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Abstract. For applications to cryptography, it is important to represent numbers with a small number
of non-zero digits (Hamming weight) or with small absolute sum of digits. The problem of finding
representations with minimal weight has been solved for integer bases, e.g. by the non-adjacent
form in base 2. In this paper, we consider numeration systems with respect to a real base β which is
a Pisot number. When β is the Golden Ratio, the Tribonacci number or the smallest Pisot number,
we determine expansions with minimal number of digits±1 and give finite automata recognizing all
these expansions. The average weight is lower than for the non-adjacent form.

In the general case of a base β which is a Pisot number satisfying a certain condition (D′), we
prove that the expansions with minimal absolute sum of digits are recognizable by a finite automaton.
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1 Introduction

Let A be a set of (integer) digits and x = x1x2 · · ·xn be a word with letters xj in A.
The weight of x is the absolute sum of digits ‖x‖ =

∑n
j=1 |xj |. The Hamming weight

of x is the number of non-zero digits in x. Of course, when A ⊆ {−1, 0, 1}, the two
definitions coincide.

Expansions of minimal weight in integer bases β have been studied extensively.
When β = 2, it is known since Booth [5] and Reitwiesner [23] how to obtain such
an expansion with the digit set {−1, 0, 1}. The well-known non-adjacent form (NAF)
is a particular expansion of minimal weight with the property that the non-zero digits
are isolated. It has many applications to cryptography, see in particular [20, 17, 21].
Other expansions of minimal weight in integer base are studied in [14, 16]. Ergodic
properties of signed binary expansions are established in [7].

Non-standard number systems — where the base is not an integer — have been
studied from various points of view. Expansions in a real non-integral base β > 1
have been introduced by Rényi [24] and studied initially by Parry [22]. Number the-
oretic transforms where numbers are represented in base the Golden Ratio have been
introduced in [8] for application to signal processing and fast convolution. Fibonacci
representations have been used in [19] to design exponentiation algorithms based on
addition chains. Recently, the investigation of minimal weight expansions has been
extended to the Fibonacci numeration system by Heuberger [15], who gave an equiv-
alent to the NAF. Solinas [26] has shown how to represent a scalar in a complex base
τ related to Koblitz curves, and has given a τ -NAF form, and the Hamming weight of
these representations has been studied in [10].

First author: supported by the Agence Nationale de la Recherche, grant ANR-JCJC06-134288 “DyCoNum”.
Second author: supported by the Agence Nationale de la Recherche, grant ANR-JCJC06-134288 “DyCoNum”.
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In this paper, we study expansions in a real base β > 1 which is not an integer.
Any number z in the interval [0, 1) has a so-called greedy β-expansion given by the
β-transformation τβ , which relies on a greedy algorithm: let τβ(z) = βz − bβzc and
define, for j ≥ 1, xj = bβτ j−1

β (z)c. Then z =
∑∞

j=1 xjβ
−j , where the xj’s are

integer digits in the alphabet {0, 1, . . . , bβc}. We write z = .x1x2 · · · . If there exists
a n such that xj = 0 for all j > n, the expansion is said to be finite and we write
z = .x1x2 · · ·xn. By shifting, any non-negative real number has a greedy β-expansion:
If z ∈ [βk, βk+1), k ≥ 0, and z/βk = .x1x2 · · · , then z = x1 · · ·xk.xk+1xk+2 · · · .

We consider the sequences of digits x1x2 · · · as words. Since we want to minimize
the weight, we are only interested in finite words x = x1x2 · · ·xn, but we allow a
priori arbitrary digits xj in Z. The corresponding set of numbers z = .x1x2 · · ·xn is
therefore Z[β−1]. Note that we do not require that the greedy β-expansion of every
z ∈ Z[β−1] ∩ [0, 1) is finite, although this property (F) holds for the three numbers β
studied in Sections 4 to 6, see [13, 1].

The set of finite words with letters in an alphabet A is denoted by A∗, as usual. We
define a relation on words x = x1x2 · · ·xn ∈ Z∗, y = y1y2 · · · ym ∈ Z∗ by

x ∼β y if and only if .x1x2 · · ·xn = βk × .y1y2 · · · ym for some k ∈ Z.

A word x ∈ Z∗ is said to be β-heavy if there exists y ∈ Z∗ such that x ∼β y and
‖y‖ < ‖x‖. We say that y is β-lighter than x. This means that an appropriate shift of y
provides a β-expansion of the number .x1x2 · · ·xn with smaller absolute sum of digits
than ‖x‖. If x is not β-heavy, then we call x a β-expansion of minimal weight. It is
easy to see that every word containing a β-heavy factor is β-heavy. Therefore we can
restrict our attention to strictly β-heavy words x = x1 · · ·xn ∈ Z∗, which means that x
is β-heavy, and x1 · · ·xn−1 and x2 · · ·xn are not β-heavy.

