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ABSTRACT. The joint distribution of sequences (f¢(P¢(n)))nen,f = 1,2,...,d and
(fe(Pe(p)))pep respectively, where f, are go-additive functions and P, polynomials
with integer coefficients, is considered. A central limit theorem is proved for a larger
class of ¢, and Py than by Drmota [3]. In particular, the joint limit distribution
of the sum-of-digits functions sq, (n), sq, (n) is obtained for arbitrary integers q1, g2.
For strongly g-additive functions with respect to the same g, a central limit theorem
is proved for arbitrary polynomials P, with the help of a joint representation of the
digits of Py(n) by a Markov chain.

1. INTRODUCTION

For a given integer ¢ > 1, every non-negative integer n has a unique gq-ary

expansion
_ k
n= E :Eq,k(”)q
k>0

with €, x(n) € {0,1,...,¢— 1} (where the index ¢ will often be omitted). Then the
sum-of-digits function is given by

sq(n) = equ(n).

k>0

This is a special case of a g-additive function, i.e. a real-valued function f defined
on the non-negative integers which satisfies f(0) = 0 and

Fn) = flequ(n)d®).

k>0

Such a function is said to be strongly q-additive, if

fn) =Y flequ(n)).

k>0
Bassily and Kétai [1] proved the following central limit theorem.
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2 WOLFGANG STEINER

Theorem 1 (Bassily and Katai [1]). Let f be a g-additive function such that

f(bg®) = O(1) as k — oo for allb € {0,1,...,q— 1}. Assume (12«;(%;71 — 00 as

N — oo for some n > 0 and let P(n) be a polynomial with integer coefficients,
degree T and positive leading term. Set

144 144
pe==> fbd"),  of == f(bg")’ - 1
q b=0 q b=0
and
[log, N] (log, N]
M(N) = Z [k D(N)* = Z -
k=0 k=0

Then, as N — o0,

i {n <N ’ f(P(nz)))(J_wAf(NT) < x} oo
and o {p . ‘ f(P(Pl)))(]—VTJ\f(NT) - x} — B(a).

where ®(x) denotes the distribution function of the normal law.

This theorem was only stated for n = % However, a short inspection of the
proof shows that n > 0 is sufficient.

Drmota [3] generalised this theorem for certain joint distributions. From now
on, denote by ¢ 1,001, Mg, Dy the puy, o, M, D of Theorem 1 with respect to f.

Theorem 2 (Drmota [3]). Let fo, 1 < £ < d, be qo-additive functions such that

fe(bgh) = O (1) as k — oo for allb € {0,1,...,q,—1}. Assume that (f)é% — 00,

as N — oo, for some n > 0 and let Py(x) be polynomials with integer coefficients
of different degrees vy and positive leading terms, 1 < £ < d. Then, as N — 00,

1 fe(Pe(n)) — My(N™)
N# {n<N Dy (N™) <@y 1 <€<d} — O(x1)P(z2) - - P(zq)
and
fe(Pe(p)) — My(N™)
W(N)#{p<N qu(er) <$€,1S€§d}—>(I>(Z‘1)(I)(Jj2)---q)(xd).

Note that this theorem was stated only for coprime ¢, but this assumption is
not used in the proof and therefore not necessary.

The problem is the case of polynomials of the same degree. For d = 2, we show
the following theorem.

Theorem 3. Let q1,q2 > 1 be multiplicatively independent integers and let f; be
qe-additive functions such that fo(bgy) = O (1) as k — oo for allb € {0,1,...,q0 — 1},

¢ =1,2. Assume that (fﬂ;%)n

— 00 as N — oo, for some n > 0 and let Py(n) be
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polynomials with integer coefficients of degree r and positive leading terms, £ = 1,2.
Then, as N — oo,

1 fe(Pe(n)) — My(NT) _
N#{n<N Do(N7) <xg,€—1,2} — O(1)P(z2)
and
1 fe(Pe(p)) — My(N") _ L BBl
F(N)#{p<N DZ(NT) <$[,€1,2} q)( 1)(]:)( 2).

The first convergence was shown by Drmota [3] for linear polynomials and co-
prime integers qi,¢2. In [4], Drmota and the author stated this theorem, but still
only for coprime integers. We will prove the case of multiplicatively independent
integers in Section 3.

Furthermore, we solve the problem of equal degrees of the polynomials for
strongly g-additive functions with respect to the same ¢ in the following section.
Note that this covers the case of multiplicatively dependent ¢i,q2 since ¢;- and
go-additive functions are g-additive, if ¢;* = g5 = ¢. Then the distributions clearly
do not satisfy the independence relations of Theorems 2 and 3.

The main part of the proof of all theorems is a proposition similar to the following
one (which proves Theorem 2).

Proposition 1 (Drmota [3]). Let Py(n), 1 < ¢ < d, be polynomials of different
degrees Ty with integer coefficients and positive leading terms. Let A > 0 be an
arbitrary constant and hy, 1 < ¢ < d, non-negative integers. Then, as N — o0,

%#{n<N

e po(Pen) =09 1< j<hp1<e< d}
(]
1

=—F+0 ((logN)fk)
qillqém . qu

#{p<n

_ (0 :
(V) Eq[,k;z>(PZ(n)>_bj , 1<y Sh@lﬁfﬁd}
1

=——+0 (logN)*)‘
q?l qg’z e qsd ( )

uniformly for integers
(log N™)" < ki <k < - < k") <log,, N — (log N"™)" (1< (< d)

(with some > 0) and by) €{0,1,...,q —1}.

For a list of references of other results for g-additive functions, we refer to Dr-
mota [3].
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2. STRONGLY ¢-ADDITIVE FUNCTIONS WITH RESPECT TO THE SAME ¢
2.1. Results.

