ER02 – Molecular Programming Project Presentation

Maverick Chardet, Jean-Yves Franceschi, Rémy Grunblatt, Victor Mollimard, Clément Sartori

Ecole Normale Supérieure de Lyon

January 20, 2017

Part I

Project 4 – Scale the Wall

Outline

2 Evaluation of Impossibility Proofs

First Steps

• Can not find a solution with an empty wall

First Steps

- Can not find a solution with an empty wall
- Solution: Add glue to the wall

First Steps

- Can not find a solution with an empty wall
- Solution: Add glue to the wall
- Glue on the wall with strength 2 can be simulated with glue on the wall with strength 1

Attempts to Find a Solution $0 \bullet 0$

Evaluation of Impossibility Proofs $_{\rm O}$

Simplified Attempt

Evaluation of Impossibility Proofs $_{\rm O}$

Complicated Attempt

Outline

Part II

Project 5 – Rock Paper Scissors Reaction Networks

Trying to play shifumi with reaction networks

same guys as before

20 january 2017

Introduction

• For each player, *C*₁, *C*₂, *C*₃ concentrations represent the moves **Rock**, **Paper** and **Scissors**;

- For each player, *C*₁, *C*₂, *C*₃ concentrations represent the moves **Rock**, **Paper** and **Scissors**;
- As soon as one concentration exceeds 1.0, the player is assumed to make a move;

- For each player, *C*₁, *C*₂, *C*₃ concentrations represent the moves **Rock**, **Paper** and **Scissors**;
- As soon as one concentration exceeds 1.0, the player is assumed to make a move;
- C_4, \ldots, C_{n-1} are "helper" chemicals product;

- For each player, *C*₁, *C*₂, *C*₃ concentrations represent the moves **Rock**, **Paper** and **Scissors**;
- As soon as one concentration exceeds 1.0, the player is assumed to make a move;
- C_4, \ldots, C_{n-1} are "helper" chemicals product;
- *C_n* represents the fuel; each move consumes fuel.

Example of game

 $\mathrm{Figure}\ 1-\mathsf{Example}\ of$ a game between two networks

same guys as before

Trying to play shifumi with reaction networks

Example of game

TABLE 1 – Player 1

Example of game

TABLE 1 – Player 1

TABLE 2 – Player 2

Project

What has been done:

What has been done:

• Implementing a simulator;

What has been done:

- Implementing a simulator;
- Trying to find a good reaction network;

• Using euler method with those equations:

$$\frac{dx_i}{dt} = 10^{-6} - 0.4x_i + \frac{x_n}{2 + x_n} \cdot \frac{\sum_{j>0} a_{ij}x_j}{1 + \sum_{j>0:a_{ij}>0} a_{ij}x_j + 10\sum_{j>0:a_{ij}<0} |a_{ij}|x_j|}$$
$$\frac{dx_n}{dt} = 0.5 - \frac{x_n}{2 + x_n} \cdot \sum_{i>0} \frac{\sum_{j>0} a_{ij}x_j}{1 + \sum_{j>0:a_{ij}>0} a_{ij}x_j + 10\sum_{j>0:a_{ij}<0} |a_{ij}|x_j|}$$

Simulator

During the simulation, do in a loop:

• For each player, for each chemical:

- For each player, for each chemical:
 - Update the chemical concentration;

- For each player, for each chemical:
 - Update the chemical concentration;
 - Update the fuel;

- For each player, for each chemical:
 - Update the chemical concentration;
 - Update the fuel;
- Update the scores.

Finding good networks to fight!

SPOILER:

same guys as before Trying to play shifumi with reaction networks 10 / 16

Finding good networks to fight!

SPOILER: Well it failed.

The idea

The idea

Theory

- Taking random networks, simple networks like the previous one;
 LET THEM FIGHT (in a tournament);
- Take the best, mutate them, shuffle everything;

The idea

Theory

- Taking random networks, simple networks like the previous one;
 LET THEM FIGHT (in a tournament);
- Take the best, mutate them, shuffle everything;

Practice

- Have bad networks;
- Mutate them in bad networks (takes *age*...);
- Get bad networks.

MOAR Examples

 $\operatorname{FIGURE} 2 - I$ do not even know how I got this network

MOAR Examples

$\rm Figure~3-Trivial~variations$

MOAR Examples

5.02106	0.551144	0.654704	1.26085
-0.18263	0.0215417	-0.82885	0.650672
-0.880956	-0.0868306	-1.14483	-0.855841
0.0116319	0.0846469	-0.868768	-0.0630371

 TABLE 3 – Matrix of the trivial variation

Conclusion

Genetic algorithm: Well, why not but with good initialization heuristics.