In the following, we consider real bases β satisfying one of the following conditions:

(D):
βd+1 −Bβd + b1β

d−1 + b2β
d−2 + · · ·+ bd = 0

for some B, b1, b2 . . . , bd ∈ Z with B >
∑d

j=1 |bj |

(D′):
there exists B ∈ Z, B > 0, and a word b ∈ {1−B, . . . , B − 1}∗

such that B ∼β b and ‖b‖ ≤ B

Note that Condition (D) is a special case of (D′) since B ∼β 10b1b2 · · · bd in this case. It
was shown in [2] for β > 1 satisfying (D) that every z ∈ Z[β−1]∩ [0, 1) can be written
as z = z+ − z− with some z+ ∈ [0, β), z− ∈ [0, 1) having finite greedy β-expansions.
This property has some important consequences (see [2]) and is conjectured to hold
true for all Pisot numbers β. Recall that a Pisot number is an algebraic integer β > 1
such that all the other roots of its minimal polynomial are in modulus less than one. In
the Appendix we show that a number β > 1 which satisfies Condition (D) is necessarily
a Pisot number. Furthermore, we have B ∈ {bβc, dβe}, see [2].
Example 1.1. If 1 = .t1t2 · · · td(td+1)ω with integers t1 ≥ t2 ≥ · · · ≥ td > td+1 ≥ 0,
then β satisfies (D) since

βd+1 − t1β
d − · · · − tdβ − td+1 =

td+1

β − 1
= βd − t1β

d−1 − · · · − td
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and thus

βd+1 − (1 + t1)βd + (t1 − t2)βd−1 + · · ·+ (td−1 − td)β + (td − td+1) = 0.

We show that Condition (D′) implies that every class of words (with respect to ∼β)
contains a β-expansion of minimal weight in {1 − B, . . . , B − 1}∗. Recall that the
set of greedy β-expansions is recognizable by a finite automaton when β is a Pisot
number [4]. In this work, we show that the set of β-expansions of minimal weight in
{−c, . . . , c}∗ is recognized by a finite automaton if β is a Pisot number satisfying (D′)
and c ≥ B − 1.

We then consider particular Pisot numbers satisfying (D′) which have been exten-
sively studied from various points of view. When β is the Golden Ratio, we con-
struct a transducer which gives, for a strictly β-heavy word as input, a β-lighter word
as output, and another transducer which converts all words without β-heavy factors
into some unique expansion avoiding certain factors. From these transducers, we de-
rive the minimal automaton recognizing the set of β-expansions of minimal weight in
{−1, 0, 1}∗. We give a branching transformation which provides all β-expansions of
minimal weight in {−1, 0, 1}∗ of a given z ∈ Z[β−1]. Similar results are obtained for
the representation of integers in the Fibonacci numeration system. The average weight
of expansions of the numbers −M, . . . , M is 1

5 logβ M , which means that typically
only every fifth digit is non-zero. Note that the corresponding value for 2-expansions
of minimal weight is 1

3 log2 M , see [3, 6], and that 1
5 logβ M ≈ 0.288 log2 M .

We obtain similar results for the case where β is the so-called Tribonacci number,
which satisfies β3 = β2 + β + 1 (β ≈ 1.839), and the corresponding representa-
tions for integers. In this case, the average weight is β3

β5+1 logβ M ≈ 0.282 logβ M ≈
0.321 log2 M .

Finally we consider the smallest Pisot number, β3 = β + 1 (β ≈ 1.325), which pro-
vides representations of integers with even lower weight than the Fibonacci numeration
system: 1

7+2β2 logβ M ≈ 0.095 logβ M ≈ 0.234 log2 M .

2 Preliminaries

A finite sequence of elements of a set A is called a word, and the set of words on A
is the free monoid A∗. The set A is called alphabet. The set of infinite sequences
or infinite words on A is denoted by AN. Let v be a word of A∗, denote by vn the
concatenation of v to itself n times, and by vω the infinite concatenation vvv · · · .

A finite word v is a factor of a (finite or infinite) word x if there exists u and w such
that x = uvw. When u is the empty word, v is a prefix of x. The prefix v is strict if
v 6= x. When w is empty, v is said to be a suffix of x.

We recall some definitions on automata, see [11] and [25] for instance. An automa-
ton over A, A = (Q,A,E, I, T ), is a directed graph labelled by elements of A. The set
of vertices, traditionally called states, is denoted by Q, I ⊂ Q is the set of initial states,
T ⊂ Q is the set of terminal states and E ⊂ Q × A × Q is the set of labelled edges.
If (p, a, q) ∈ E, we write p

a→ q. The automaton is finite if Q is finite. A subset H of
A∗ is said to be recognizable by a finite automaton if there exists a finite automaton A
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such that H is equal to the set of labels of paths starting in an initial state and ending
in a terminal state.