Theorem 4. Let f;, 1 < ¢ < d, be strongly g-additive functions with o¢ = o3 > 0
and Py(n) = gf«f)n” 4+ -+ g(e)n + g( ) polynomials with integer coefficients and
positive leading terms. Then, as N — oo,

1 fe(Pe(n)) = My(N™)
N#{n<N Do(N) <z l=1,...,d ¢ — DPy(x1,...,29)
and
fe(Pe(p)) — My(N™)
N (=1,2,...,d ¢ .
W(N)#{p< D[(NTZ) < Zy, y ) - V(xlv 7$d)
where Oy (x1,...,xq) denotes the distribution function of the d-dimensional normal

law with covariance matric V = (v; j)1<ij<d given by

1 ifi=j
gl g9 G
i) ; J)P © )P
I <( 797”) (g5 7g77))) s Fin) = gr. 15 ()
53 7T Y ri—maxd s|g¢ >g<y>¢g<y> <> (i) g,gyj) )
{ | ™ }C ((<> 9D J(j))) ifri=r;
0 else,
where
R;j—1 g—1 g—1 1
Cosfarn) == 3 X X (tvatan — 53 ) 05 (0)
YU 1=0 bi=1b;=1 ¢
R;—1 g¢g—1 g—1 ( 1
)0 DI CHWET- RIS
U’UJ I=1 bj=1b;=1 ¢
with Ry such that q\—(z)) and

1 (G D7 ~big) (@ + Dy — bg)

Tbibj,giqh95 — Tbisbs,g,9" = 2 99'q?

min (b;¢’,b;g) + min ((bl +1)g, (b; + 1)g> — min ((b, + 1)9/’@) —min (big’, bjg)
J’_

99'q

where g = (q g ),g and § denotes the representative y' of y' =y (q) with

0<y <q. (m,y,

_9i
(4':95)
190,g;q" 1S given symmetrically.)

Remarks. If V is positive definite, we have, with t = (¢1,...,tq),

xT
eIV T g dty.

@V($17...,$d):m/;w...[w
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If gﬁf) is coprime to ¢, then we have R, = 1.

| > R; implies my, p. g.41.9, = q% for all by, b;.

The mp, 3, g.q1,9, are the joint probabilities of digits k + [ and k of g;n and g;n
(which do not depend on k):

Tos by .giats0; = Prler(gig'n) = bi,ex(g5) = bj] = Prlepqi(gin) = b, ex(g;) = bs].

Note that we need C; ;(gi,g;) only for coprime g;, g;.
The constant term of the polynomials plays no role.

Corollary 1. Let Py(n) = g%)n”’ + -+ gie)n + g(()é) be polynomials with integer
coefficients and positive leading terms. Then, as N — o0,

sq(Pe(n)) — 45+ log, N™
V q21;1 log, N

1 Tq ]
— e — NN e
(27)4/2y/det V /m /m

with the positive definite matriz V = (v; j)1<i j<d given by

1
N# n<N <zp,l=1,...,d

=3V g dty

1 ifi=j
9t} 9r) ) (i)
Ci; <(g<i> ;m)’ (@ Jgu))) if gy’ Pi(n) = gr Pj(n)
o g g
Vig = ri—max{ 5|90 g9 £9 g() } g g T
P L - - wr, =r;
P\ @9 (98,95 Y
0 else,
and
L,J\I I)) T 2
9i95(¢*> — 1)
Rj—1 .2 _ 9:d' Ri—1 42 _ 954" )
n 1 ]Z q (q, (ql,gj)) n Z 1 (q, )
9i9;(¢* = 1) \ = ¢ — q

Remark. For monomials Py(n) = gen” with (g¢,q) = 1 we just have

_ (94,95)°
Vi =
9igj
For ¢ = 2 and r = 1, this was proved by W.M. Schmidt [6].
Furthermore, we can calculate the joint distribution of the sum-of-digits functions

for multiplicatively dependent q1, go.

Corollary 2. Forq; = ¢°', qo = ¢°2 with positive integers q, s1, $2 and (s1, s2) = 1,
we have, as N — 00,

1 sg.(n) — Llog N Sg,(n) — 2L 0g N

N# TL<N (11( ) 2 gql <{E1, qz( )2 2 ng <x2
g5—1

logqlN 212 longN

67ﬁ(tf+t§720t1t2)

1 xro Xy
_— dt,dt
271'\/1—62 \/—oo\/foo e
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with

C:d+1\/ (@1 —D(g2—1)

G—1\ siso(qn +1) (g2 +1)°

For general strongly g¢-additive functions, similar statements can be derived
easily. The case of multiplicatively independent q1, ¢o is treated by Theorem 3.

2.2. A Markov chain and calculation of the covariance.
Define the polynomials
(s) (), [ _
P, (n) = gﬁl)n” 4+ gPn® for 1<s<r= 11;152((17'@.

and fix s in this subsection.
Furthermore, define vectors

s s+1 r
(s) o - n n n
Wk (n)— (wk,s,...ywk,r) - ({qk+1},{qk—‘rl},..',{—qk"ﬂ‘l })

for 0 <n < N, where {z} denotes the fractional part of « and see, by Proposition 1,
that they asymptotically form a net to the base g if k € [(log N)",log, N* — (log N)”]
(but not for k& > log, N ). Proposition 1 gives rather bad error terms if we want to
calculate the number of Wff)(n) in an arbitrary set of T"~**1. Nevertheless, this
suggests that they are uniformly distributed and we use the Lebesgue measure as
probability measure on T" 51,

We have ¢, (PE(S)(n)) = b if and only if

b b+1
{g'gf)wk,w +ee +g§£)wk,s} € |:53 q ) .

This means that, for each digit b, {w,(:)(n) | ek(Pe(s) (n)) = b} (as aset of T"~5+1) is
contained in the stripe S,Sfe) between the hyperplanes g%)xmZ +-+ ggz)xs = s (in-
cluded) and g%)xw—i—- g, = ble (excluded). If Pe(s)(n) =0, set S[();Sg = Tr—s+!
and Sé;? = () for b # 0.

