statement based on a purely 2-categorical con-
struction of the OY -module f !pMq appears in the Appendix,
§A. It is worth noting that the OY -module f !pMq can be also
described more directly with an explicit formula:

f !pMq : y P Y pRq ÞÑ
à

txPX pRq,f x“yu

Mx P ModR .

The adjunction f ! % f ˚ gives rise to a sequence of natural
bijections, formulated in the type-theoretic fashion of [24]:

idX : X Ñ X |ù M Ñ f ˚pN q

f : X Ñ Y |ù M Ñ N

idY : Y Ñ Y |ù f !pMq Ñ N

14 The category PshMod
 of presheaf of
modules and backward morphisms

We construct the category PshMod
 of presheaves of mod-
ules and backward morphisms, in the following way. A
backward morphism between presheaves of modules

pf ,ψ q : pX ,Mq pY ,N q

is defined as a morphism f : X Ñ Y between Ring-spaces
together with a natural transformation

ψ : N ˝ f M : PointspX q PointspY q

which is moreover vertical in the sense that the diagram
below commutes:

PointspX q PointspY q

Mod

Ring

f

M

πX

N

πYπ

ψ

The category PshMod
 has presheaves ofmodules as objects,
and backward morphism as morphisms. There is an obvious
functor

p
 : PshMod

rRing,Sets

We thus find convenient to write

f : X Y |ùop ψ : M N

for such a backward morphism pf ,ψ q : pX ,Mq Ñ pY ,N q

between presheaves of modules. As the opposite of the fibra-
tion p, the functor p
 is also a Grothendieck fibration with
the functor

pf ˚qop : PshModop
Y PshModop

X

as pullback functor. In order to establish the following prop-
erty, we make the extra assumption that the category Ring
as well as every categoryModR associated to a commutative
ring R has small limits.

Proposition 14.1. For every morphism f : X Ñ Y between
Ring-spaces, there exists a functor called direct image

f˚ : PshModX PshModY .

right adjoint to the functor f ˚.

Note that, accordingly, the functor pf˚qop is left adjoint to
the functor pf ˚qop . Quite interestingly, the proof of the state-
ment works just as in the case of Prop. 13.1, and relies on a
purely 2-categorical construction of the OY -module f˚pMq,
dual to the construction of the OY -module f !pMq, see the
Appendix, §B for details. The adjunction f ˚ % f˚ gives
rise to a sequence of natural bijections, formulated in the
type-theoretic fashion of [24]:

idX : X Ñ X |ùop M Ñ f ˚pN q

f : X Ñ Y |ùop M Ñ N

idY : Y Ñ Y |ùop f˚pMq Ñ N

In summary, we obtain that every morphism f : X Ñ Y
between Ring-spaces X and Y induces three functors

PshModX PshModY

f˚

f !

f ˚ (25)

9
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organized into a sequence of adjunctions

f ! % f ˚ % f˚.

15 The category PshMod is symmetric
monoidal closed above rRing,Sets

We establish in this section one of the main conceptual and
technical contributions of the paper, directly inspired by the
work by Mellies and Zeilberger on refinement type systems
[24, 25]. As a presheaf category, the category rRing,Sets of
Ring-spaces is cartesian closed. We exhibit here a symmet-
ric monoidal closed structure on the category PshMod of
presheaf of modules, designed in such a way that the functor
p is symmetric monoidal closed. The construction is new
in Algebraic Geometry, as far as we know. The result is im-
portant, as it establishes the general presheaves of modules
(instead of the more traditional notion of quasi-coherent
sheaf of modules) as an appropriate foundation for a connec-
tion between Algebraic Geometry and formal logic. Suppose
given a pair of Ring-spaces

X ,Y : Ring Set

and a pair of presheaves of modulesM and N over them:

M P PshModX N P PshModY .

Recall that the cartesian product X ˆ Y of Ring-spaces is
defined pointwise:

X ˆ Y : R ÞÑ X pRq ˆ Y pRq.

The tensor product

M b N P PshModXˆY

is defined using the isomorphism:

PointspX ˆ Y q – PointspX q ˆRing PointspY q

as the presheaf of modules

PointspX ˆ Y q Mod ˆRing Mod Mod
pM,N q b

where the functor pM ,N q is defined by universality. The unit
of the tensor product just defined is the structure presheaf
of modules

pSpecZ,OSpecZq : pR,˚Rq ÞÑ R P ModR

on the terminal object SpecZ of the category rRing,Sets,
where ˚R denotes the unique element of the singleton set
SpecZpRq, see (20).