A transducer is an automaton T = (Q,A∗ ×A′∗, E, I, T ) where the edges of E are
labelled by couples of words in A∗ × A′∗. It is said to be finite if the set Q of states

and the set E of edges are finite. If (p, (u, v), q) ∈ E, we write p
u|v−→ q. In this paper

we consider letter-to-letter transducers, where the edges are labelled by elements of
A×A′. The input automaton of such a transducer is obtained by taking the projection
of edges on the first component.

3 General case

In this section, we prove the following result.
Theorem 3.1. If β is a Pisot number satisfying (D′) and c is an integer, c ≥ B−1, then
one can construct a finite automaton recognizing the set of β-expansions of minimal
weight in {−c, . . . , c}∗.

We begin with a combinatorial result which shows that Condition (D′) is necessary
and sufficient when we want to have a finite alphabet such that every class of words
(with respect to ∼β) contains a β-expansion of minimal weight with digits in this al-
phabet. Note that β can be an arbitrary complex number for the following proposition.
Proposition 3.2. Let β satisfy Condition (D′) with B ≥ 2. Then for every x ∈ Z∗ there
exists some y ∈ {1−B, . . . , B − 1}∗ with x ∼β y and ‖y‖ ≤ ‖x‖.

If β does not satisfy Condition (D′), then for every B ∈ Z the set of β-expansions of
minimal weight x with x ∼β B is 0∗B0∗.

Proof. The second statement is an immediate consequence of the definition of (D′).
The proof of the first statement is similar to the proof of Theorem 4 in [2]. If x =

x1x2 · · ·xn ∈ {1 − B, . . . , B − 1}∗, then there is nothing to do. Otherwise, we use
Condition (D′): there exists some word b = b−k · · · bd ∈ {1−B, . . . , B−1}∗ such that
b−k · · · b−1(b0 − B)b1 · · · bd ∼β 0 and ‖b‖ ≤ B. Set x

(0)
j = xj for 1 ≤ j ≤ n, x

(0)
j = 0

for j ≤ 0 and j > n, bj = 0 for j < −k and j > d. Define, recursively for i ≥ 0,
hi = max{j ∈ Z : |x(i)

j | ≥ B},

x
(i+1)
hi

= x
(i)
hi

+ sgn(x(i)
hi

)(b0 −B), x
(i+1)
hi+j = x

(i)
hi+j + sgn(x(i)

hi
)bj for j 6= 0,

as long as hi exists. Then we have
∑
j∈Z

|x(0)
j | = ‖x‖,

∑
j∈Z

x
(i+1)
j β−j =

∑
j∈Z

x
(i)
j β−j and

∑
j∈Z

|x(i+1)
j | = |x(i+1)

hi
|+

∑
j 6=0

|x(i+1)
hi+j | ≤ |x(i)

hi
|+ |b0|−B+

∑
j 6=0

(|x(i)
hi+j |+ |bj |) ≤

∑
j∈Z

|x(i)
j |.

If hi does not exist, then we have |x(i)
j | < B for all j ∈ Z, and the sequence (x(i)

j )j∈Z
without the leading and trailing zeros provides a word y ∈ {1 − B, . . . , B − 1}∗ with
the desired properties.
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Since ‖x‖ is finite, we have
∑

j∈Z |x
(i+1)
j | <

∑
j∈Z |x

(i)
j | only for finitely many i ≥ 0.

In particular, the algorithm terminates after at most ‖x‖ − B + 1 steps if ‖b‖ < B. If
‖b‖ = B and

∑
j∈Z |x

(i+1)
j | =

∑
j∈Z |x

(i)
j |, then we have

hi−1∑
j=−∞

|x(i+1)
j | =

hi−1∑
j=−∞

|x(i)
j |+

k∑
j=1

|b−j | and
∞∑

j=hi+1

|x(i+1)
j | =

∞∑
j=hi+1

|x(i)
j |+

d∑
j=1

|bj |.

If there exists a subsequence (hij )1≤j≤J such that hij ≤ hm for all j, m with ij < m ≤
iJ , then we have therefore

∑hiJ
−1

j=−∞ |x(iJ+1)
j | ≥ J

∑k
j=1 |b−j |, hence J is bounded if∑k

j=1 |b−j | > 0. Similarly, the length of subsequences (hij )1≤j≤J such that hij ≥ hm

for all j, m with ij < m ≤ iJ is bounded if
∑d

j=1 |bj | > 0. Since hi+1 ≤ hi + d, no
infinite sequence (hi)i≥0 can exist in this case and the algorithm terminates.

