The Thue-Morse sequence rarefied with respect to a prime difference.

Alexandre AKSENOV

Institut Fourier, Grenoble

April $7^{\text {th }}$ 2010, Aussois

Table des matières

1 Introduction.

2 The quadratic and cubic cases.

3 Illustration.

The Thue-Morse sequence with symbols 1 and -1 :

$$
\tau(n)=(-1)^{\text {number of } 1 \text { digits in the binary expansion of } n}
$$

It's also the fixed point of the morphism

$$
\left\{\begin{array}{lll}
1 & \rightarrow & 1 \overline{1} \\
\overline{1} & \rightarrow & \overline{1} 1
\end{array}\right.
$$

First terms :

$$
1 \overline{1} \overline{1} 1 \overline{1} 11 \overline{1} \overline{1} 11 \overline{1} 1 \overline{1} 1 \overline{1} 1 \quad \overline{1} 11 \overline{1} 1 \overline{1} 1 \overline{1} 11 \overline{1} 1 \overline{1} 11 \overline{1} \ldots
$$

$$
\text { Rarefied sums : } S_{p, 0}(N)=\sum_{\substack{n<N \\ p \mid n}} \tau(n)
$$

The Thue-Morse sequence :

The 3-rarefied Thue-Morse sequence :

Proposition (Moser's conjecture, Newman's theorem (1979))
For all $N>0$, we get : $S_{3.0}(N)=\quad \sum \quad \tau(n)>0$. $n \equiv 0(\bmod 3)$

The 3-rarefied Thue-Morse sequence :

Proposition (Moser's conjecture, Newman's theorem (1979))

$$
\text { For all } N>0 \text {, we get : } S_{3,0}(N)=\sum_{\substack{0 \leqslant n<N}} \tau(n)>0 .
$$

Sketch of the proof

Main idea : decompose $31_{3 \mid n}=1+j+j^{2}$ and
pass from the base 2 to base 4 .

$$
\begin{aligned}
S_{3,0}(N) & =\frac{1}{3}\left(\sum_{n<N} \tau(n)+2 \Re \sum_{n<N} \tau(n) j^{n}\right) \\
& =\eta+N^{\log _{4} 3} F\left(\left\{\log _{4} N\right\}\right)
\end{aligned}
$$

where $\eta \in\left\{-\frac{1}{3}, 0, \frac{1}{3}\right\}, F>0$ continuous.

$$
F\left(\log _{4} x\right)=\frac{2 \Re \psi(x)}{x^{\circ} 0_{4}{ }^{3}}
$$

For a bigger prime number p :
Replace 4 by 2^{s} where $s=\min \left\{s^{\prime} \mid 2^{s^{\prime}} \equiv 1 \bmod p\right\}$ and the Koch's curve by

$$
\begin{gathered}
\sum_{n=0}^{n=2^{s}-1} \zeta^{n} \tau(n)=\xi(\zeta), \quad \zeta=\sqrt[p]{1} \\
\zeta_{1}=\exp \left(\frac{2 i \pi}{p}\right) \\
S_{p, 0}(N)=\frac{1}{p} \sum_{n<N}\left(1+\zeta_{1}+\zeta_{1}^{2}+\cdots+\zeta_{1}^{p-1}\right) \tau(n) \\
=\eta+N^{\log _{2^{s}} \xi\left(\zeta_{1}\right)} F_{1}\left(\left\{\log _{2^{s}} N\right\}\right)+\ldots \\
\\
\quad+N^{\log _{2^{s}} \xi\left(\zeta_{1}^{p-1}\right)} F_{p-1}\left(\left\{\log _{2^{s}} N\right\}\right)
\end{gathered}
$$

Let's study the numbers ξ.

General facts about the sums ξ

If $s=p-\overline{1, \xi(\zeta)}=p$ for all $\zeta \neq 1$.
In general,

$$
\begin{aligned}
& \xi\left(\zeta_{1}^{j}\right)=\left\{\begin{array}{l}
0 \text { if } \zeta^{j}=1 \\
\text { otherwise } \\
j \in \mathbb{F}_{p}^{\times} /<2>\rightarrow \xi \in \mathbb{C} .
\end{array}\right. \\
& \xi=\sum_{n=0}^{n=2^{s}-1} \zeta^{n} \tau(n)=\prod_{j \in<2>\subset \mathbb{F}_{p}^{\times}}\left(1-\zeta^{j}\right)
\end{aligned}
$$

and the product of all the nonzero ξ is p.

Table des matières

1 Introduction.

2 The quadratic and cubic cases.

3 Illustration.

Algebra \rightarrow we have to fix $k=\frac{p-1}{s}$ and define

$$
\xi=\prod_{j \in \mathbb{F}_{p}^{\times k}}\left(1-\zeta^{j}\right)
$$

If $k=2$, one can take any $p>3$.

If $p \equiv 3 \bmod 4$, the two values are $i \sqrt{p} \quad$ and $\quad-i \sqrt{p}$.

Algebra \rightarrow we have to fix $k=\frac{p-1}{s}$ and define

$$
\xi=\prod_{j \in \mathbb{P}_{\beta}^{\times k}}\left(1-\zeta^{j}\right)
$$

If $k=2$, one can take any $p>3$.

If $p \equiv 3 \bmod 4$, the two values are $\quad i \sqrt{p}$

$$
\begin{array}{cc}
\text { and } & -i \sqrt{p} . \\
? \\
\xi\left(\zeta=e^{\frac{2 i \pi}{p}}\right)
\end{array}
$$

The answer uses the class number h(O($\sqrt{-p}))$.

Algebra \rightarrow we have to fix $k=\frac{p-1}{s}$ and define

$$
\xi=\prod_{j \in \mathbb{P}_{\beta}^{\times k}}\left(1-\zeta^{j}\right)
$$

If $k=2$, one can take any $p>3$.

If $p \equiv 3 \bmod 4$, the two values are $\quad i \sqrt{p}$ and $-i \sqrt{p}$. ?
$\xi\left(\zeta=e^{\frac{2 i \pi}{p}}\right)$
The answer uses the class number $h(\mathbb{Q}(\sqrt{-p}))$.

If $p \equiv 1 \bmod 4, \quad \xi$'s $\in \mathbb{R}$ and Galois-conjugate in $\mathbb{Q}(\sqrt{p})$. Expression :
$\left\{\begin{array}{l}\xi=\sqrt{p} \epsilon^{-h}, \\ \xi^{\prime}=\sqrt{p} \epsilon^{h}\end{array}\right.$ where ϵ is the regulator and h is the class number of $\mathbb{Q}(\sqrt{p})$.
$\xi+\xi^{\prime}-$?

About the cubic case.
$p \equiv 1 \bmod 6$.
All three values are $\in \mathbb{R}_{+}^{*}$ and conjugate in a cubic field.

$$
\begin{aligned}
& \hline \sigma_{1}=\xi^{\prime}+\xi^{\prime \prime}+\xi^{\prime \prime \prime} \\
& \sigma_{2}=\xi^{\prime} \xi^{\prime \prime}+\xi^{\prime} \xi^{\prime \prime \prime}+\xi^{\prime \prime} \xi^{\prime \prime \prime} \\
& \operatorname{Gal}\left(\mathrm{X}^{3}-\sigma_{1} \mathrm{X}^{2}+\sigma_{2} \mathrm{X}-\mathrm{p}\right)
\end{aligned}
$$

Table des matières

1 Introduction.

2 The quadratic and cubic cases.

3 Illustration.

Draw $\sum_{n=0}^{2^{s}-1} \tau(n) \zeta^{n}$ as sequence of 2^{s} line intervals.

