6-inputs networks in base k

Rémy Cerda, Rémi Pellerin, Nicolas Pinson, Pierre-Etienne Polet and Tristan Stérin

ENS Lyon

January 20, 2017

■■■ $\quad \square$
ENS DE LYON

Recall the framework...

We will use the following network with 6 inputs and 6 outputs.

3 functions in base 3

We managed to compute 3 "interesting" functions in base 3 over DNA-nanotube network:

3 functions in base 3

We managed to compute 3 "interesting" functions in base 3 over DNA-nanotube network:

- a indicator of 1

3 functions in base 3

We managed to compute 3 "interesting" functions in base 3 over DNA-nanotube network:

- a indicator of 1
- a counter of 1 's mod 3

3 functions in base 3

We managed to compute 3 "interesting" functions in base 3 over DNA-nanotube network:

- a indicator of 1
- a counter of 1 's mod 3
- a binary additioner (using base 3 network!)

The "1 indicator"

This function outputs $o_{0}=1$ iff there some $i_{j}=1$ (others outputs are always 0).

The "1 indicator"

This function outputs $o_{0}=1$ iff there some $i_{j}=1$ (others outputs are always 0). To do it, we used these cells:

The counter of 1's mod 3

This functions computes the number of ones in the input and sets o_{0}, o_{1} (which must be a fixed point for the function). Other outputs are always 0 .

The counter of 1's mod 3

This functions computes the number of ones in the input and sets o_{0}, o_{1} (which must be a fixed point for the function). Other outputs are always 0 .

Binary additioner: What it does...

Given 2 binary inputs of length $3\left(i_{0} i_{2} i_{4}\right.$ and $\left.i_{1} i_{3} i_{5}\right)$, this function computes the sum mod 8 on outputs $\mathrm{o}_{1} \mathrm{O}_{3} \mathrm{O}_{5}$ (other outputs are set to 0).

and how it works

Compiling the network into tiles

Represent circuit as a graph.

We have 7 possible positions and we have k^{2} possible tile choice for each.

Each time a tile can be placed next to an other their colors become linked.

Convert tiles into proofreading tiles

We add 8 new colors per tile and all the previous colors were replaced by two new colors.

Convert tiles into proofreading tiles

We add 8 new colors per tile and all the previous colors were replaced by two new colors.

Each color will be associated to a DNA-string of size fixed L. Each tile will be the concatenation of it's 4 colors.

Does a 6 bit counter exists?

Can we create a deterministic network that will iterate over all 6 bits string - in any order?

Does a 6 bit counter exists ?

Can we bruteforce that problem ?

There are $\mathbf{2}^{44}$ differents networks which is approximatively 17000 billions.
We could hope for an answer in a few days.
But we can drastically restrict our search space with a few observations.

Can we bruteforce that problem ?

There are $\mathbf{2}^{44}$ differents networks which is approximatively 17000 billions.
We could hope for an answer in a few days.
But we can drastically restrict our search space with a few observations.

Main ideas:

- Get rid of redundancy

■ Look at interesting sub-networks

6bit Networks are HUGELY redundant

There are $\mathbf{2}^{44}$ differents networks which is approximatively 17000 billions.

But these networks allow to compute only about 32 billions different layer functions.

So there is only about $\mathbf{0 . 2 \%}$ interesting networks in the sense that they compute distinct layer functions.

This model allows to calculate on a layer only $8.2 \mathrm{e}-104 \%$ of all functions of $\{0,1\}^{6} \rightarrow\{0,1\}^{6}$ (there are 64^{64}).

How would such a network's dynamic look like ?

There are only two possibilities (up to permutation):

How would such a network's dynamic look like ?

There are only two possibilities (up to permutation):

Implication on the layer function of the network

The function that our counting network coumputes on one layer is either:

- A bijection
- An almost-bijection

Implication on the layer function of the network

The function that our counting network coumputes on one layer is either:

- A bijection
- An almost-bijection i.e. f such that $\exists!x_{0}, y_{0} \in\{0,1\}^{6}$ with f^{\prime} being a bijection and:

$$
\begin{array}{ll}
\forall x \neq x_{0} & f^{\prime}(x)=f(x) \\
& f^{\prime}\left(x_{0}\right)=y_{0}
\end{array}
$$

Implication on the layer function of the network

The function that our counting network coumputes on one layer is either:

- A bijection
- An almost-bijection i.e. f such that $\exists!x_{0}, y_{0} \in\{0,1\}^{6}$ with f^{\prime} being a bijection and:

$$
\begin{array}{ll}
\forall x \neq x_{0} & f^{\prime}(x)=f(x) \\
& f^{\prime}\left(x_{0}\right)=y_{0}
\end{array}
$$

We are going to check on both cases.

