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Recall the framework...

We will use the following network with 6 inputs and 6 outputs.
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Introduction

Examples in the case k = 3 The 1.|nd|cyator
5 n - Counting 1's mod 3
Compiling the network into tiles A binary additioner
Looking for a 6 bit counter Y

3 functions in base 3

We managed to compute 3 "interesting" functions in base 3 over
DNA-nanotube network:
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Examples in the case k = 3 The 1.|nd|cyator
5 n - Counting 1's mod 3
Compiling the network into tiles A binary additioner
Looking for a 6 bit counter Y

3 functions in base 3

We managed to compute 3 "interesting" functions in base 3 over
DNA-nanotube network:

m a indicator of 1
m a counter of 1's mod 3

® a binary additioner (using base 3 network!)
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Examples in the case k = 3 The 1_|ndlgator
5 n - Counting 1's mod 3
Compiling the network into tiles A binary additioner
Looking for a 6 bit counter Y

The "1 indicator"

This function outputs op = 1 iff there some i; = 1 (others outputs
are always 0).
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The 1 indicator
Counting 1's mod 3
A binary additioner

The "1 indicator"

This function outputs op = 1 iff there some i; = 1 (others outputs
are always 0). To do it, we used these cells:
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Examples in the case k = 3 Tl 1_|nd|c'ator
i N q Counting 1's mod 3
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The counter of 1's mod 3

This functions computes the number of ones in the input and sets

00,01 (which must be a fixed point for the function). Other outputs
are always 0.
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The counter of 1's mod 3

This functions computes the number of ones in the input and sets
00,01 (which must be a fixed point for the function). Other outputs

The 1 indicator
Counting 1's mod 3
A binary additioner

are always 0.
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The 1 indicator
Counting 1's mod 3
A binary additioner

Binary additioner: What it does...

Given 2 binary inputs of length 3 (ipi2ia and i1i375), this function
computes the sum mod 8 on outputs 030305 (other outputs are set

to 0).
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and how it works
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Compiling the network into tiles
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Represent circuit as a graph.

We have 7 possible positions and we have k? possible tile choice for
each.

Each time a tile can be placed next to an other their colors become
linked.
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Convert tiles into proofreading tiles

We add 8 new colors per tile and all the previous colors were
replaced by two new colors.
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Examples in the case k = 3
Compiling the network into tiles
Looking for a 6 bit counter

Convert tiles into proofreading tiles

We add 8 new colors per tile and all the previous colors were
replaced by two new colors.

Each color will be associated to a DNA-string of size fixed L. Each
tile will be the concatenation of it's 4 colors.
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Introduction Problem Statement

Examples in the case k = 3 Computable bijections on {0, 1}° and 4*16 rule
Compiling the network into tiles Computable almost-bijections on {0, 1}
Looking for a 6 bit counter Conclusion and perspectives

Does a 6 bit counter exists?

Can we create a deterministic network that will iterate over all 6
bits string — in any order?
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Does a 6 bit counter exists 7
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Can we bruteforce that problem 7

There are 2** differents networks which is approximatively 17000
billions.

We could hope for an answer in a few days.

But we can drastically restrict our search space with a few
observations.
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Can we bruteforce that problem 7

There are 2** differents networks which is approximatively 17000
billions.

We could hope for an answer in a few days.

But we can drastically restrict our search space with a few
observations.

Main ideas :
m Get rid of redundancy

m Look at interesting sub-networks
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6bit Networks are HUGELY redundant

There are 2% differents networks which is approximatively 17000
billions.

But these networks allow to compute only about 32 billions
different layer functions.

So there is only about 0.2% interesting networks in the sense that
they compute distinct layer functions.

This model allows to calculate on a layer only 8.2e-104 % of all
functions of {0,1}° — {0,1}° (there are 64%%).
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How would such a network's dynamic look like 7

There are only two possibilities (up to permutation):
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Implication on the layer function of the network

The function that our counting network coumputes on one layer is
either:

m A bijection

m An almost-bijection
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Implication on the layer function of the network

The function that our counting network coumputes on one layer is
either:

m A bijection
m An almost-bijection i.e. f such that J!xg, yo € {0,1}° with
' being a bijection and:
Vx #xp f(x) = f(x)
f'(x0) = yo

R. Cerda, R. Pellerin, N. Pinson, P.-E. Polet, T. Sterin 6-inputs networks in base k



Introduction Problem Statement

Examples in the case k = 3 Computable bijections on {0, 1}° and 4*16 rule
Compiling the network into tiles Computable almost-bijections on {0, 1}
Looking for a 6 bit counter Conclusion and perspectives

Implication on the layer function of the network

The function that our counting network coumputes on one layer is
either:

m A bijection

m An almost-bijection i.e. f such that J!xg, yo € {0,1}° with
' being a bijection and:

Vx #xp f(x) = f(x)
f'(x0) = yo

We are going to check on both cases.
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The 4 x 16 property

If we have a bijection it will enumerate all strings of {0,1}°. After
reordering it will look like:

0000000000000000000000000PEEEEEE11111111111111111111111111111111
0000000000000000111111111111111100000000000000001111111111111111
00000E0011111111000000001111111100000000111111110000000011111111
goeelllleceelllleeeelllleeeelllleeeelllleeelllloeeelllleeeellll
golleelleelleelleelleelleelleelleelleellealloelloelleelleelleell
glelelelelelelelelelelelelelelelelelelelelelelelolelelelelelelol
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Problem Statement

Computable bijections on {0, 1}° and 4*16 rule

Compiling the network into tiles Computable almost-bijections on {0, 1}°
Looking for a 6 bit counter Conclusion and perspectives

The 4 x 16 property

Introduction
Examples in the case k = 3

Let's focus on the first two bits, we can organise our sequences this

way:

0000000000000000  OEoOPOOPOOEEEEEe  1111111111111111  1111111111111111
ggopoeeoeeeeeeee  1111111111111111 ocOQ0EOCOOEEEeeE0e  1111111111111111
0000000011111111 OEOOEEEe11111111 OOEEEEEe11111111 G0OEEEE011111111
0000111100001111 0EE0111100001111 OOEO111leE001111 ©00011l1le0001111
golleelleelleell ocelleelleelleell oeelleelleelleell eelleelleelleell
glelelelelelelel oelelelelelelelel oelelelelelelelel elelelelelelelel
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The 4 x 16 property

Let us get rid of the last 4 bits:

0000000000000000 0000000O00O0EE0G  1111111111111111  1111111111111111
0000000000000000  1111111111111111 ©000000000000000O  1111111111111111
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The 4 x 16 property

Let us get rid of the last 4 bits:

0000000000000000 000OOEOEEEOEEEEe  1111111111111111 1111111111111111
0000000000000000  1111111111111111 OO0EEO0O0EOEEEOO  1111111111111111

We see that each of the 2 bits patterns: 00, 01, 10, 11 occurs 16
times in this enumeration.
It's the 4 % 16 property.
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The 4 x 16 property

Hence the sub network responsible for these 2 bits must have the
4%*16 property to be eligible as a being a sub network of a 6 bits
bijective counter network.
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The 4 % 16 property

Hence the sub network responsible for these 2 bits must have the
4%*16 property to be eligible as a being a sub network of a 6 bits
bijective counter network.
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Compute all the 4 x 16 sub networks

By exausthive search we find 288 (over 4 % 16 x 256 = 16384) sub
networks with this property.

By removing equivalent networks we are left with 72 circuits for
the first 2 bits.
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4*16 holds for middle and ending bits
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4*16 holds for middle and ending bits

m 72 networks for the first 2 bits
m 216 networks for the middle 2 bits
m 72 networks for the last 2 bits
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How to conclude? — 1. Combine it!

Hence by combining these we have 72 % 216 72 ~ 10°
6 bits networks to test.
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How to conclude? — 2. Count orbits!

Over all these potential networks we count 497664 bijections.
For each of these bijections we have to count their orbits, we
have a winner iff it has only 1 orbit.
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How to conclude? — 2. Count orbits!

Over all these potential networks we count 497664 bijections.
For each of these bijections we have to count their orbits, we
have a winner iff it has only 1 orbit.

We do not find such a network, here there's the histogram of orbits:
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Conclusion

Conclusion: There are no bijective 6bits counters.
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2*161517 property

If we have an almost-bijection all 6 bits sequences will be
reached by our network but one.
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2*161517 property

If we have an almost-bijection all 6 bits sequences will be
reached by our network but one.

Also one bit string will be reached twice.
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2*161517 property

If we have an almost-bijection all 6 bits sequences will be
reached by our network but one.

Also one bit string will be reached twice.

It means that at least one of our sub network will see:
m 2 patterns 16 times
m 1 pattern 15 times
m 1 pattern 17 times
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517 property

If we have an almost-bijection all 6 bits sequences will be
reached by our network but one.

Also one bit string will be reached twice.

It means that at least one of our sub network will see:
m 2 patterns 16 times
m 1 pattern 15 times
m 1 pattern 17 times

We call this the 2*¥161517 property.
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2*161517 does not occur!

By enumeration, there exist no sub network with the
2*161517 property.
Hence, we cannot hope for an almost-bijective counter.
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No 6bit counter network :'(

By case distinction, there’s no 6bit counter network.
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No 6bit counter network :'(

By case distinction, there’s no 6bit counter network.

But there are 0 to 62 counters and this kind of methods helps to
exhibit at least 24.
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Perspectives

m The fact that no sub-network has the 2x161517 property helps
to find an argument for a formal proof in the almost-bijective
case.

m We saw that our network model was hugely redundant. To
make formal proof it would nice if we could find a canonical
form for each network.

R. Cerda, R. Pellerin, N. Pinson, P.-E. Polet, T. Sterin 6-inputs networks in base k



Introduction Problem Statement

Examples in the case k = 3 Computable bijections on {0, 1}° and 4*16 rule
Compiling the network into tiles Computable almost-bijections on {0, 1}
Looking for a 6 bit counter Conclusion and perspectives

Sources

All our sources for these computations are available here:
https://github.com/cosmo-sterin/ER_MolProg_Project2/
tree/master/circuit_sim
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