Before explaining the definition of the internal homM ⊸
N on presheaves of modules in (27), we recall that the in-
ternal hom X ñ Y in rRing,Sets is defined as the covariant
presheaf which associates to every commutative ring R the
set

X ñ Y : R ÞÑ prRing,Sets{yRqpyR ˆ X ,yR ˆ Y q

of natural transformations making the diagram commute:

yR ˆ X yR ˆ Y

yR

f

πR,X πR,Y
(26)

Here, yR P rRing,Sets denotes the Yoneda presheaf gener-
ated by the commutative ring R, in the following way:

yR : S ÞÑ RingpR,Sq : Ring Set

while πR,X and πR,Y denote the first projections. The main
contribution of the section comes now, with the following
construction. The presheaf of modules

M ⊸ N P PshModpXñY q (27)

is constructed in the following way. To every element f P

pX ñ Y qpRq, we associate the R-module

pM ⊸ N qf

consisting of all natural transformations φ making the dia-
gram commute:

PointspyR ˆ X q PointspyR ˆ Y q

PointspX q PointspY q

Mod

Ring

f

PointspπR,X q PointspπR,Y q

πX

M N

πYπ

φ

(28)
Such a natural transformation φ is a family of module homo-
morphisms

idS : S S |ù φx,u : Mx Nf px,uq

for u : R Ñ S and x P X pSq, natural in u and x in the
sense that for every ring homomorphism v : S Ñ S 1 with
X pvqpxq “ x 1, the diagram should commute:

Mx Nf px,uq

Mx 1 Nf px 1,v˝uq

φx ,u

Mv Nf pv,vq

φx 1,v˝u

The R-module of such natural transformations can be com-
puted in the categoryModR using the following end formula:

ż

pu :RÑS,xPX pSqqPPointspyRˆX q

resu
´

rMx ,Nf px,uqsS

¯

One establishes that
10
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idX : X Ñ X |ù pM bX N q Ñ P

idX : X Ñ X |ù ∆˚pM b N q Ñ P

idX : X Ñ X |ùop P Ñ ∆˚pM b N q

∆ : X Ñ X ˆ X |ùop P Ñ M b N

idXˆX : X ˆ X Ñ X ˆ X |ùop ∆˚pPq Ñ M b N

idXˆX : X ˆ X Ñ X ˆ X |ù M b N Ñ ∆˚pPq

curry : X Ñ X ñ pX ˆ X q |ù N Ñ M ⊸ ∆˚pPq

idX : X Ñ X |ù N Ñ curry˚pM ⊸ ∆˚pPqq

idX : X Ñ X |ù N Ñ pM ⊸X Pq

Figure 1. Sequence of natural bijections establishing that
pM bX ´q is left adjoint to pM ⊸X ´q forM P PshModX .

Theorem 15.1. The tensor productM ,N ÞÑ M b N and the
implication M ,N ÞÑ M ⊸ N equip the category PshMod
with the structure of a symmetric monoidal category. This
structure is moreover transported by the functor p in (23) to the
cartesian closed structure of the presheaf category rRing,Sets.

The reader will find in the Appendix, §C, the central argu-
ment for the proof of Thm. 15.1.

16 The category PshModX is symmetric
monoidal closed

We illustrate the benefits of Thm. 15.1 by establishing, in the
spirit of [24, 25], that the category PshModX associated to a
given Ring-space

X : Ring Set

is symmetric monoidal closed. The tensor productM bX N
of a pair of OX -modulesM ,N is defined as

M bX N :“ ∆˚pM b N q

where we use the notation
∆ : X X ˆ X

to denote the diagonal map coming from the cartesian struc-
ture of the category rRing,Sets of covariant presheaves. The
tensorial unit is defined as the structure presheaf of modules
OX defined in (21). The internal homM ⊸X N of a pair of
OX -modulesM ,N is defined as

M ⊸X N :“ curry˚pM ⊸ ∆˚pN qq

where
curry : X X ñ pX ˆ X q

is the map obtained by currifying the identity map

idXˆX : X ˆ X X ˆ X

on the second component X . One obtains that

Proposition 16.1. The category PshModX equipped with
bX and⊸X defines a symmetric monoidal closed category.