Thus, each set {Wl(f)(n) | ek(Pl(S)(n)) = bl,...,ek(Pés)(n)) = by} is contained
in Séf?l N---N Slgj? 4 and each of these intersections consists of a finite number of

convex sets, the boundaries of which are the above hyperplanes. Let (Wj(s))lg §<rs
be the partition of T" induced by these sets (or equivalently by the hyperplanes).
Then fg\w(s) is constant for all £, j.

j

Furthermore, we have ek_j(P[(s) (n)) = b if and only if Tj(w,(;) (n)) € Séi,) with

the map 7' : T" — T", T(wk,s; - - -, Wkr) = (QWks, - - -, qQW ). Hence

{nleo(PPm) =8, (P ) = }

:{nwgoweT%%gﬁuwwy@nqué}
o k
and we define a sequence of random variables (Y,*)>0 on {W¥, W{¥ ... w1}
by

PriY? =w® Ly =w =@ wWE 0 rw aw)

for 1 < j; < ks, 0 <i < k. (A, denotes the n-dimensional Lebesgue measure.)
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Lemma 1. (Yk(s)) is a Markov chain.
k>0

Proof. Let U be the subspace of R"~*™1 spanned by the vectors (gg), . ,gg)),

1 < ¢ < d. If U has (full) rank » — s + 1, then T is injective on each Wj(s),
1 < j < ks. Otherwise, Wj(s) contains with every point z all points « + U+ and
T is ¢°-to-one with § = r — s + 1 — rank(U). Furthermore, TW.(S) is the (disjoint)
union of sets I/Vi(s)7 since the image of the hyperplane gﬁﬂ)xm + -+ gg)z9 = g is

the hyperplane g%)x” 4+ gg)xs = 0. Hence we have

PI‘[YO(S) _ W( ) Y(S) W(S) ] — )\Tferl(T_(kJrl)Wj(j) N W(S) )

Jo k+1 7 " k41 Jk41
1 k) A (s) (s)
= ?AT_sH(T w0 W nTwe )
1 R (s) () (s)
:{q—msﬂ(T Wi n- W) W CTwit
0 else.
Thus
Priy}) = Wi v = Wi v = wl)
2w cTw!? (s) (5) 13 (5) _ yir(s)
{ qO olse Jht1 PI‘[Yk_s|r1 = WJk+1 Y, s =W/ 1,

i.e. the Markov chain property is fulfilled.

As already noted, each fy is constant on each Wj(s) because of W;S) - Séf,)1 NN Shyd

for some b;. Therefore we define the d-dimensional function f on (WJ*(S))lngHS by
FOE) = (RO, falW)) = () falba).

Before stating a central limit theorem for f (Yk(s))7 we study the covariance
Cov( J“,»(Yk(f))7 fj(Yk(j))). To this effect, the following lemma, which will be proved

together with Proposition 2, will be very useful. Note that Yk(s) C Sésg) is equivalent
to fo(Y;*)) =b.
Lemma 2.

[Y(S C Slg i S) - S s) ] Z Crmi,bi,qCmy by, (1)

""iPi(S)(") mj P;s> (n) _
MM &y ] =

where ¢y p 4 are the Fourier coefficients of Lp/q,041)/0)

L _6(—%)—6(—@) for m # 0.

Cobg = =5 Cmbg = -
Ty 1 2mim

By Lemma 2, we have

Pr(y* € S5 v € S8 ] = o, geo,.q = Pr[Y,Y € I IPrY) € 8%



8 WOLFGANG STEINER

if the polynomials do not have the same degree or are not proportional. Then
Cov(fi(V,), ;1)) = 0.

Now assume r; = 7; and that the polynomials are proportional. Furthermore,
let w.lo.g. k; > k;. Then the m; in (1) must satisfy m;g'” = 0(¢" "), ie.

k

m; =0 (ﬁ) If k; — k; > R;, this implies m; = 0(¢). Hence we have
Cmi biqCmy byq = 0 for (mg,my) # (0,0) and
Cov (fz(YkIS)>7 fj (Yk(j))) =0 if ki — k‘j Z Ri or k’j — k‘i Z Rj.
(For k; > k;, we get the result by the symmetry of the covariance.)
Since the Markov chain (Yk(s))kzo is homogeneous, we obtain

B(N) B(N)
Cov| S "), Y £
k=A(N) k=A(N)
B(N)  min(R;—1,B(N)—k)

S > Cov (A HMD)

k=A(N) l=max(—R;+1,A(N)—k)

R;—1
= (B(N)=A(N) Y Cov (£, ) +0 )
I=—R;+1

for A(N) = [(log N)"], B(N) = [logq N] — [(log N)™].
Now we can state the central limit theorem.

Proposition 2. The sums of the random variables f(Yk(S)) satisfy a multidimen-
sional central limit theorem with convergence of moments. More precisely, we have,

for alla = (al,.. ,aq) € RY, asNHoo,
ap e oaeg
S SO ST
B(N) — A(N)

where the covariance matriz V) = ( (S)> is given by
1<4,5<d

R;—1

s 1 d s

()] = — Z Cov (fz(Yk( ))afJ(Y]c(+)l))
%% 1= "R

and for all integers h¢ > 0 we have

_ he
d oY) = Mo(N)
A(N) ‘ ¢ !
EH X / 2P dD ) (o, za). (3)
Proof. We have
d B(N) d d B(N) w B(N) o
Varyl 3 LAY =33 Cov | Y A, Y ZpvY)
(=1 k= A(N) i=1j=1 E=A(N) ° E=A(N) 7
d d
= (BN) = AN) 33 0 bS) Cov (£ f;(HD) +0 )
i=1j=1 ""J |=—R;+1
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If aV(®al = 0, then Y7_, Zk A(N) agfg(Yk(S)) = O (1) and both sides in (2) are
Z€ro.

Otherwise, use the central limit theorem for stationary and homogeneous Markov
chains or ¢-mixing sequences (see e.g. Billingsley [2], p. 364) which holds if all
states are recurrent and aperiodic. For Yk(s), this condition is satisfied, since we
clearly have an integer m such that TmW;S) =Tr—st1 for all Wj(s) and hence

Pr[Yk(i)l = WJ(:j—l |Yk(s) = Wj(:)] > 0 for all [ > m. This implies the p-mixing prop-

erty for Xj = 22:1 agfg(Yk(S)) and the central limit theorem holds for X, too.
(Note that X need not be a Markov chain, if 23:1 ag f¢ 1s not injective.)