The $4 * 16$ property

If we have a bijection it will enumerate all strings of $\{0,1\}^{6}$. After reordering it will look like:

0000000000000000000000000000000011111111111111111111111111111111 0000000000000000111111111111111100000000000000001111111111111111 0000000011111111000000001111111100000000111111110000000011111111 0000111100001111000011110000111100001111000011110000111100001111 0011001100110011001100110011001100110011001100110011001100110011 01

The $4 * 16$ property

Let's focus on the first two bits, we can organise our sequences this way:

| 0000000000000000 | 0000000000000000 | 1111111111111111 | 11111111111111111 |
| :--- | :--- | :--- | :--- | :--- |
| 000000000000000 | 1111111111111111 | 0000000000000000 | 1111111111111111 |
| 0000000011111111 | 0000000011111111 | 0000000011111111 | 0000000011111111 |
| 0000111100001111 | 0000111100001111 | 0000111100001111 | 0000111100001111 |
| 0011001100110011 | 0011001100110011 | 0011001100110011 | 0011001100110011 |
| 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101 |

The $4 * 16$ property

Let us get rid of the last 4 bits:

0000000000000000	0000000000000000	1111111111111111	1111111111111111
0000000000000000	1111111111111111	0000000000000000	1111111111111111

The $4 * 16$ property

Let us get rid of the last 4 bits:

0000000000000000	0000000000000000	1111111111111111	1111111111111111
000000000000000	1111111111111111	000000000000000	1111111111111111

We see that each of the 2 bits patterns: $\mathbf{0 0}, \mathbf{0 1}, \mathbf{1 0}, 11$ occurs 16 times in this enumeration. It's the $4 * 16$ property.

The $4 * 16$ property

Hence the sub network responsible for these 2 bits must have the 4*16 property to be eligible as a being a sub network of a 6 bits bijective counter network.

The $4 * 16$ property

Hence the sub network responsible for these 2 bits must have the 4*16 property to be eligible as a being a sub network of a 6 bits bijective counter network.

Compute all the $4 * 16$ sub networks

By exausthive search we find 288 (over $4 * 16 * 256=16384$) sub networks with this property.
By removing equivalent networks we are left with $\mathbf{7 2}$ circuits for the first 2 bits.

4*16 holds for middle and ending bits

4*16 holds for middle and ending bits

■ 72 networks for the first 2 bits

- 216 networks for the middle 2 bits
- 72 networks for the last 2 bits

How to conclude? - 1. Combine it!

Hence by combining these we have $72 * 216 * 72 \simeq 10^{6}$ 6 bits networks to test.

How to conclude? - 2. Count orbits!

Over all these potential networks we count 497664 bijections. For each of these bijections we have to count their orbits, we have a winner iff it has only 1 orbit.

How to conclude? - 2. Count orbits!

Over all these potential networks we count 497664 bijections. For each of these bijections we have to count their orbits, we have a winner iff it has only 1 orbit.

We do not find such a network, here there's the histogram of orbits:

R. Cerda, R. Pellerin, N. Pinson, P.-E. Polet, T. Sterin

6 -inputs networks in base k

Conclusion

Conclusion: There are no bijective 6bits counters.

2*161517 property

If we have an almost-bijection all 6 bits sequences will be reached by our network but one.

2*161517 property

If we have an almost-bijection all 6 bits sequences will be reached by our network but one.

Also one bit string will be reached twice.

2*161517 property

If we have an almost-bijection all 6 bits sequences will be reached by our network but one.

Also one bit string will be reached twice.
It means that at least one of our sub network will see:

- 2 patterns 16 times
- 1 pattern 15 times

■ 1 pattern 17 times

2*161517 property

If we have an almost-bijection all 6 bits sequences will be reached by our network but one.

Also one bit string will be reached twice.
It means that at least one of our sub network will see:

- 2 patterns 16 times
- 1 pattern 15 times

■ 1 pattern 17 times

We call this the $2 * 161517$ property.

$2 * 161517$ does not occur!

By enumeration, there exist no sub network with the 2*161517 property. Hence, we cannot hope for an almost-bijective counter.

No 6bit counter network :'(

By case distinction, there's no 6bit counter network.

No 6bit counter network :'(

By case distinction, there's no 6bit counter network.
But there are $\mathbf{0}$ to 62 counters and this kind of methods helps to exhibit at least 24.

Perspectives

- The fact that no sub-network has the 2×161517 property helps to find an argument for a formal proof in the almost-bijective case.

■ We saw that our network model was hugely redundant. To make formal proof it would nice if we could find a canonical form for each network.

Sources

All our sources for these computations are available here: https://github.com/cosmo-sterin/ER_MolProg_Project2/ tree/master/circuit_sim