It remains to consider the case that
∑k

j=1 |b−j | = 0 or
∑d

j=1 |bj | = 0. Assume,

w.l.o.g.,
∑d

j=1 |bj | = 0. Then we have hi+1 ≤ hi since x
(i+1)
hi+j = x

(i)
hi+j for j > 0. If

hi exists for all i ≥ 0, then both
∑k

j=0 |x
(i)
hi−j | and

∑∞
j=1 |x

(i)
hi+j | must be eventually

constant. Therefore we must have some i, i′ with hi′ < hi such that x
(i′)
hi′−k · · ·x

(i′)
hi′

=

x
(i)
hi−k · · ·x

(i)
hi

and x
(i′)
hi′+1x

(i′)
hi′+2 · · · = 0hi−hi′x

(i)
hi+1x

(i)
hi+2 · · · . Since

∑k
j=0 |x

(i)
hi−j | > 0,

this implies βhi−hi′ = 1. In this case, it is easy to see that each x ∈ Z∗ can be
transformed into some y ∈ {−1, 0, 1}∗ with y ∼β x and ‖y‖ = ‖x‖, and the proposition
is proved.

In order to understand the relation ∼β on {−c, . . . , c}∗, we have to consider the set

Zβ(2c) =
{

z1 · · · zn ∈ {−2c, . . . , 2c}∗
∣∣∣ n ≥ 0,

n∑
j=1

zjβ
−j = 0

}
.

We recall a result from [12]. All the automata considered in this paper process words
from left to right, that is to say, most significant digit first.
Theorem 3.3. If β is a Pisot number, then the set Zβ(2c) is recognized by a finite
automaton.

For convenience, we quickly explain the construction of the automaton Aβ(2c) rec-
ognizing Zβ(2c). The states of Aβ(2c) are 0 and all s ∈ Z[β] ∩ (−2c

β−1 , 2c
β−1) which are

accessible from 0 by paths consisting of transitions s
e→ s′ with e ∈ {−2c, . . . , 2c} such

that s′ = βs + e. The state 0 is both initial and terminal. When β is a Pisot number,
then the set of states is finite. Note that the automaton Aβ(2c) is symmetric, meaning
that if s

e→ s′ is a transition, then−s
−e→ −s′ is also a transition. The automatonAβ(2c)

is accessible and co-accessible.
The redundancy automaton (or transducer) Rβ(c) is similar to Aβ(2c). Each tran-

sition s
e→ s′ of Aβ(2c) is replaced in Rβ(c) by a set of transitions s

a|b−→ s′, with
a, b ∈ {−c, . . . , c} and a − b = e. From Theorem 3.3, one obtains the following
proposition.
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Proposition 3.4. The redundancy transducer Rβ(c) recognizes the set{
(x1 · · ·xn, y1 · · · yn) ∈ A∗ ×A∗ ∣∣ n ≥ 0, .x1 · · ·xn = .y1 · · · yn

}
,

where A = {−c, . . . , c}. If β is a Pisot number, then Rβ(c) is finite.
From the redundancy transducer Rβ(c), one constructs another transducer Tβ(c)

with states of the form (s, δ), where s is a state of Rβ(c) and δ ∈ Z. The transitions are

of the form (s, δ)
a|b−→ (s′, δ′) if s

a|b−→ s′ is a transition in Rβ(c) and δ′ = δ + |b| − |a|.
The initial state is (0, 0), and terminal states are of the form (0, δ) with δ < 0. Of
course, this transducer Tβ(c) is not finite.
Proposition 3.5. The transducer Tβ(c) recognizes the set{

(x1 · · ·xn, y1 · · · yn) ∈ A∗ ×A∗ ∣∣ .x1 · · ·xn = .y1 · · · yn, ‖y1 · · · yn‖ < ‖x1 · · ·xn‖
}
.

For the proof of Theorem 3.1, we use the following general construction.
Lemma 3.6. Let H ⊂ A∗ and M = A∗ \ A∗HA∗. If H is recognized by a finite
automaton, then so is M .

Proof. Suppose that H is recognized by a finite automatonH. Let P be the set of strict
prefixes of H . We construct the minimal automaton M of M as follows. The set of
states of M is the quotient P/≡ where p ≡ q if p and q arrive at the same set of states
in H. Since H is finite, P/≡ is finite. Transitions are defined as follows. Let a be in A.
There is a transition p

a→ q if pa is in P and q = [pa]≡, or if pa is not in P , p = uv
with v in P maximal in length, and q = [v]≡. Every state is terminal.

Proof of Theorem 3.1. Let A = {−c, . . . , c}, x ∈ A∗ be a strictly β-heavy word and
y ∈ A∗ be a β-expansion of minimal weight with x ∼β y. Such a y exists because of
Proposition 3.2. Extend x, y to words x′, y′ by adding leading and trailing zeros such
that x′ = x1 · · ·xn, y′ = y1 · · · yn and .x1 · · ·xn = .y1 · · · yn. Then there is a path in the

transducer Tβ(c) composed of transitions (sj−1, δj−1)
xj |yj−→ (sj , δj), 1 ≤ j ≤ n, with

s0 = 0, δ0 = 0, sn = 0, δn < 0.
We determine bounds for δj , 1 ≤ j ≤ n, which depend only on the state s = sj .