For the convergence of moments, it suffices to show that they exist. The onedi-
mensional moments are
B(N BN he B(N
P L) = My (N) 1 S ey Feler(n)) = My(N)

Dy(N) TN =~ Dy(N)

E

and converge therefore (cf. [1]). The multidimensional moments converge since

l ~
E ‘X}"VXJSV < (E ijv’")% (EXIQVS) * holds for all random variables Xy, Xy. Thus
the proposition is proved.
For the calculation of Cov(f,‘(Y,C(S))7 fj(Yj(s))), it suffices to consider Y, = Yk(l)

and linear polynomials because of Lemma 2 and the succeeding remarks. For the
sum-of-digits function, we even get explicit expressions.

Lemma 3. Let Pi(n) = gin, Pa(n) = gan and fi(n) = fa(n) = sq(n). Then the

covariance of f1(Yr) and fo(Yy) is given by

(q2 _d% _d%+1)(91792)2 (4)
129192 ’

Cov(fi1(Yr), f2(Yr)) =

where dy = (q, (glgflgz)) and dy = (q, ﬁ).

Proof. The covariance is given by

Cov(f1(Yx), fz(Yk)) ()

= Z Z Gk gln = bl,ek(ggn) = bg]blbg — Efl(Yk)E fQ(Yk)
b1=0b2=0

Because of Lemma 2, the digit probability does not change if we replace g1, g2
by (glg—lgz), (glg—ng)' Therefore assume (g1, g2) = 1. In order to get integers, set

apy by = q9192Prler(g1n) = by, ex(gan) = ba)
X

Z#{SCE{0’17-~-,qg192—1}Hg£2] = b1 (q), {—} Ebz(Q)}~

g1

We study A4, ; = Zbl i ZbZ —q—j by b, because of

g—1 gq—1 -1 ¢-1 g¢g-1 g-—1
DD ubsbiby = Z DD D Wik
bl 0})2 0

i=1bi=g—i j=1by=q—j



10 WOLFGANG STEINER

For every z in the set corresponding to ap, b, (gg192 — 1 — z) is in the set
corresponding to aq—1-p, q—1-b,. Lherefore we have ap, b, = Gg—1-b;,q—1—b, and

i—1 j—1

Aig =" an,
b1=0b2=0
= #{x €0,.

o q9192 — 1} |2 =0,...,ig2 — 1(qg2), =0,...,jg1 — 1(q91)}

Since (qg1,q992) = g, the system of congruences = = x1 (qg2) and = = x5 (qg1)

has no solution z if 21 Z x5 (¢) and a unique solution modulo gg; g> for 1 = x5 (q)
If we denote the representative y’ of y

=y (g) with 0 <y’ < ¢ by (9, then

Ai,j _ z’gg]gl q]91 +T(q) iga 92 +m1n(g(q) 7(’1))

_ 192j91 _ ig2 o1 "

+ min(E(q) 7 E(Q)).
q q
Hence
=T a(q — 1)° g(q — di)(q — da) e
ZZ 79192 - n + dqds Zl Zl min(idy, jdi),
i=1 j=1 i=1 j

where ¢’ = q/dy and ¢” = q/d2. We have

// 1q171
Z Z min(ids, jdi)
=1 j=1
q'-1 id q'—1 jd -
. ’ 2 1 .
2w (1= [7]) ¢ S (o1 []) + B e
and
q//—l

@y,
d(@ -1 —1) | 1 = =
6

. —(d1)
9 - + dil Z(:) Zl (jd1 + ’L)ng
j=0 i=
dy—1
q/(q//2 o 1) q// q// q// (d1)
—T—FZ —L]N———d1+3 +?Z do
1



JOINT DISTRIBUTION OF ¢-ADDITIVE FUNCTIONS 11

With
2dq
d2 di—1 (1) dg di—1 [W} di—1
=N ddy Vi=—" dai® — dyi— - — dy — 1)dyi
i= i= 7‘.:[%]+1 i:[('de) 1]+1
d1 1d dlfl [%} {%}
=d, 2—222— (dp—1) Y it Y it Y i
=1 =1 =1
_d3(d1—1)(2d1 —1)  da(d2 —1)(d1 — 1)y
6 2
. d?i (jdy — 7di™® + do) (jdy — jdi ™)
2d,
j=1
B+ dB+1 dPdy+did2—3didy  dy T ()
=1 7 1 Ty > i
we obtain

q 1g— 2
q—1
9192Cov(f1(Yx), fo(Yr)) = _g E — 9192 4)

(g=di)(g—ds) | ¢*—d3  —dig—q—didy+3didy

B 4 et 4
d?+d3+1  d3dy + did3 — 3d1ds
12 4
+q2—d%+—d2q—q—d1d§+3d1d2+q—d1d2
6 4 2
_q2—df—d§—|—1

12

and the lemma is proved.
Clearly we have

Apiv1p;41 — A pj+1 — Avirip; + Abp,
9192

Prle;(g1n) = b1, ex(gan) = bo] =

for (g1,92) = 1. Thus
Prlep(g1m) = b, €x(g2n) = b2] = 7o, 5,.91.9

first for (g1,92) = 1, and, with Lemma 2, for general gi,g2. With the remarks
succeeding Theorem 4, we get

97(«) (J) . ] s 7 S
o) — Ci; (( ()7(J)) S <> m) if gg)Pz’( )(”) = gq(”i)PJ( )(n)
:J i 29T

else.
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For 1 = ¢ and ¢2 = ¢°2, fi(n) = sq(n) and fa(n) = sg,(n) are strongly
g-additive functions with ¢ = ¢7* = ¢3*. Then, for Pi(n) = Py(n) = n, (Yi)k>o is
clearly a sequence of independent random variables and

(V) = Xo+qX1 4+ 4G X, 1+ X+ G T X 1+ T X 1

F2(Ye) = Xo+qXi+- - +02 7 Xy 1+ Xy o 027 Koy 14477 Xy,
where (X)o<j<s,s,—1 1S a sequence of identically distributed independent random
variables on {0,1,...,¢— 1}.