The proof that pM bX ´q is left adjoint to pM ⊸X ´q

can be decomposed in a sequence of elementary natural
bijections, as described in Fig. 1.
Moreover, given a morphism X Ñ Y in rRing,Sets and

twoOY -modulesM andN , the fact that∆Y ˝ f “ pf ˆ f q˝∆X
and the isomorphism

pf ˆ f q
˚

pM b N q – f ˚pMq b f ˚pN q

imply that

f ˚ : PshModY PshModX

defines a strongly monoidal functor, in the sense that
there exists a family of isomorphisms in PshModX

mX ,M,Y ,N : f ˚pMq bX f ˚pN q f ˚pM bY N q
„

mX ,Y : OX f ˚pOY q
„

making the expected coherence diagrams commute. From
this follows that its right adjoint functor f˚ as well as the
adjunction f ˚ % f˚ are lax symmetric monoidal ; and that its
left adjoint functor f ! as well as the adjunction f ! % f ˚ are
oplax symmetric monoidal. In particular, the two functors f˚

and f ! come equipped with natural families of morphisms:

f˚pMq bN f˚pY q f˚pM bX N q OY f˚pOX q

f !pM bX N q f !pMq bY f !pN q f !pOX q OY

parametrized by OX -modulesM and N . See for instance the
discussion in [23], Section 5.15.

17 The category PshCoAlg of presheaves of
commutative coalgebras

A presheaf pX ,Kq of commutative coalgebras is defined
as a pair consisting of a Ring-space X : Ring Ñ Set and of
a functor

K : PointspX q CoAlg (29)

making the diagram below commute:

CoAlg Mod

PointspX q Ring

Forget

πK

πX

A morphism pf ,φq : pX ,Kq Ñ pY ,Lq between two such
presheaves of commutative coalgebras is defined as a pair
consisting of a map f : X Ñ Y between presheaves and of a
natural transformation φ : K Ñ L ˝ f making the diagram

11
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below commute:

PointspX q PointspY q

CoAlg

Mod

Ring

f

K

πX

L

πY

Forget

π

φ

The resulting category PshCoAlg of presheaves of commu-
tative coalgebras comes equipped with an obvious forgetful
functor

Lin : PshCoAlg PshMod (30)

and thus with a composite functor

q “ p ˝ Lin : PshCoAlg rRing,Sets

We write PshCoAlgX for the fiber category of the func-
tor q above a given Ring-space X P rRing,Sets. By con-
struction, PshCoAlgX is the category of commutative OX -
coalgebras, defined as the presheaves of commutative coal-
gebras of the form pX ,Kq ; and of morphisms of the form
pidX ,φq : pX ,Kq Ñ pX ,Lq between them. An important ob-
servation for the construction of the model of linear logic
which comes next is that

Proposition 17.1. The category PshCoAlgX coincides with
the category of commutative comonoids in the symmetric mo-
noidal category pPshModX ,bX ,OX q.

Another important property to notice at this stage is that the
functor q is a bifibration. This essentially comes from the
fact that the adjunction f ! % f ˚ on presheaves of modules
described in (25) is in fact an oplax monoidal adjunction (see
the discussion in §16) and thus lifts to an adjunction

PshCoAlgX PshCoAlgY
f !

f ˚

between the categories of commutative coalgebras.

18 The linear-non-linear adjunction on
PshModX

We have established in §16 that the category PshModX is
symmetric monoidal closed for every Ring-space X . In order
to obtain a model of intuitionistic linear logic, we construct
below a linear-non-linear adjunction

PshCoAlgX PshModX

LinX

J

ExpX

(31)

The functor Lin defined in (30) is a functor of categories
fibered above Ring, and the functor LinX is thus obtained
by restricting it to the fiber of X :

LinX : PshCoAlgX PshModX

By a general and well-known property of categories of com-
mutative comonoids, together with Prop. 17.1, the category
PshCoAlgX is cartesian, with the cartesian product

K ˆ L “ K bX L

and the terminal object defined as the structure presheaf of
modules OX and tensorial unit of PshModX , see for instance
[23], Section 6.5, for a discussion. From this follows that the
functor LinX is strong symmetric monoidal.