Choose a β-expansion of s, s = a1 · · · ai.ai+1 · · · am, and set ws = ‖a1 · · · am‖. If
δj > ws, then we have ‖y1 · · · yj‖ > ‖x1 · · ·xj‖+ws. Since sj = (x1−y1) · · · (xj−yj).,
the digitwise subtraction of 0max(i−j,0)x1 · · ·xj0m−i and 0max(j−i,0)a1 · · · am provides
a word which is β-lighter than y1 · · · yj , which contradicts the assumption that y is a
β-expansion of minimal weight.

Let W = max{ws | s is a state in Aβ(2c)}. If δj < −W − c, then let h ≤ j be
such that xh 6= 0, xi = 0 for h < i ≤ j. Since |xh| ≤ c, we have δh−1 ≤ δj + c <
−W ≤ −wsh−1 , hence ‖x1 · · ·xh−1‖ > ‖y1 · · · yh−1‖ + wsh−1 . Let a1 · · · am be the
word which was used for the definition of wsh−1 , i.e., sh−1 = a1 · · · ai.ai+1 · · · am,
wsh−1 = ‖a1 · · · am‖. Then the digitwise addition of 0max(i−h+1,0)y1 · · · yh−10m−i and
0max(h−1−i,0)a1 · · · am provides a word which is β-lighter than x1 · · ·xh−1. Since xh 6=
0, this contradicts the assumption that x is strictly β-heavy.
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Let Sβ(c) be the restriction of Tβ(c) to the states (s, δ) with −W − c ≤ δ ≤ ws

with some additional initial and terminal states: Every state which can be reached
from (0, 0) by a path with input in 0∗ is initial, and every state with a path to (0, δ),
δ < 0, with an input in 0∗ is terminal. Then the set H which is recognized by the input
automaton of Sβ(c) consists only of β-heavy words and contains all strictly β-heavy
words in A∗. Therefore the set M given by Lemma 3.6 is the set of β-expansions of
minimal weight in A∗.

4 Golden Ratio case

In this section we give explicit constructions for the case where β is the Golden Ratio
1+
√

5
2 . We have 1 = .110ω, hence the condition of Example 1.1 is satisfied and B = 2.

The digit −1 will be written as 1̄ in words and transitions.

4.1 β-expansions of minimal weight for β = 1+
√

5
2

Lemma 4.1. All words in {−1, 0, 1}∗ which are not recognized by the automaton Mβ

in Figure 1 (where all states are terminal) are β-heavy.

0

1

1̄

0

0 0

0

1
1̄

1̄

1

0

0

1

1̄

0

0

0

101̄0 010

01̄00

01̄0

0100 0000

100

1̄00

Figure 1: Automaton Mβ recognizing β-expansions of minimal weight for β = 1+
√

5
2

(left) and a compact representation of Mβ (right).

Proof. The transducer in Figure 2 is a part of Sβ(1), which is constructed in the proof
of Theorem 3.1. The set of inputs of paths accepted by it is

H = 1(0100)∗1 ∪ 1(0100)∗0101 ∪ 1(001̄0)∗1̄ ∪ 1(001̄0)∗01̄

∪ 1̄(01̄00)∗1̄ ∪ 1̄(01̄00)∗01̄01̄ ∪ 1̄(0010)∗1 ∪ 1̄(0010)∗01

and Mβ is constructed as in the proof of Lemma 3.6.

Proposition 4.2. If β = 1+
√

5
2 , then every z ∈ R has a β-expansion of the form

z = y1 · · · yk.yk+1yk+2 · · · with yj ∈ {−1, 0, 1} such that y1y2 · · · avoids the set
X = {11, 101, 1001, 11̄, 101̄, and their opposites}. If z ∈ Z[β] = Z[β−1], then this
expansion is unique up to leading zeros.
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0, 0−1, 1

−1/β, 0

0,−1

−1, 0 −1/β,−1

−1,−1

−1/β,−2

1, 1

1/β, 0

0,−1

1, 01/β,−1

1,−1

1/β,−2

1|0

1|0

0|0

1|0

0|0

1|0

0|1̄ 1̄|0

1̄|0

1̄|0

0|0

1̄|0

0|0

1̄|0

0|11|0

0|1

0|1̄

0|1̄

0|1

Figure 2. Transducer with strictly β-heavy words as inputs, β = 1+
√

5
2 .

Proof. We determine this β-expansion similarly to the greedy β-expansion in the In-
troduction. Note that the sequence x1x2 · · · avoiding the elements of X with maximal
value .x1x2 · · · is (1000)ω, .(1000)ω = β2/(β2 + 1). Consider first z ∈

[
−β2

β2+1 , β2

β2+1

)
.

