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Abstract

This report aims at proving that we cannot climb a wall of any height h and reach a target in any cases
in a finite number of steps with a finite st of tile for the aTAM model.

1 Definitions

We first introduce some definitions and notation we use in the following.

Definition 1.1 (Tile-Kind). A Tile-Kind t is a quadruplet t = (tN , tE , tS , tW ) where all ti are pairs ti =
(ct,i, st,i) where ct,i ∈ N and st,i ∈ N are respectively the colour and the strength of the link in position i.

Definition 1.2 (Tile). Let T be a set of tile-kinds. A tile t over T is a pair t = (k, p) where k ∈ T and
p ∈ Z× N.

We define a relation →C over a set of tiles C. We say (t, (p0, p1))→C (t′, (p′0, p
′
1)) if and only if at least one

of those statement is true:

• ct,N = ct′,S and st,N = st′,S and p0 = p′0 and p1 = p′1 − 1

• ct,E = ct′,W and st,E = st′,W and p0 = p′0 − 1 and p1 = p′1

• ct,S = ct′,N and st,S = st′,N and p0 = p′0 and p1 = p′1 + 1

• ct,W = ct′,E and st,W = st′,E and p0 = p′0 + 1 and p1 = p′1

One can notice that this relation is symmetric.
We denote →∗C the reflexive-transitive closure of →C .

Definition 1.3 (Configuration). Let T be a set of tile-kinds. A configuration C over T is a subset of T ×(Z×N)
such that

• ∃t0 ∈ T , (t0, (0, 0)) ∈ C

• ∀(t, p), (t′, p′) ∈ C, p = p′ ⇒ t = t′

• ∀(t, p) ∈ C,∀t′ ∈ T , (t′, (0, 0)) ∈ C, (t′, (0, 0))→∗C (t, p)

One can notice that ∃!t0 ∈ T , (t, (0, 0)) ∈ C. It is a direct consequence of the first two points. Let us call it
the ”seed” of the configuration C. Then the last one says that the seed is always connected to each tile.

Definition 1.4 (Wall). A τ -wall W ⊂ T × (Z× N) of height h is a set of tiles such that:

• ∀(i, j) ∈ J2; +∞J×J0;hK, (((0, 0), (0, 0), (0, 0), (0, 0)), (i, j)) ∈ W
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• ∃!(c1, ..., ch) ∈ Nh,∃(s1, ..., sh) ∈ Nk,∀i ∈ J1, hK, si < τ, (((0, 0), (0, 0), (0, 0), (ci, si)), (1, i)) ∈ W

We define a τ -growing family of wall WF = {Wi}i∈N where Wi is τ -wall of height i such that if (c1, ..., ch)
and (s1, ..., sh) are the sequences corresponding to Wh then (c1, ..., ch+1) and (s1, ..., sh+1) are the sequences
for Wh+1. We say (ci)i∈N and (si)i∈N are the sequences for WF .

We now give another relation ⊥τ between a set of tiles F and a tile (t, p). We say F⊥τ (t, p) if and only if:

• ∀(t′, p′) ∈ F , (t′, p′)→F∪{(t,p)} (t, p)

• (t, p) /∈ F

•
∑
i∈I st,i ≥ τ where N ∈ I ⇔ ∃(t′, (p′0, p′1)) ∈ F , p0 = p′0 ∧ p1 = p′1 − 1, idem for W E and S.

Definition 1.5 (Execution). Here we define an (T , τ, C, σ,W)-execution E, given a set of tile-kinds T , a
configuration C over T , τ ∈ N, σ ∈ T which is the seed of C and a τ -wall W such that C ∩W = ∅.

An (T , τ, C, σ,W)-execution E is a sequence of length |E| ∈ N ∪ {∞}, E = (Ei)i∈J0;|E|J such that:

• ∀i, j ∈ J0; |E|J, i 6= j ⇒ Ei ∩ Ej = ∅

• ∀i, j ∈ J0; |E|J, Ei ∩W = ∅

• ∪i∈J0;|E|JEi = C

• ∀i ∈ J1; |E|J,∀(t, p) ∈ Ei,∃F ⊂ ∪i−1j=0Ej ∪W,F⊥τ (t, p)

Definition 1.6 (Valid execution). A valid (T , τ, C, σ,W)-execution is an (T , τ, C, σ,W)-execution E such that
|E| <∞ and ∃t ∈ T , (t, (10, h)) ∈ C where h is the height of W

Definition 1.7 (Ended execution). An ended (T , τ, C, σ,W)-execution is an is an (T , τ, C, σ,W)-execution E
such that ∀(t, p) ∈ C,∀t′ ∈ T ,∀p′ ∈ N− × N ∪ J1;∞J×Jh;∞J, (t′, p′) ∈ C ∨ ¬((t, p)→T (t′, p′))

One must notice that this definition is valid for an infinite or finite execution and that we can not add a
new tile.

