## Proving that project 4 is impossible

Nicolas Derumigny Emma Kerinec Yannis Gaziello Quentin Guilmant

ENS de Lyon
20 janvier 2017

## Plan

(1) Introduction
(2) Main Theorem
(3) Extra features

4 Conclusion (you lost the game)

## Problem



Find a tile assembly system such that :

- Seed tile at position $S=(0,0)$
- $\forall h$ there is a tile at $T=(10, h)$
- Finite size
- No tiles to the right and below the cut
- Possible presence of glues on the wall (infinite)

Figure - Initial state

## Different cases

- Case with no glues on the wall, more genera.
- Cases with odd or even $h$ only.
- Succeed with probability $1-\epsilon$


## Tile and tile kind

## Definition (Tile Kind)

A tile kind is a quadruplet of pairs (colour, strength).

## Definition (Tile)

A tile is a pair (tile kind, coordinates)

## Configuration and wall

## Definition (Configuration)

A configuration $\mathcal{C}$ is a connected set of tiles that are joint by their colours.

It is relative to some set of tile kinds $\mathcal{T}$.

## Definition (Wall)

A wall is a set of special tiles that occupy all the bottom-right corner of the plane.

It can have glues only in column 1 . They must be lower than a given temperature $\tau$.

## Execution

## Definition (Execution)

- Sequence of tiles (added one after the other)
- Add a tile if its satisfies some temperature $\tau$
- Build a configuration $\mathcal{C}$ over some tile kinds set $\mathcal{T}$
- $\mathcal{C}$ does not crash into a wall $\mathcal{W}$

It is ended if we cannot add any new tile.
It is finite is the sequence is finite.
It is valid if it reaches $(10, h)$ ( $h$ is the height of the wall).

## Impossibility

## Theorem

There is no tile kinds set $\mathcal{T}$, temperature $\tau$, seed $\sigma$, sequence of colours $\left(c_{i}\right)$ and sequence of strengths $\left(s_{i}\right)$ such that for any wall of any height (with respect to the sequences), any ended execution is finite and valid.

## The proof within some images (1)



- $h_{0}$ arbitrary (different from 0 )
- Stop the execution before posing the green tile
- $h_{1}=$ height of the green tile

Figure - First growth of the tile algorithm

## The proof within some images (2)



Figure - Second growth of the tile algorithm

- Stop the execution before posing the green tile
- The red tiles do not need the wall
- The red tiles between the blue ones and the wall are not important
- The wall is unchanged $\rightarrow$ the blue tiles can still be constructed


## And so ?

## $\Rightarrow\left(h_{n}\right)_{n \in \mathbb{N}}$ by recurrence

## And so ?

## $\Rightarrow\left(h_{n}\right)_{n \in \mathbb{N}}$ by recurrence

- $h_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} \infty$


## And so?

$$
\Rightarrow\left(h_{n}\right)_{n \in \mathbb{N}} \text { by recurrence }
$$

- $h_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} \infty$
- Valid sequence of tiles


## And so?

$$
\Rightarrow\left(h_{n}\right)_{n \in \mathbb{N}} \text { by recurrence }
$$

- $h_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} \infty$
- Valid sequence of tiles
- Do not need the wall


## And so ?

$$
\Rightarrow\left(h_{n}\right)_{n \in \mathbb{N}} \text { by recurrence }
$$

- $h_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} \infty$
- Valid sequence of tiles
- Do not need the wall
- Goes to infinity


## And so?

$$
\Rightarrow\left(h_{n}\right)_{n \in \mathbb{N}} \text { by recurrence }
$$

- $h_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} \infty$
- Valid sequence of tiles
- Do not need the wall
- Goes to infinity
$\Rightarrow$ Contradiction!


## Some tools we need

- each non-ended execution must be "endable"
- connexity must mean that each column and row is crossed between to points that are "connected"


## Solution for a wall of odd or even height

- Use the wall to climb so we can't go up indefinitely.
- For that we go two row by two row, it limit to odd or even case.
- When above the wall we go to the right to reach the target.
- Merging impossible due to interaction.



## Unprefix wall

- The constraint about prefix wall is needed
- Last tile of the wall could be different, we could start from it.

Conclusion (coin _o< )