If we define the transformation

τ :
[
−β2

β2 + 1
,

β2

β2 + 1

)
→

[
−β2

β2 + 1
,

β2

β2 + 1

)
, τ(z) = βz −

⌊
β2 + 1

2β
z + 1/2

⌋
,

and set yj =
⌊

β2+1
2β τ j−1(z) + 1/2

⌋
for j ≥ 1, then we have z = .y1y2 · · · . If yj = 1

for some j ≥ 1, then we have τ j(z) ∈ β ×
[

β
β2+1 , β2

β2+1

)
− 1 =

[ −1
β2+1 , 1/β

β2+1

)
, hence

yj+1 = 0, yj+2 = 0, and τ j+2(z) ∈
[ −β2

β2+1 , β
β2+1

)
, hence yj+3 ∈ {1̄, 0}. This shows

that the given factors are avoided. A similar argument for yj = −1 shows that the
opposites are avoided as well, hence we have shown the existence of the expansion for
z ∈

[
−β2

β2+1 , β2

β2+1

)
. For arbitrary z ∈ R, the expansion is given by shifting the expansion

of zβ−k, k ≥ 0, to the left.
If we choose yj = 0 in case τ j−1(z) > β/(β2 +1) = .(0100)ω, then it is impossible

to avoid the factors 11, 101 and 1001 in the following. If we choose yj = 1 in case
τ j−1(z) < β/(β2 + 1), then βτ j−1(z) − 1 < −1/(β2 + 1) = .(001̄0)ω, and thus it is
impossible to avoid the factors 11̄, 101̄, 1̄1̄, 1̄01̄ and 1̄001̄. Since β/(β2 + 1) 6∈ Z[β],
we have τ j−1(z) 6= β/(β2 + 1) for z ∈ Z[β]. Similar relations hold for the opposites,
thus the expansion is unique.

Remark 4.3. Similarly, the transformation τ(z) = βz − bz + 1/2c on [−β/2, β/2)
provides for every z ∈ Z[β] a unique expansion avoiding the factors 11, 101, 11̄, 101̄,
1001̄ and their opposites.
Lemma 4.4. If x ∈ {−1, 0, 1}∗ is accepted by Mβ , then there exists y ∈ {−1, 0, 1}∗
avoiding the set X of Proposition 4.2 with x ∼β y and ‖x‖ = ‖y‖.
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0, 0; 0

0|0

0, 0; 1

0, 0; 10

0, 0; 100 1, 1 1/β, 0

1, 01/β, 1

1/β,−1 −1/β2, 0

0, 0; 1̄

0, 0; 1̄0

0, 0; 1̄00−1, 1−1/β, 0

−1, 0 −1/β, 1

−1/β,−11/β2, 0

1|1
0|0

0|0

0|0

1̄|1̄

0|1̄

1̄|0

0|0

0|11̄|0

0|0

1̄|0
1̄|1

0|1

0|0

1̄|1̄
0|0

0|0

0|0

1|10|1

1|0

0|0

0|1̄ 1|0

0|0

1|0
1|1̄

0|1̄

0|0

0|1̄

0|1

Figure 3. Transducer Nβ normalizing β-expansions of minimal weight, β = 1+
√

5
2 .

Proof. We show that the conversion of an arbitrary expansion accepted byMβ into the
expansion avoiding X is done by the transducer Nβ in Figure 3. Set

Q0 = {(0, 0; 0), (−1, 1), (1, 1)} = Q′
0,

Q1 = {(0, 0; 1), (−1/β, 0)}, Q′
1 = {(0, 0; 1̄0)},

Q10 = {(0, 0; 10), (−1, 0)}, Q′
10 = {(0, 0; 1̄00)},

Q100 = {(0, 0; 100), (−1/β, 1)}, Q′
100 = {(0, 0; 0), (−1, 1)},

Q101 = {(−1/β,−1), (1/β2, 0)}, Q′
101 = {(0, 0; 1)}.

Then the paths in Nβ with input in 00∗ lead to the three states in Q0, the paths with
input 01 lead to the two states in Q1, and more generally the paths in Nβ with input 0x
such that x is accepted by Mβ lead to all states in Qu or to all states in Q′

u, where u
labels the shortest path in Mβ leading to the state reached by x. Moreover Qu, Q′

u are
given by symmetry if they are not in the above list. Indeed, if u

a→ v is a transition in
Mβ , then we have Qu

a→ Qv or Qu
a→ Q′

v, and Q′
u

a→ Qv or Q′
u

a→ Q′
v, where Q

a→ R

means that for every r ∈ R there exists a transition q
a|b−→ r in Nβ with q ∈ Q.

Since every Qu and every Q′
u contains a state q with a transition of the form q

0|b−→
(0, 0; w), there exists a path with input 0x0 going from (0, 0; 0) to (0, 0; w) for every
word x accepted byMβ . By construction, the output y of this path satisfies x ∼β y and
‖x‖ = ‖y‖. It can be easily checked that all outputs of Nβ avoid the factors in X .

