Pisot family substitutions and Meyer sets

Jeong-Yup Lee

KIAS

Digital expansions, dynamics and tilings, April 4-11, 2010, Aussois

(Joint work with Boris Solomyak)

Outline

- Substitution tilings
 - Dynamical spectrum
- 2 Meyer sets
 - What is a Meyer set?
 - Characterization
 - Spectral properties
- 3 Structures of self-affine tilings
 - Module structures
- 4 Pisot family condition and Meyer property
- Questions

Fibonacci substitution tiling

Substitution tiling

- A tiling \mathcal{T} in \mathbb{R}^d is a set of tiles which cover \mathbb{R}^d and distinct tiles have disjoint interiors.
- Let an expansion map Q, compact sets A_i 's with $A_i = \overline{A_i^{\circ}} \neq \emptyset$ and finite sets \mathcal{D}_{ij} satisfy

$$Q(A_j) = \bigcup_{i < m} (A_i + \mathcal{D}_{ij}), \quad i \leq m$$

where all sets in the right-hand side have disjoint interiors. We can construct a substitution tiling \mathcal{T} .

• If the substitution tiling \mathcal{T} is repetitive with finite local complexity(FLC), it is called a self-affine tiling. In addition, if the expansion map is a similarity map, then it is called a self-similar tiling.

Dynamical spectrum

Let X be the collection of tilings in \mathbb{R}^d which are locally indistinguishable from \mathcal{T} .

Let $X_{\mathcal{T}} := \overline{\{x + \mathcal{T} : x \in \mathbb{R}^d\}}$ be with a metric on X. We consider a group action of \mathbb{R}^d on $X_{\mathcal{T}}$ by translations and get a topological dynamical system $(X_{\mathcal{T}}, \mathbb{R}^d)$.

We consider the spectrum of the unitary operators U_x arising from the translational action of \mathbb{R}^d on $L_2(X_T, \mu)$ with a unique invariant probability measure μ .

We say that \mathcal{T} has pure discrete(or point) dynamical spectrum if the eigenfunctions for the \mathbb{R}^d -action span a dense subspace of $L_2(X_{\mathcal{T}}, \mu)$.

Meyer sets

 Λ is a Meyer set if Λ is relatively dense & $\Lambda - \Lambda$ is uniformly discrete.

Example (Meyer sets)

- $\Lambda = (1 + 2\mathbb{Z}) \cup S$, for any subset $S \subset 2\mathbb{Z}$
- $\bullet \ \Lambda = \bigcup_{k=0}^{\infty} 2^k (1 + 2\mathbb{Z})$
- $\Lambda = \{a + b\tau \in \mathbb{Z}[\tau] : a + b\tau' \in [0, 1]\}, \text{ where } \tau^2 \tau 1 = 0, \ \tau' = -\frac{1}{\tau}$

Example (Non-Meyer sets)

- $\Lambda = \{n + \frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\}$

Meyer sets

Theorem (Meyer '72, Lagarias '95, Moody '97)

Let Λ be a Delone set. TFAE

- **①** Λ is a Meyer set.
- ② $\Lambda \Lambda \subset \Lambda + F$ for some finite set $F \subset \mathbb{R}^d$ (almost lattice).
- \odot Λ is a subset of a model set.
- lacktriangle [Λ] is finitely generated and Λ has the linear approximation property.
- **5** For each $\epsilon > 0$, there is a dual set Λ^{ϵ} in $\widehat{\mathbb{R}^d}$

$$\Lambda^{\epsilon} = \{ \chi \in \widehat{\mathbb{R}^d} : |\chi(x) - 1| < \epsilon \text{ for all } x \in \Lambda \}$$

which is relatively dense.

Theorem (Strungaru '05)

If Λ is a Meyer set with uniform cluster frequencies(UCF), then all eigenvalues of $(X_{\Lambda}, \mathbb{R}^d, \mu)$ form a relatively dense set.

Theorem (Strungaru '05)

If Λ is a Meyer set with uniform cluster frequencies(UCF), then all eigenvalues of $(X_{\Lambda}, \mathbb{R}^d, \mu)$ form a relatively dense set.

Theorem (Lee-Solomyak '08)

Let \mathcal{T} be a self-affine tiling in \mathbb{R}^d and $\mathcal{T} = \{x_i + T_i : x_i \in \Lambda_i, i \leq m\}$. Then TFAE

- **1** all the eigenvalues of (X_T, \mathbb{R}^d, μ) are relatively dense.
- $\bigcup_{i=1}^{m} \Lambda_i$ is a Meyer set.

Corollary (Lee-Solomyak '08)

Let \mathcal{T} be a self-affine tiling in \mathbb{R}^d and $\mathcal{T} = \{x_i + T_i : x_i \in \Lambda_i, i \leq m\}$. If $(X_{\mathcal{T}}, \mathbb{R}^d, \mu)$ has pure discrete dynamical spectrum, then $\bigcup_{i=1}^m \Lambda_i$ is a Meyer set.

Lagarias's question

Let \mathcal{T} be a tiling with FLC & repetitivity.

If (X_T, \mathbb{R}^d, μ) has pure discrete dynamical spectrum, should $\cup_{i=1}^m \Lambda_i$ be a Meyer set?

The corollary answers Lagarias's question on substitution tilings(or point sets).

Let
$$\Xi := \{x \in \mathbb{R}^d : T = x + T', T, T' \in \mathcal{T}\}.$$

Theorem (Kenyon '94, Solomyak '06)

Let \mathcal{T} be a self-similar tiling in \mathbb{R}^d with a similarity map θ for which $|\theta| > 1$. Let $\mathcal{T} = \{x_i + T_i : x_i \in \Lambda_i, i \leq m\}$. Then

$$\Xi \subset \mathbb{Z}[\theta]\alpha_1 + \dots + \mathbb{Z}[\theta]\alpha_d$$

for some basis $\{\alpha_1, \cdots, \alpha_d\}$ in \mathbb{R}^d .