Let WF,c,s be a family of wall for the sequence c = (ci)i∈N and s = (si)i∈N.
Now we can precise our goal. In fact we want some (T, τ, σ, c, s) such that for each ended (T , τ, C, σ,W)-

execution where W ∈ WF,c,s for some C is finite and valid.

2 Main Theorem

2.1 Preliminaries

Lemma 2.1 (Ending finite executions). Let E be a finite (T , τ, C, σ,W)-execution E = (E0, ...E|E|−1). Then
there is some (T , τ, C′, σ,W)-execution E ′ = (E ′i)i∈J0;|E′|J such that ∀i ∈ J0; |E|J, Ei = E ′i (we say E � E ′) and E ′
is ended and C ⊆ C′.

This lemma says that given a finite execution, we can continue until we reach an ended execution. It seems
evident and the proof is simple. Other things is that � is a (partial) large order over executions.

Proof. Let E be a finite (T , τ, C, σ,W)-execution E = (E0, ...E|E|−1). If E is ended then there is nothing to do.

Otherwise, let E(0) = E . Suppose E(n) is built for some n ∈ N such that E(0) � ... � E(n). We construct E(n+1).
If E(n) is ended let E(n+1) = E(n). Otherwise ∃(t, p) ∈ C(n),∃t′ ∈ T ,∃p′ ∈ N− × N ∪ J1;∞J×Jh;∞J, (t′, p′) /∈
C(n) ∧ (t, p)→T (t′, p′). Set E|E(n)| = {(t′, p′)} and E(n+1) = (E0, ..., E|E(n)|) to get the result.

Corollary 2.2 (Ending infinite executions). Let E be an infinite (T , τ, C, σ,W)-execution E = (Ei)i∈N. Then
there is some (T , τ, C′, σ,W)-execution E ′ = (E ′i)i∈N such that ∀i ∈ N, Ei ⊆ E ′i (we say E �∞ E ′) and E ′ is ended
and C ⊆ C′.
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The proof is very similar to the previous one. Just say if you can add a tile there is some finite rank i in
E such that you can add this tile, then add it to Ei+1. You build an increasing sequence of infinite executions
and take the limit to end it.

Lemma 2.3 (Intermediate Tile). Let C be a configuration. Let (t, p), (t′, p′) ∈ C, p <lex p′, (t, p) →∗C (t′, p′) ∧
¬((t, p)→C (t′, p′)). Then ∃(t′′, p′′) ∈ C, (t, p)→+

C (t′′, p′′) ∧ (t′′, p′′)→+
C (t′, p′) ∧ p <lex p′′ <lex p′.

Proof. By induction on the length n of the path going from (t, p) to (t′, p′) with p = (p0, p1), p′ = (p′0, p
′
1),

assuming that (t, p)→n
C (t′, p′). We assume without loss of generality that p0 ≤ p′0 and p1 ≤ p′1 by permutation

of the coordinates.
If n = 2, then

• If p0 = p′0, the only path is (t′′, p′′) with p′′0 = p0 + 1, p′′1 = p1.

• If p0 = p′0 − 1, p1 < p′1, and two only paths are either (t′′, (p0, p
′
1)) and (t′′, (p′0, p1)) ; both verifying the

theorem.

• If p0 = p′0 − 2, the only path is (t′′, p′′) with p′′0 = p0, p′′1 = p1 + 1.

• Else, there cannot be any path of length 2 from t to t′.

Let us assume that for all (t, p)→n
C (t′, p′), there exists such (t′, p′′). Let (t(i), p(i))i≤n+1 verify (t(0), p(0)) =

(t, p), (t(n+1), p(n+1)) = (t′, p′) and ∀i ∈ [[0, n]], (t(i), p(i))→C (t(i+1), p(i+1)). Let us consider (t(n), p(n)).

• If p
(n)
0 < p′0 or p

(n)
0 = p′0 and p

(n)
1 < p′1, then p(n) <lex p

′ and by hypothesis, there exists n0 such that
p <leq p

(n0) <leq p
(n) <leq p

• If p
(n)
0 = p′0 and p

(n)
1 > p′1, then, by contradiction, there exist such (t′′, p′′): Assuming that ∀k, p(k) >lex

p(n), then either p
(0)
0 = p

(n)
0 and p1 > p

(0)
1 or p

(0)
0 > p

(n)
0 which contradicts our hypothesis.

• If p
(n)
0 > p′0, the same reasoning holds.