The functor ExpX is defined in the following way: it trans-
ports an OX -moduleM defined by a functor

PointspX q ModM

to the commutative OX -algebra defined by postcomposition

PointspX q Mod CoAlgM CoFree

We claim that the functor ExpX is right adjoint to the forget-
ful functorLinX . Indeed, given a commutativeOX -coalgebraK
and an OX -moduleM , there is a family of bijections

PshModX pLinX pKq,Mq – PshCoAlgX pK ,ExpX pMqq

natural in K and M , derived from the fact that there is a
one-to-one relationship between the OX -module homomor-
phisms

φ : LinX pKq M

defined as the (fibrewise) natural transformations of the form

PointspX q

CoAlg Mod

K M

Forget

φ

and the commutative OX -coalgebra morphisms

ψ : K ExpX pMq

defined as the (fibrewise) natural transformations of the form

PointspX q

CoAlg Mod

K M

CoFree

ψ

The bijection itself comes from the fact that the functor
CoFree is right adjoint to Forget in the 2-category Cat{Ring
of ringed categories, see for instance [23], section 5.11, for a
discussion. We conclude with the main result of the article:

12
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Theorem 18.1. The adjunction (31) is a linear-non-linear
adjunction, and thus defines for every Ring-space X a model
of intuitionistic linear logic on the symmetric monoidal closed
category PshModX of presheaves of OX -modules.

19 Conclusion and future works
Our main technical contribution in this work is to resolve an
old open question in the field of mathematical logic, which
is to construct a model of linear logic — including the expo-
nential modality — in the functorial language of Algebraic
Geometry. By performing this construction in the present
paper, we hope to integrate linear logic as a basic and very
natural component in the current process of geometrization
of type theory. The guiding idea here is that linear logic
should be seen as the logic of generalised vector bundles,
in the same way as Martin-Löf type theory with identity is
seen today as the logic of spaces up to homotopy, formulated
in the language of 8-topos theory. One would thus obtain
the following dictionary:

dependent types „ spaces up to homotopy
linear types „ vector bundles

The idea was already implicit in Ehrhard’s differential linear
logic [7] and it is thus very good news to see this founda-
tional intuition confirmed by our construction. In a nice
and inspiring series of recent works, Murfet and his student
Clift [4, 27] have established thatModR equipped with the
Sweedler exponential modality defines a model of differen-
tial linear logic whenever the commutative ring R “ k is an
algebraically closed field of characteristic 0. One important
question which we leave for future work is to understand
whether the vector bundle semantics of linear logic just con-
structed in PshModX extends as it stands (or as a slight vari-
ant) to a model of differential linear logic. Another important
research direction in good harmony with homotopy type
theory will be to shift to Derived Algebraic Geometry in the
style of Toën and Lurie [21, 35] by building our constructions
on the symmetric monoidal category A “ dgAb of differen-
tial graded abelian groups, with its category Ring “ dgAlg
of commutative differential graded algebras considered up
to quasi-isomorphisms. We leave that important and fasci-
nating question for future work.
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A Proof of Prop. 13.1
We use the fact that the functor π : Mod Ñ Ring is a bifibra-
tion, and more specifically a Grothendieck opfibration. From
this follows that the categoryMod has small colimits, which
are moreover preserved by the functor π . Now, suppose that
we are in the following situation

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX πYπ

We start by computing the left Kan extension of the func-
torM along the discrete fibration

Pointspf q : PointspX q PointspY q

One obtains in this way a functor M 1 : PointspY q Ñ Mod
and a natural transformation λ which exhibitsM 1 as the left

Kan extension ofM along Pointspf q, as depicted below:

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX

M 1

π

λ

The left Kan extension is a pointwise Kan extension, com-
puted by small colimits. As already mentioned, the functor π
preserves small colimits, and thus pointwise left Kan exten-
sions. This establishes that the natural transformation π ˝ λ
exhibits the functor π ˝ N 1 as the left Kan extension of the
composite functor π ˝ M along Pointspf q. The universality
property of left Kan extensions ensures the existence of a
unique natural transformation µ : π ˝ N 1 ñ πY as depicted
below

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX πYπ

λ

µ

such that the composite

π ˝ M π ˝ M 1 ˝ Pointspf q πY ˝ Pointspf q
π˝λ µ˝Pointspf q

is equal to the identity natural transformation on the func-
tor πX “ πY ˝ Pointspf q. The functor π is a Grothendieck
bifibration. From this follows that the associated postcompo-
sition functor

CatpPointspY q,Modq CatpPointspY q,Ringq

is also a Grothendieck bifibration. In particular, there exists
for that reason a functor N : PointspY q Ñ Ring and a natu-
ral transformation ν : M 1 Ñ N which is cocartesian above
the natural transformation µ : π ˝ M 1 Ñ π ˝ N , as depicted
in the diagram below:

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX

N

πYπ

λ
ν

In particular, the natural transformation

φ “ ν ˝ λ : M N ˝ Pointspf q

14
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obtained by composing ν and λ is vertical, in the sense that
π ˝ φ is equal to the identity, and N ˝ π “ πY . The OY -
module f !pMq associated to the OX -module N is simply
defined as

N : PointspY q Ring.