By Proposition 4.2, the word y in Lemma 4.4 is unique up to leading and trailing
zeros and does not change if we replace x by some x′ accepted by Mβ with x′ ∼β x.
Therefore all these x′ satisfy ‖x′‖ = ‖y‖ = ‖x‖. By Proposition 3.2 and Lemma 4.1,
there exists a β-expansions of minimal weight x′ accepted by Mβ with x′ ∼β x, and
we obtain the following theorem.
Theorem 4.5. The set of 1+

√
5

2 -expansions of minimal weight in {−1, 0, 1}∗ is recog-
nized by the finite automaton Mβ of Figure 1 where all states are terminal.
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4.2 Branching transformation

All β-expansions of minimal weight can be obtained by a branching transformation.

Theorem 4.6. Let x = x1 · · ·xn ∈ {−1, 0, 1}∗ and z = .x1 · · ·xn, β = 1+
√

5
2 . Then x

is a β-expansion of minimal weight if and only if − 2β
β2+1 < z < 2β

β2+1 and

xj =



1 if 2
β2+1 < βj−1z − x1 · · ·xj−1. < 2β

β2+1

0 or 1 if β
β2+1 < βj−1z − x1 · · ·xj−1. < 2

β2+1

0 if −β
β2+1 < βj−1z − x1 · · ·xj−1. < β

β2+1

−1 or 0 if −2
β2+1 < βj−1z − x1 · · ·xj−1. < −β

β2+1

−1 if −2β
β2+1 < βj−1z − x1 · · ·xj−1. < −2

β2+1

for all j, 1 ≤ j ≤ n.

The sequence (βj−1z−x1 · · ·xj−1.)1≤j≤n is a trajectory (τ j−1(z))1≤j≤n, where the
branching transformation τ : z 7→ βz − x1 with x1 ∈ {−1, 0, 1} is given in Figure 4.

(

−2β

β2+1
,
−β

β2+1

)

(

−2

β2+1
,
−2β

β2+1

)

(

−β

β2+1
, 1

β2+1

)

(

β

β2+1
,
−1

β2+1

)

(

2

β2+1
,

2β

β2+1

)

(

2β

β2+1
,

β

β2+1

)

0

Figure 4. Branching transformation giving all 1+
√

5
2 -expansions of minimal weight.

Proof. To see that all words x1 · · ·xn given by the branching transformation are β-
expansions of minimal weight, we have drawn in Figure 5 an automaton where every
state is labeled by the interval containing all numbers βjz−x1 · · ·xj . such that x1 · · ·xj

labels a path leading to this state. This automaton turns out to be the automaton Mβ

in Figure 1 (up to the labels of the states), which accepts exactly the β-expansions of
minimal weight. Recall that .(0010)ω = 1

β2+1 and thus .1(0100)ω = 2β
β2+1 .

If the conditions on z and xj are not satisfied, then we have either |.xj · · ·xn| >
.1(0100)ω, or xj = 1 and .xj+1 · · ·xn < .(001̄0)ω, or xj = −1 and .xj+1 · · ·xn >
.(0010)ω for some j, 1 ≤ j ≤ n. In every case, it is easy to see that xj · · ·xn must
contain a factor in the set H of the proof of Lemma 4.1, hence x1 · · ·xn is β-heavy.
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.1̄(01̄00)ω, .1(0100)ω

.(001̄0)ω , .(0100)ω .(01̄00)ω , .(1000)ω

.(1̄000)ω, .1(0100)ω .(0001̄)ω, .(0010)ω.(01̄00)ω, .(0010)ω.(1̄000)ω, .(0100)ω

.1̄(01̄00)ω, .(1000)ω.(001̄0)ω, .(0001)ω

0

1
0

0

1

1̄

0

1

1̄
0

0

1̄

1

0

1̄

0

0

Figure 5. Automaton Mβ with intervals as labels.

4.3 Fibonacci numeration system

The reader is referred to [18, Chapter 7] for definitions on numeration systems defined
by a sequence of integers. Recall that the linear numeration system canonically as-
sociated with the Golden Ratio is the Fibonacci (or Zeckendorf) numeration system
defined by the sequence of Fibonacci numbers F = (Fn)n≥0 with Fn = Fn−1 + Fn−2,
F0 = 1 and F1 = 2. Any non-negative integer N < Fn can be represented as
N =

∑n
j=1 xjFn−j with the property that x1 · · ·xn ∈ {0, 1}∗ does not contain the

factor 11. For words x = x1 · · ·xn ∈ Z∗, y = y1 · · · ym ∈ Z∗, we define a relation

x ∼F y if and only if
n∑

j=1

xjFn−j =
m∑

j=1

yjFm−j .

The properties F -heavy and F -expansion of minimal weight are defined as for β-
expansions, with ∼F instead of ∼β . An important difference between the notions
F -heavy and β-heavy is that a word containing a F -heavy factor need not be F -heavy,
e.g. 2 is F -heavy since 2 ∼F 10, but 20 is not F -heavy. However, uxv is F -heavy
if x0length(v) is F -heavy. Therefore we say that x ∈ Z∗ is strongly F -heavy if every
element in x0∗ is F -heavy. Hence every word containing a strongly F -heavy factor is
F -heavy.