Hence we have

518271

Cov(f1(Yi), f2(Yk)) = Y ¢VarX;,
=0

where ¢; runs through {G*®:0<a<s —1,0<b< sy—1} because of (s1,52) = 1.
This implies
P -1
o (tat ) (gt g7
(@+ 1)@ —1)(g* - 1)
G-

Cov(f1(Yr), f2(Yx)) =

With 02 = Var f1(Yy) = s2(¢? — 1)/12 and 03 = Var f5(Yx) = s1(q3 — 1)/12, we
get for the normalized covariance

Cov(/i(Ye), 2(Yr) _a+1 (@ —Vle2-1)
0102 ‘j_l\/8182(1ﬁ—1)(qg—1)

2.3. Comparison of moments.
It remains to compare the moments of fy(P;(n)) to those in (3). We need the
following proposition (cf. Proposition 1).

Proposition 3. Let Pi(x), 1 < £ < d, be integer polynomials with positive leading
terms, A > 0 an arbitrary constant and hy, 1 < £ < d, non-negative integers. Then
for integers

(log N)" <k < k) < -+ < k) <log, N — (log N)" (1< (< d)
(with some n > 0) which satisfy
kj(«e) ¢ (1ogq N*® — (log N)",1og, N* + (log N)”)
forall1 < s <ry—1, we have uniformly, as N — oo,

|
~# {n < N’ek@)(Pg(n)) b1 <j<h,1<l< d}
J

T
_ (s) DY
= I | p,jl) I TORTO Gy O ((log N)™)
=1 1 W g P1 Oy
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and
P, b 1<i<h,1<t<d
w(N)#{ k(@)( v(n)) = J < he, }
= Hpkm D ) (@) +0 ((log N)™)
hg P10 lhy
with

e _)Pr [ kf)) c st U,) for all (j,0) € Ks] f K, #£0
D L p@ gD @
Lo Mhg L R 1 else,

where
Ky = {50 |K" € [log, N*~ + (log N)", log, N* — (log N)"] }.
Proof. We follow the proofs of Lemma 5 in [1] and Proposition 1 in [3]. Let ¢ 4 a(2)
be defined by
Ubg.a(2) = 3/ Lo/, 0+1)/9) ({2 + 2})dz
N

Its Fourier series )

. . 1
mez dm.bg.ae(ma) is given by dm 04,4 = ; and

() e () ey e ) L,

Amb,g,A = . -
o 2mwim 2mimA

Clearly we have

. b b+1
1 ifze [E—l—A,T—A],

Ub.g.a(r) =
! 0 ifxe[0,1]\[g—A,b+Tl+A}.
If we set
d he y
0
t(1, - - Ya) HH%(&) o |
{=1j=1 q/

then we get for A < 1/(2q)

|#{n<N‘ka@( ) = b(>1<j<hg,1<e<d} 3" H(Py(n), ..., Pa(n))

n<N

d he
Pg(n) Y
SZ;# n<N K041 €Ub§!>7%A < AN + N(log N)
—1 = 4

with Uyga = [0,A] U U {f — AL +A} [1 — A,1] and Lemma 4 of [1]. For

primes, we get a smnlar statement.
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Hence we have to consider the sums

S=> tPi(n),....,Pa(n)) = > Tam Y e(mi-viPi(n)+ - +mg-vePa(n)),

n<N MeM n<N
where M is the set of all (mj, ..., my) with integer vectors m, = (mg ), e mgi)),
d he
Im = H Hd 0 40 g
{=1j=1
—kO_q —kj) -1
and v, = | g, RRNT,

First of all, set A = (log N)~° with an arbitrary (but fixed) constant 6 > 0.
Then we can restrict to those M for which \m | < (log N)? for all j, ¢ because of

h—1
> 1 > . 1 1
Z Tm| < Z A (Z min (1, . —Am2>>

3¢,5:|m " |> (log N)2 m=[(log N)??] m=0
1 1\
< Z(log N)? <log Z) < (log N)™9/2,

where h = hy +- - -+ hg. Furthermore, it is sufficient to consider just the case where

Z) # 0 for all j,¢. (Otherwise, just reduce h, to a smaller value.)
Set
Qm(n) =my - viPi(n)+ -+ mg-vaPa(n).

We have to check whether Qnm(n) has degree r and satisfies the conditions of
Lemmata 1 and 2 of [1] saying that

5 3 P =0 ((log N) ™).

n<N

) 2 (P) =0 ((log N) ™).

as N — oo, hold if the the leading coefficient of P(n) is 4 with (4, H) = 1 and
(logN)" < H < N"(logN)™" (6)

for some 7 (depending on 7).
O

The coefficient of n" is, if we set kpnax = maxy kh[ ,

g OO lmax—kS” e

A r ; ar
Moy By ™)
M ek, q GOZK,

with (Am, Hm) = 1. If Am # 0, then (6) is satisfied. If Ay = 0, assume
kmax € K,.. Then we obtain

(73,0 EK,
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Because of |m§£)| < (log N)?9, this implies o Go)ek, gg)my) Fmax=k;" _ () Hence
Am = 0 if and only if both sums in (7) are zero and we have

%#{n<N

&0 (Pu(n) = B 1<j<hy1<l< d}
1 0 .
—<# {n <N ‘ek§e> (Pu(n)) = b, (j. 1) € K}

x %# {n <N |eyo (Pa(n) = b\, (j.0) ¢ Kr} +0 ((log N)™) .

Now we can repeat the arguments for (j,¢) € K,_; and get inductively
1
— {n <N

N
:H%#{n<N
s=1

e (Pu(m) =07, 1< j<hp1 <0< d}
J

epo (Pe(n)) = b, (5. 0) € K} +0 ((logN)™).