Theorem (Lee-Solomyak '10)

Let \mathcal{T} be a self-affine tiling in \mathbb{R}^d and $\mathcal{T} = \{x_i + T_i : x_i \in \Lambda_i, i \leq m\}$ with an expansion map ϕ . Suppose that ϕ is diagonalizable over \mathbb{C} and all the eigenvalues of ϕ are algebraically conjugate with the same multiplicity m.

Then

$$\Xi \subset \mathbb{Z}[\phi]\alpha_1 + \cdots + \mathbb{Z}[\phi]\alpha_K,$$

where $\{\alpha_1, \dots, \phi^{m-1}\alpha_1, \dots, \alpha_K, \dots, \phi^{m-1}\alpha_K\}$ forms a basis of \mathbb{R}^d .

Let us only consider the simple case that all eigenvalues of ϕ are distinct and algebraic conjugates.

Sketch of Proof.

Without loss of generality, we can assume that $\mathcal{C} := \bigcup_{i \leq m} \Lambda_i$ satisfies $\phi \mathcal{C} \subset \mathcal{C}$. Since \mathcal{T} has FLC,

$$\langle \mathcal{C} \rangle_{\mathbb{Z}} \subset \mathbb{Q}[\phi] \gamma_1 \oplus \cdots \oplus \mathbb{Q}[\phi] \gamma_L := \mathcal{D}$$

where \mathcal{D} is a module over $\mathbb{Q}[\phi]$. The goal is proving $\langle \mathcal{C} \rangle_{\mathbb{Z}} \subset \mathbb{Q}[\phi] \alpha$ for some $\alpha \in \mathbb{R}^d$ for which $\{\alpha, \phi\alpha, \cdots, \phi^{d-1}\alpha\}$ is a basis of \mathbb{R}^d . Choose $\beta \in \mathcal{C}$ whose each entry is non-zero. Define a module homomorphism $\pi: \mathcal{D} \to \mathbb{Q}[\phi]\beta$ such that $\pi(\gamma_\ell) = \beta$ for each $1 \leq \ell \leq L$. Let $\mathcal{C}_{\infty} := \bigcup_{k=0}^{\infty} \phi^{-k} \mathcal{C}$. Define

$$\pi': \mathcal{C}_{\infty} \to \mathbb{Q}[\phi]\beta$$

such that $\pi'(x) = \pi|_{\mathcal{C}_{\infty}}(x)$ for $x \in \mathcal{C}_{\infty}$.

We show the following steps.

- 1. π' is uniformly continuous on \mathcal{C}_{∞} by showing Hölder's continuity.
- 2. Extend π' on \mathbb{R}^d .
- 3. $\pi'|_{x+E_{\lambda_{min}}}$ is affine linear.
- 4. π' is affine linear by using the algebraic conjugacy of all eigenvalues.
- 5. $\beta, \phi\beta, \cdots, \phi^{d-1}\beta$ are linearly independent in \mathbb{R}^d over \mathbb{R} . Thus π' is an isomorphism.
- 6. $\mathcal{C} \subset \mathbb{Q}[\phi]\beta$.
- 6. By FLC, $C \subset \mathbb{Z}[\phi]\alpha$, where $\{\alpha, \phi\alpha, \cdots, \phi^{d-1}\alpha\}$ is a basis of \mathbb{R}^d for some $\alpha \in \mathbb{R}^d$.

Pisot number and Pisot family

- A Pisot number(Pisot-Vijayaraghavan number) θ is an algebraic integer $\theta > 1$ whose algebraic conjugates θ' are all less than 1 in absolute value.
- A Pisot family is a set of algebraic integers $\Theta = \{\theta_1, \cdots, \theta_n\}$ such that for each $1 \le i \le n$, every algebraic conjugate γ of θ_i with $|\gamma| \ge 1$ is in Θ .

Theorem (Meyer '70, Lagarias '99, Solomyak '06)

Let \mathcal{T} be a self-similar tiling in \mathbb{R}^d and $\mathcal{T} = \{x_i + T_i : x_i \in \Lambda_i, i \leq m\}$ with a similarity factor θ for which $|\theta| > 1$. Then TFAE

- \bullet is a Pisot number.

Theorem (Lee-Solomyak '10)

Let \mathcal{T} be a self-affine tiling in \mathbb{R}^d and $\mathcal{T} = \{x_i + T_i : x_i \in \Lambda_i, i \leq m\}$ with an expansion map ϕ . Suppose that ϕ is diagonalizable over \mathbb{C} and all the eigenvalues of ϕ are algebraically conjugate with the same multiplicity.

- Then TFAE
 - $\bigcup_{i=1}^{m} \Lambda_i$ is a Meyer set.
 - 2 all the eigenvalues of ϕ form a Pisot family.
 - **3** (X_T, \mathbb{R}^d, μ) is not weakly mixing.

Questions

- 1. Let \mathcal{T} be a self-affine tiling in \mathbb{R}^d with an expansion map Q. If the substitution matrix is irreducible and the set of eigenvalues of Q forms a Pisot family, does \mathcal{T} have pure discrete dynamical spectrum?
- 2. If \mathcal{T} is a substitution tiling in \mathbb{R}^d with an expansion map Q whose eigenvalues form a Pisot family, then should \mathcal{T} necessarily have FLC?
- 3. If the expansion map Q is non-diagonalizable, what can we say about the module structure of the tiling \mathcal{T} . What about the relation between Pisot family condition and Meyer property?

THANK YOU!