We obtain in this way a functor

f ! : PshModX PshModY

left adjoint to the inverse image functor

f ˚ : PshModY PshModX

formulated in (24).

B Proof of Prop. 14.1
We proceed exactly as in the proof of Prop. 13.1 in the previ-
ous section, except that the orientation of the natural trans-
formations is reversed. We thus use the fact in the proof
that the functor π : Mod Ñ Ring is a bifibration, and more
specifically a Grothendieck fibration. From this follows that
the category Mod has small limits, which are moreover pre-
served by the functor π . Now, suppose that we are in the
following situation

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX πYπ

We start by computing the right Kan extension of the func-
torM along the discrete fibration

Pointspf q : PointspX q PointspY q

One obtains in this way a functor M 1 : PointspY q Ñ Mod
and a natural transformation ρ which exhibitsM 1 as the right
Kan extension ofM along Pointspf q, as depicted below:

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX

M 1

π

ρ

The right Kan extension is a pointwise Kan extension, com-
puted by small limits. The functor π preserves small limits,
and thus pointwise right Kan extensions. This establishes
that the natural transformation π ˝ ρ exhibits the functor
π ˝ N 1 as the right Kan extension of the composite functor
π ˝ M along Pointspf q. The universality property of right

Kan extensions ensures the existence of a unique natural
transformation µ : πY ñ π ˝ N 1 as depicted below

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX πYπ

ρ

µ

such that the composite

πY ˝ Pointspf q π ˝ M 1 ˝ Pointspf q π ˝ M
µ˝Pointspf q π˝ρ

is equal to the identity natural transformation on the func-
tor πX “ πY ˝ Pointspf q. The functor π is a Grothendieck
bifibration. From this follows that the associated postcompo-
sition functor

CatpPointspY q,Modq CatpPointspY q,Ringq

is also a Grothendieck bifibration. In particular, there exists
for that reason a functor N : PointspY q Ñ Ring and a natu-
ral transformation ν : N Ñ M 1 which is cartesian above the
natural transformation µ : π ˝ N Ñ π ˝ M 1, as depicted in
the diagram below:

PointspX q PointspY q

Mod

Ring

Pointspf q

M

πX

N

πYπ

ρ

ν

In particular, the natural transformation

ψ “ ρ ˝ ν : N ˝ Pointspf q M

obtained by composing ρ and ν is vertical, in the sense that
π ˝ ψ is equal to the identity, and N ˝ π “ πY . The OY -
module f˚pMq associated to the OX -module N is simply
defined as

N : PointspY q Ring.

We obtain in this way a functor

f˚ : PshModX PshModY

right adjoint to the inverse image functor

f ˚ : PshModY PshModX

formulated in (24).
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C Proof of Thm. 15.1
We suppose given a triple of Ring-spaces X , Y , Z together with a morphism

f : X ˆ Y Z

The category rRing,Sets is cartesian closed, and the morphism f thus gives rise by currification to a morphism noted

д : Y X ñ Z

We establish now a bijection between the set
PshModf pM b N ,Pq

of forward module morphisms of the form

f : X ˆ Y Z |ù φ : M b N P

and the set
PshModдpN ,M ⊸ Pq

of forward module morphisms of the form

д : Y X ñ Z |ù ψ : N M ⊸ P

The bijection is established by a series of elementary bijection applied to the enriched end formulas:

PshModдpN ,M ⊸ Pq

–

ż

pR,yqPPointspY q

”

Ny ,

ż

pu :RÑS,xPX pSqqPPointspyRˆX q

resu
´

rMx ,Pf px,Y puqpyqqsS

¯ ı

R

–

ż

pR,yqPPointspY q

ż

pu :RÑS,xPX pSqqPPointspyRˆX q

”

Ny , resu
´

rMx ,Pf px,Y puqpyqqsS

¯ ı

R

–

ż

pR,yqPPointspY q

ż

pu :RÑS,xPX pSqqPPointspyRˆX q

resu
”

extuNy , rMx ,Pf px,Y puqpyqqsS

ı

S

–

ż

pyPY pRq,u :RÑS,xPX pSqq

resu rextuNy , rMx ,Pf px,Y puqpyqqsS sS

–

ż

pS,yqPPointspY q,pS,xqPX pSq

rNy , rMx ,Pf px,yqsS sS

–

ż

pS,x,yqPPointspXˆY q

rMx bS Ny ,Pf px,yqsS

– PshModf pM b N ,Pq
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