0

Hence we may assume from now on that all ; are contained in one set K for

some s < 7.
If the degree of @m(n) is smaller than s, we have

(log N)2° Ns—1 (log N)2°

|QM(n)‘ < qlogq Ns=14(log N)n q(logN)77

for all n < N and, with e(y) =1+ O (y),

> Tm <Z e(Qm(n)) — N

‘m§e)(<(log N)?° deg(Qm(n))<s N

N(log N)26(h+1)
q(lOg N)n

Thus we can treat these @Qm(n) as if they were the zero polynomial and it suffices
to regard the polynomials Pe(s) (n) and

Qﬁ)(n) =m; - vlpl(s)(n) +- 4 myg- VdPlgs)(n).

(6) is satisfied if and only if QSI) (n) # 0 and we obtain

Y=N > Tm+0O | N(log N)~™ > | T
MeM:QLE (n)=0 MeM:|m”|<(log N)28,Q%; (n)#0

+0 (N(logN)f‘;/z) + 0O (N(log N)™?).

Since the main term ZMeM.Q(S) Tn depends on A, we have to replace Ty
M

by

(n)=0

d hy

r_
Ta=]11Ieno w0,

0=1j=1
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Hence we have to estimate the difference 3 e vr.00 (=0 (ITM — Tna)-
We clearly have

_ (£)
dmgz)’by)’q’A = Cm.gg),bEZ),q (1 + O (m]- A))

as A — 0 and therefore

Tm = Ty (1 +0 (n;aex m?A)) . (8)

First assume |my)| < (log N)%/2 for all j,¢. From (8) and Cop®) p» , < Min (1, ml(a ),
A j

we obtain
> T — Tl < > [Ty (log N)~°/2
MEM:\m§Z)|<(logN)’5/2 MGMZ|m§£)|<(10gN)5/2
h
[(log N)*/?] 5/2\ P
log(log N)%/ )
Bl 1 N*5/2<(— log N)~9/3

|2 om) N T < (s

It remains to estimate the Tnr and 73, with |m§€)| > (log N)%/2 for some 7,

which satisfy the equation Qﬁ) (n) =0, ie.

®
3 g0 gm0 — g,
gl

By Lemma 14 of [4], we get

_ 5 _
) Tiy < (log N) 5002
MeM:QLY (n)=0,|m'" |>(log N)3/2 for some ;.

and the same estimate for Tp;. Note that this lemma is stated for a linear equation
where one of the coefficients is 1, but the proof can be easily adapted for general
linear equations.

Hence

___ 5
Z Tv = pl(c?l),...,k,(d),b(ll),m,bgd) +O ((log N) 2(h—1)2> ’
MeM:QL) (n)=0 Ld "

where

~(s) — T/
PRk b0 b > M
MeM:Q{Y (n)=0
and we get
— ~(s) Y
Y= Npku) LD (D @ T o ((log N) ) )
SRR I N S

for § = 2(h — 1)%X and 79 > .
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(s)

It remains to prove that the ﬁk“) ORI b‘”” are the probabilities defined by
1070

the Markov chain.
We have

{

6 (P (n)) = b for all (j,1) € KS}

=<{n<N (2“ (n) € ﬂ " k"‘axséfz) ’
(G,0)EK

and this intersection consists of a finite number of convex sets, which can be arbi-
trarily well approximated by elementary rectangles

T Ji Ji

T8 >0+

i=s | j=1 j=1

By Proposition 1, we get
Ll o nlw e|| E:b“ i
N Il)dX Py
W1<ji<Ji,s<i<r 1
i 1<j< <

1
7ﬁ#{ - qJS...qu7
if kpax < log N—(log N)" and J; < kmax — (log N)". This means that the density in

each of this rectangles converges to its Lebesgue measure. Since we do not change
0]
N ;. eT’“a‘ k'm"S((,z)) if we shift all k ) and increase N , the J; can be arbitrarily

) —J _|_q—J

MK

Jj=1

kmax ]+1( i):

A@‘I

large. Therefore p( ()1) k(d) b must be its Lebesgue measure, which is just
. b

p(S)
) (@ (1) (@
kD (D b bi D

This also implies Lemma 2 (d = 2,h; = hy = 1).

Proposition 3 shows that we have to replace f; by féN ),

re (s—1)log, N+B(N)

7 () = > > feler(Pe(n))).

s=1k=(s—1) log, N+A(N)

Note that fg (P(( )) = fe(Pe(n)) + O ((log N)7). Similarly define M,(N") and
Dy(N™) by taking the sum only over these k. Note that these definitions are
slightly different from those in [3,4] (and [1], where f is denoted by f1).

Corollary 3. We have

1 7 (Pu(n)) = Mo(N™)
Z H < Dy(N'e) )

n<N€ 1

he

(s—1)log, N+B(N) O\ A\
- ﬁ S1 2 k= (s—1) log, N+A(N) T (Yk ) — My(N"™)
E@(Nw)

(=1

— 0
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and
d [—(NT) AT (NT he
1 ] (fe (Pu(p)) = Mo(N £)>
m(N) p<N (=1 Dy(N™)
r (s—1)log, N+B(N) (s) M e

- ﬁ pRy k=(s—1)log, N+A(N) fe (Yk ) — MuN™) 0

— = _> ’

H Dy(N™e)

where the Yk,(s) and Yk(,sl) are independent if s # s'.
Proof. The second terms are the sum over all integers

’r‘,gfl

KO, kY € [A(N),log, N™ — A(N)]\ | [log, N* — A(N),log, N* + A(N)],
s=1
1<¢<d, of

d_he [e <Yk(<se))> ~ Hpto

EHH _DjZ(NN)

0=1j=1

q—1 q—1 d hg ff(bé) — U, 0
= H _J—%Pr Y(SZ) C S(SZ) for all 5,¢| ,
Dy(N™) KO = T

where the s are such that k]@) € K. Since the Yk((?) are independent for different
J

s, we have

Pr {y;;{ C $$5)) for all (j, 5)} =[] Pr [Yk;{ C S\ for all (5, () € KS]
J J s=1 J J

and, by Proposition 3, the corresponding first terms are the same up to an er-
ror term of O ((log N)~*). Hence the convergences are valid with error terms
@) ((log N)_M‘h_h").

