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Recall the framework...

We will use the following network with 6 inputs and 6 outputs.
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i5 o5
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Network
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Introduction
Examples in the case k = 3

Compiling the network into tiles
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The 1 indicator
Counting 1’s mod 3
A binary additioner

3 functions in base 3

We managed to compute 3 "interesting" functions in base 3 over
DNA-nanotube network:

a indicator of 1
a counter of 1’s mod 3
a binary additioner (using base 3 network!)
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The "1 indicator"

This function outputs o0 = 1 iff there some ij = 1 (others outputs
are always 0).

To do it, we used these cells:

i0
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i4
i5 0
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0
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The counter of 1’s mod 3

This functions computes the number of ones in the input and sets
o0,o1 (which must be a fixed point for the function). Other outputs
are always 0.

i0
i1
i2
i3
i4
i5 0

0
0
0
o1

o0

Network

R. Cerda, R. Pellerin, N. Pinson, P.-E. Polet, T. Sterin 6-inputs networks in base k



5

Introduction
Examples in the case k = 3

Compiling the network into tiles
Looking for a 6 bit counter

The 1 indicator
Counting 1’s mod 3
A binary additioner

The counter of 1’s mod 3

This functions computes the number of ones in the input and sets
o0,o1 (which must be a fixed point for the function). Other outputs
are always 0.

i0
i1
i2
i3
i4
i5 0

0
0
0
o1

o0

Network

R. Cerda, R. Pellerin, N. Pinson, P.-E. Polet, T. Sterin 6-inputs networks in base k



6

Introduction
Examples in the case k = 3

Compiling the network into tiles
Looking for a 6 bit counter

The 1 indicator
Counting 1’s mod 3
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Binary additioner: What it does...

Given 2 binary inputs of length 3 (i0i2i4 and i1i3i5), this function
computes the sum mod 8 on outputs o1o3o5 (other outputs are set
to 0).

i0
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i3
i4
i5 o5
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The 1 indicator
Counting 1’s mod 3
A binary additioner

... and how it works
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Compiling the network into tiles

R. Cerda, R. Pellerin, N. Pinson, P.-E. Polet, T. Sterin 6-inputs networks in base k



9

Introduction
Examples in the case k = 3

Compiling the network into tiles
Looking for a 6 bit counter

Represent circuit as a graph.

We have 7 possible positions and we have k2 possible tile choice for
each.

Each time a tile can be placed next to an other their colors become
linked.
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Convert tiles into proofreading tiles

We add 8 new colors per tile and all the previous colors were
replaced by two new colors.

Each color will be associated to a DNA-string of size fixed L. Each
tile will be the concatenation of it’s 4 colors.
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Introduction
Examples in the case k = 3

Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

Does a 6 bit counter exists?

Can we create a deterministic network that will iterate over all 6
bits string — in any order?
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Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

Can we bruteforce that problem ?

There are 244 differents networks which is approximatively 17000
billions.
We could hope for an answer in a few days.
But we can drastically restrict our search space with a few
observations.

Main ideas :
Get rid of redundancy
Look at interesting sub-networks
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Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

6bit Networks are HUGELY redundant

There are 244 differents networks which is approximatively 17000
billions.

But these networks allow to compute only about 32 billions
different layer functions.

So there is only about 0.2% interesting networks in the sense that
they compute distinct layer functions.

This model allows to calculate on a layer only 8.2e-104 % of all
functions of {0, 1}6 → {0, 1}6 (there are 6464).
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Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

How would such a network’s dynamic look like ?

There are only two possibilities (up to permutation):
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Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
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Conclusion and perspectives

Implication on the layer function of the network

The function that our counting network coumputes on one layer is
either:

A bijection
An almost-bijection

i.e. f such that ∃!x0, y0 ∈ {0, 1}6 with
f ′ being a bijection and:

∀x 6= x0 f ′(x) = f (x)

f ′(x0) = y0

We are going to check on both cases.
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Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

The 4 ∗ 16 property

If we have a bijection it will enumerate all strings of {0, 1}6. After
reordering it will look like:
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Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

The 4 ∗ 16 property

Let’s focus on the first two bits, we can organise our sequences this
way:
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Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

The 4 ∗ 16 property

Let us get rid of the last 4 bits:

We see that each of the 2 bits patterns: 00, 01, 10, 11 occurs 16
times in this enumeration.
It’s the 4 ∗ 16 property.
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Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

The 4 ∗ 16 property

Hence the sub network responsible for these 2 bits must have the
4*16 property to be eligible as a being a sub network of a 6 bits
bijective counter network.
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Compute all the 4 ∗ 16 sub networks

By exausthive search we find 288 (over 4 ∗ 16 ∗ 256 = 16384) sub
networks with this property.

By removing equivalent networks we are left with 72 circuits for
the first 2 bits.
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4*16 holds for middle and ending bits
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4*16 holds for middle and ending bits

72 networks for the first 2 bits
216 networks for the middle 2 bits
72 networks for the last 2 bits
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Problem Statement
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Conclusion and perspectives

How to conclude? — 1. Combine it!

Hence by combining these we have 72 ∗ 216 ∗ 72 ' 106

6 bits networks to test.
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Conclusion and perspectives

How to conclude? — 2. Count orbits!

Over all these potential networks we count 497664 bijections.
For each of these bijections we have to count their orbits, we
have a winner iff it has only 1 orbit.

We do not find such a network, here there’s the histogram of orbits:
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Conclusion

Conclusion: There are no bijective 6bits counters.

R. Cerda, R. Pellerin, N. Pinson, P.-E. Polet, T. Sterin 6-inputs networks in base k



27

Introduction
Examples in the case k = 3

Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

2*161517 property

If we have an almost-bijection all 6 bits sequences will be
reached by our network but one.

Also one bit string will be reached twice.

It means that at least one of our sub network will see:
2 patterns 16 times
1 pattern 15 times
1 pattern 17 times

We call this the 2*161517 property.
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Problem Statement
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Conclusion and perspectives

2*161517 does not occur!

By enumeration, there exist no sub network with the
2*161517 property.
Hence, we cannot hope for an almost-bijective counter.
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Compiling the network into tiles
Looking for a 6 bit counter

Problem Statement
Computable bijections on {0, 1}6 and 4*16 rule
Computable almost-bijections on {0, 1}6

Conclusion and perspectives

No 6bit counter network :’(

By case distinction, there’s no 6bit counter network.

But there are 0 to 62 counters and this kind of methods helps to
exhibit at least 24.
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Perspectives

The fact that no sub-network has the 2x161517 property helps
to find an argument for a formal proof in the almost-bijective
case.
We saw that our network model was hugely redundant. To
make formal proof it would nice if we could find a canonical
form for each network.
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Conclusion and perspectives

Sources

All our sources for these computations are available here:
https://github.com/cosmo-sterin/ER_MolProg_Project2/
tree/master/circuit_sim
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