Corollary 2.4 (Path through each abscissa). Let C be a configuration over T . Let (t, p), (t′, p′) ∈ C, p0 + 1 <
p′0, (t, p) →∗C (t′, p′) ∧ ¬((t, p) →C (t′, p′)) Then ∀p′′0 ∈Kp0; p′0J∃p′′1 ∈ N∃t′′ ∈ T , (t′′, (p′′0 , p′′1) ∈ C ∧ (t, p) →+

C
(t′′, (p′′0 , p

′′
1)) ∧ (t′′, (p′′0 , p

′′
1))→+

C (t′, p′).

Proof. The proofs directly comes from the previous lemma 2.3 by supposing it is false and induct it on the
number of columns that are in between the two considered tile.

2.2 Main Theorem

Theorem 2.5 (Main theorem). There is no (T, τ, σ, c, s) such that for each ended (T , τ, C, σ,W)-execution
where W ∈ WF,c,s for some C is finite and valid.

Proof. We proceed by contradiction. Suppose given such a quintuplet (T, τ, σ, c, s). Let h0 ∈ N greater than
(or equal to) 1 and Wh0 ∈ WF,c,s the wall of height h0. ({σ}) is an execution (see Figure 1). Using lemma 2.1

we can complete it in a ended execution E(0). By our hypothesis, E(0) = (E(0)0 , ..., E(0)|E(0)|−1) is finite and valid.

Let C(0) be the configuration of E(0) as a (T , τ, C(0), σ,Wh0
)-execution. Then ∃t ∈ T , (σ, (0, 0))→∗C (t, (10, h)).

We use corollary 2.4 to say that there some tile in C(0) such that its abscissa is 1. We now define i0:

i0 = min{i|∃t ∈ T ,∃p1 ∈ N(t, (1, p1)) ∈ Ei}
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We have 1 ≤ i0 ≤ |E(0)|. Now consider E(0)|i0−1 = (E(0)0 , ..., E(0)i0−1). E(0)|i0−1 is a non-ended (T , τ,∪i0−1j=0 E
(0)
j , σ,Wh0)-

execution (see Figure 2). Let h1 such that:

h1 = max{h ∈ N|h ≥ h0,∃t ∈ T , (t, (0, h)) ∈ C(0)}
Because for all t ∈ T and h ≥ h0 such that (t, (0, h) ∈ C has been added with out any wall, and because

mismatches are allowed, E(0)|i0−1 is a finite non-ended (T , τ, σ,∪i0−1j=0 E
(0)
j , σ,Wh1)-execution. Using lemma 2.1

we can complete it in an (T , τ, C(1), σ,Wh1)-execution E(1) = (E(1)0 , ..., E(1)|E(1)|−1). More-over suppose that we

cannot get one without using the blocks of the wall, then there is some tile is E(1)i for some i ≥ i0 that has
height lower than h1 and abscissa 0. Then as well as corollary 2.4, one can show that the path can go trough
each ordinate. Then because we work in N2 each path starting from one of those new tiles going to target
cuts a path the seed to the tile achieving previous h1. The tiles are then ”useless”, we mean that the cannot
imply any nex path going above the wall (all possible neighbours are already there). We can assume there is
no new tile in any position (0, h) with h < h1 in E(1). Then no glue from Wh1

which is not in Wh0
is used to

get further. It says that is we use the same notations as for E(0), E(1)|i1−1 is an (T , τ, C(1), σ,Wh0
)-execution (see

Figure 3).
By recurrence, replace any 0 by n in the previous reasoning and any 1 by n + 1 to get a family of

(T , τ, , σ,Wh0)-executions {E(n)}n∈N and (in)n∈N an increasing sequence such that ∀n ∈ N,∀i ∈ J0; inJ, E(n)i =

E(n+1)
i .

Then define E(∞) = (E(∞)
i )i∈N with E(∞)

i = limn→+∞ E(n)i which is in fact just the limit of a stationary
sequence (well defined). Then one can check that its satisfies the definition of a (T , τ, C(∞), σ,Wh0

)-execution.
E(∞) may be not ended. Up to renaming, consider it is (applying corollary 2.2). However it is not finite

(and may be not valid), that is a contradiction.
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Figure 1: Initial state
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Figure 2: First growth of the tile algorithm
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Figure 3: Second growth of the tile algorithm

2.3 Remarks

In fact we prove that it’s only sufficient that there some wall W0 of height grater than (or equal to) 1, such
that each wall of height greater than W0’s one, W0 is the base of this wall. We also need the fact that for each
height, there is a wall for this height in the family.

More over we also prove that is a family of walls contains such a sub-family, it is impossible to find the
correct (T , τ, σ).
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