Similarly to Corollary 2 of [3], we obtain
d h

1 fu(Pu(n)) = My(N7)\ "

v 3 (5 s

n<N (=1
1 d T(NW)(P[(H)) *M@(NT[') he
_NZH<€ Di(N7) -

n<N £=1

and therefore, by the method of moments (see e.g. Billingsley [2], p. 390),

1 fe(Pe(n)) — My(NT) _
N#{n<N Du(N™) <z, d=1,2,...,d
e (s—1)log, N-+B(N) (s) MANT
251:1 k=(s—1) log, N+A(N) fe (Y’“ ) — My(N™)

— Pr

— <zpl=1,...,d
Dy(N™) ¢
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Clearly we have My(N") = r,M;(N), Dy(N")? = r,D;(N)? and
r (s—1)log, N+B(N) ( ) -— r
232:1 k=(s— 1)(1)0gqN+A fé( s) 7M£(N 1{)
D@ (N7e)

e (%) = M) T
1 Z Uz\/BE( A) ):1 _,\/LT_E(Zél)+~--+Z§>)

by Proposition 2, where the Z(8) = (Z%S)7 ey ZK(IS)) are independent normally dis-
tributed random vectors with covariance matrices V(). (For s > r,, we have
fz(Yk(S)) =0= Zés) because of Pe(s) (n) =0 and Séfg =Tr—st1)

Hence the sum is normally distributed and the elements of the covariance matrix

V are given by
L o o)

For r; # rj, all v(s-) are zero, as well as for all s > r;. If gﬁj)Pl( )= grl)P (n), then
() () ()

v(l,) e US;) = v; 4. If we just have r; = r; and g, gs " = gr, gé ) for all s > s,
then UZ(S'J AR Z(rj and v(]) =0 for s < &'. Therefore v; ; = “r;svl(rj) and

the covariance matrix has the stated form.
The corresponding statements for primes are obtained similarly and this con-
cludes the proof of Theorem 4.
3. PROOF OF THEOREM 3
We have to prove the following proposition.

Proposition 4. Let q1, g2 be multiplicatively independent integers and Py (n), Pay(n)
integer polynomials with positive leading terms. Let X > 0 be an arbitrary constant
and hi, ho non-negative integers. Then for integers

(log N™)7 < ki) < k) < - < k}) <log,, N — (log N"™)" (£=1,2)

(with some n > 0), we have, as N — 00,

1 .
N#{ €q17k;1>(P1(n)) = b§1),€q27k;z>(P2(n)) = b§-2)7 1<5< he}
1
= i+ @ ((log N)*)‘)
‘11 Yo
and

_ 3 _ 12 ;
it {p< e, o @) =, o (Po(m) =07, 1< 5 < |

S ——— + O ((log N)™?%)

Q1 (I2

uniformly for b;e) €{0,...,q¢— 1} and k‘y) in the given range, where the implicit
constant of the error term may depend on qp, Py, hy and .

For the proof we need the following three lemmata. The first one is a corollary
to Baker’s theorem on linear forms, in a version due to Waldschmidt [7].
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Lemma 4 (Corollary 3 in [3]). Let k1, ko be positive integers, qi1, g2 positive real
numbers and my,mo real numbers such that S+ + 52 # 0. Then there exists a
q, 45

constant C > 0 such that

my ma mi| M2 _
T2 %% o—C'108 a1 10g g2 log (max(ks ka)) log(max(|ms |, [mal))
q; qs q1 dz

The next lemma is an adapted version of Lemmata 1 and 2 of [1] which are due
to Hua [5] and Vinogradov.

Lemma 5 (Lemmata 10 and 11 in [4]). Let P(n) be a polynomial of degree r
with leading coefficient 3. For every 19 > 0, we have a 7 > 0 such that

N7"(logN)" <8< (logN)™"

implies
% D e(P(n)) =0 ((logN)™™)
n<N
and 1
) 2 <(P) = O ((log N)™)
p<N
as N — 0.

Proof of Proposition 4. As for Proposition 2, we have to estimate the sums

Y= Z Tm17m2 Z (& (m1 . V1P1(n) + mso - VQPQ(H)) .
(my,ma)eM n<N

The case of different degrees of the polynomials is treated by Proposition 1. So
we can assume that they have the same degree r1 = ry = 1.

As in the proof of Proposition 2, we fix A = (log N)™° and restrict to those
(m;, my) for which \m§-l)| < (log N)?° and my) £ 0 (qe) for all 7, ¢.

Suppose now gﬁl)ml -V + g§2)m2 -vg # 0 and set € = n/(hy + he — 1). Then

there exists an integer K with 0 < K < hy + he — 2 such that for all j and ¢ =1,2
B — 1" & [(log N)XZ, (log N)(K+D2)

So fix K with this property.

B — ky) < (log N)¥¢ for all j,¢. Then we set

First suppose 1

(0 _ (0
J

he
k
e = gt¥ Z my)qz e (t=1,2)
j=1

and have log [my| < (log N)%¢. We can apply Lemma 4 to

my mo

m @

k41 ky2 41
q1 dz

g',(~1)m1 - V1 + 97(“2)11’12 Vo =
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and obtain

1) 2) —kp) =1 =k -1 log log N (log N)¥<
3 h —
gr’'my - vy + gy mz-Vz‘ZmaX N e coBoB LS

maX(q17 q2)(10g N)y" e ¢ log log N (log N)Ks
> e
hithy—2
> elog(max(ql ,g2))(log N)" —cloglog N (log N)n Ry Fho—1 > (log N)T
B NT™ - N7™

for some constant ¢ > 0 and all 7 > 0. Because of

(hl + hg)(log N)26
min(qy, gz)~(os N’

gPm; vy 4+ ¢Pmy - vo| <

Lemma 5 can be applied.
Otherwise we have some sy, £ = 1,2, such that k;?l — k:j(-e) < (log N)%¢ for all
j < s¢ and kg? kgf) > (log N)E+De Here we set

+1

(0 _ (&
s F;

S¢
_ 0) K
mg:gy)ng)qe (£=1,2).
j=1

and have again log |m,| < (log N)X¢. Furthermore, we can estimate the sums

14
he mg ) _0 | N 25 7k527(10g N)(K+1)E
E PIONTI (Og ) qy .
j=s¢+1 qe]
Thus we get
—_ —_ hy (1) hao (2)
m. m.:
(1) ] 2) ) my mz | | J2
P mj-vy + gr ms - Vo Z k(l)+1 k(2)+1 ]{3<1)+1 k:(2)+1
q" g Ji=si+1 g7 Ja=sa+1 gy

kM1 @1\ _ Ke
> max <q1 1 s 2 e cloglog N (log N)

k-1 k@1 c
-0 ((log N)26 max (‘h gy > e (log Ny >

k-1 @1\ _ Ke
> max <q1 s1 s s e cloglog N (log N)

and Lemma 5 can again be applied.
If ¢; and g9 are coprime, then we have gful)ml -V + 97(,2)1112 - vy = 0 only for

m; = my = 0. Otherwise we may have other choices of (mj, ms).

Set ¢ = (q1,¢2) and @1 = q1/q, §2 = g2/q. Assume, w.l.o.g., k,(Lll) > k,(i) Then
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we have

ke (1), (1) he (2), (2)

gr My, gr mj,
Yt e

si=1 gt ja=1 g2

(1) _1.(1) (2) (1) (1) k:(l)fk:(l) k(2) (1) (1) k(2)

(1) Ky R Ry gD g (1)  <Fn hi—1 ~Fho Ky —ky) (1) ~Fn

Mm@ G 2q™ Tt e dmy G T G g T my, TGy
=9y ~k’(L11) Nk%) KD
91 4o "q ™!

1 2 2 1
@) ki) ki) =k 0 ) @) HFny kD@
(2)7711 ql q2 qg ™M +...+mh2 ql q ™ 2
9y ~k&) ~k222) D) )
QG g

where we have omit the “+1” in the denominator for simplicity. (Just consider
ky) — 1 instead of k;l).) Hence we must have

(1) (1) (1) (1) (1)
R i R VRN R S PR O RN e 1 k!
gvgl) (m(l )ql 1 g T4 mgu)—lql 1 1 lq hi h1—=1 4 mél) =0 qq ).

(9)
Of course this is useful only if §; > 1, which we assume first. We have to
distinguish several cases. (9) implies

B 1) _ ) FECRCY
m;i-)lqlhl a +"'+m211)—1‘11h1 e +..'+mgbll) 0<q1h1 J ) 1o

forallj,1<j<hy—1.1If kj(-i_)l—kj(-l) > (log N)¢ for some j, then |m§-£)| < (log N)?°
implies that the left hand side of (10) must be zero. Hence mgll) = 0(g1) which

implies Ty, ,m, = 0 since we have excluded mglll) =0. If kj(i_)l - k§1) < (log N)¢ for
all j, then the left hand side of (9) must be zero and mgl) =0(q1).

Now consider the case §; = 1, i.e. ¢1|g2. Then we have to check

) @ _ ) £ @@ £
1 (1) kry kD 1) Fny kgD (1) Ky
gt) <m1 G g™ N A dmy Gyt g T my Gy )+ (11)
) _.(2) (2)_ (2
D e L SR CO RN ) 9y KP—k? L@ 2y M _p®
g% <m§ Jgm T TR e gy T g e PR e ) =0

This implies
1) _ @ S S kD g2 A
gﬁmqkhl Fiy (mgi_)lqz’l? Iy mi)—lq2h2 o=t m;i)) =0 ((bm i )
(12)

for 1 < j < hs —1 and for j =0, if we set k(()Q):O.

Assume first kél) - kﬁf) < (log N)/2. Then we can do the same reasonings as

1 2

above and obtain mgi) =0(g2)-

The last (and most difficult) case is k‘}(Lll) - k,(i) > (log N)=/2. First suppose that
Go has some prime divisor py fg. Then we get from (12)

L@ ) L2 L@ @)
@) (mgi)quhQ g+1+m+m§i)1q2h2 h,2—1+m222)> :0<ﬁ2h2 § )
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for 0 < j < hy — 1 and again mi) = 0(g2). Suppose next that ¢ has some prime

divisor p Jgo. Then we have

(1) _4.(1) (1) _ 4. (1) (1) _1.(2)
97(01) (mgl)qkhl kq RS mflll)_lqk“l k-1 + mglll)) =0 <pkh1 k., )

and we can do the same reasonings with £/h; instead of .
It remains to consider ¢ and g, with prime factorisations ¢ = p§* ...p%, §o = p{* ... p%,
where all e; and é; are positive integers. Let us rewrite (11):

S (2) 5 (1) (1) S (2) 5
1 kL e.;+(kL —k )ei 1 kL €;
gV <m§>]]pi’2 n ) T o )
=1

i=1

S (2) (2)y5. (1) _5.(2) S (1) _ .(2)y,
+ g (mﬁmﬂpﬁk”fh SRR @ e )> =0.
i=1

i
i=1

By assumption, ¢; and g» are multiplicatively independent. Thus we have s > 2

and e;/é; # e;/€; for some ¢, j. Therefore k;i) é; — (k}(Lll) - ki))ei cannot be zero for

all i and the difference must be at least 3(log N)/2 for some i. Let
1 2 2) - 1 R
(kéu) B kﬁbz))eio - k;bg)ei() 2 5(10g N) 2,

Then we have

S WMy, OGO
g” <m§1)Hp§ nR D) 50<p§0h1 Eh hz&o)

i=1

and we can again do the same reasonings. Similarly
1
2) . 1 2
kl(zz)eio - (ki(y,l) - kl(zz))eio > §<log N>5/2

leads to

(KD kD) (Eites 1 (loe N)/2
97(2) (m?) Hpg hg — M1 ) ) 4ot m;i)) =0 (pizo(l g N) )
=1

and the same result.
Hence, we finally get

Z |Tm17m2| ’

(mlva)#(oao)

1
N > e ((97(«1)1111 -vi + gt my 'V2)")
n<N

=0 ((1Og N)—é/z) L0 ((log N)Z(h1+h2)6—>\) 7

which completes the proof of Proposition 4.
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