The Golden Ratio satisfies (D′) since 2 = 10.01. For the Fibonacci numbers, the
corresponding relation is 2Fn = Fn+1 + Fn−2, hence 20n ∼F 10010n−2 for all n ≥ 2.
Since 20 ∼F 101 and 2 ∼F 10, we obtain similarly to the proof of Proposition 3.2 that
for every x ∈ Z∗ there exists some y ∈ {−1, 0, 1}∗ with x ∼F y and ‖y‖ ≤ ‖x‖. We
will show the following theorem.
Theorem 4.7. The set of F -expansions of minimal weight in {−1, 0, 1}∗ is equal to the
set of β-expansions of minimal weight in {−1, 0, 1}∗ for β =

√
5+1
2 .

The proof of this theorem runs along the same lines as the proof of Theorem 4.5. We
use the unique expansion of integers given by Proposition 4.8 (due to Heuberger [15])
and provide an alternative proof of Heuberger’s result that these expansions are F -
expansions of minimal weight.
Proposition 4.8 ([15]). Every N ∈ Z has a unique representation N =

∑n
j=1 yjFn−j

with y1 6= 0 and y1 · · · yn ∈ {−1, 0, 1}∗ avoiding X = {11, 101, 1001, 11̄, 101̄, and
their opposites}.
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Proof. Let gn be the smallest positive integer with an F -expansion of length n starting
with 1 and avoiding X , and Gn be the largest integer of this kind. Since gn+1 ∼F

1(001̄0)n/4, Gn ∼F (1000)n/4 and 1(1̄01̄0)n/4 ∼F 1, we obtain gn+1 − Gn = 1.
(A fractional power (y1 · · · yk)j/k denotes the word (y1 · · · yk)bj/kcy1 · · · yj−bj/kck.)
Therefore the length n of an expansion y1y2 · · · yn of N 6= 0 with y1 6= 0 avoiding X is
determined by Gn−1 < |N | ≤ Gn. Since gn−Fn−1 = −Gn−3 and Gn−Fn−1 = Gn−4,
we have −Gn−3 ≤ N − Fn−1 ≤ Gn−4 if y1 = 1, hence y2 = y3 = 0, y4 6= 1, and we
obtain recursively that N has a unique expansion avoiding X .

0, 0−1, 1

−1/β, 0

0,−1

−1, 0 −1/β,−1

−1,−1

−1/β,−2 1/β2,−1

1, 1

1/β, 0

0,−1

1, 01/β,−1

1,−1

1/β,−2−1/β2,−1

1|0

1|0

0|0

1|0

0|0

0|1̄

1|0

1̄|0 1̄|0

1̄|0

0|0

1̄|0

0|0

1̄|0

0|1

1|0

0|0
0|1̄

1|1̄

0|0
0|1

1̄|1

0|1̄0|1

Figure 6. All inputs of this transducer are strongly F -heavy.

Proof of Theorem 4.7. Let a1 · · · an ∈ Z∗, z =
∑n

j=1 ajβ
n−j , N =

∑n
j=1 ajFn−j . By

using the equations βk = βk−1 + βk−2 and Fk = Fk−1 + Fk−2, we obtain integers
m0 and m1 such that z = m1β + m0 and N = m1F1 + m0F0 = 2m1 + m0. Clearly,
z = 0 implies m1 = m0 = 0 and thus N = 0, but the converse is not true: N = 0 only
implies m0 = −2m1, i.e., z = −m1/β2. Therefore we have x1 · · ·xn ∼F y1 · · · yn if
and only if (x1 − y1) · · · (xn − yn). = m/β2 for some m ∈ Z, hence the redundancy
transducerRF (1) for the Fibonacci numeration system is similar toRβ(1), except that
all states m/β2, m ∈ Z, are terminal.

The transducer in Figure 6 shows that all strictly β-heavy words in {−1, 0, 1}∗ are
strongly F -heavy. Therefore all words which are not accepted by Mβ are F -heavy.
Let NF be as Nβ , except that the states (±1/β2, 0) are terminal. Every set Qu and Q′

u

contains a state of the form (0, 0; w) or (±1/β2, 0). If x is accepted by Nβ , then NF

transforms therefore 0x into a word y avoiding the factors given in Proposition 4.8.
Hence x is an F -expansion of minimal weight.

Remark 4.9. If we consider only expansions avoiding the factors 11, 101, 11̄, 101̄,
1001̄, then the difference between the largest integer with expansion of length n and the
smallest positive integer with expansion of length n + 1 is 2 if n is a positive multiple
of 3. Therefore there exist integers without an expansion of this kind, e.g. N = 4.
However, a small modification provides another “nice” set of F -expansions of minimal
weight: Every integer has a unique representation of the form N =

∑n
j=1 yjFn−j with
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y1 6= 0, y1 · · · yn ∈ {1̄, 0, 1}∗ avoiding the factors 11, 1̄1̄, 1̄01̄, 11̄, 1̄1, 101̄, 1̄01, 1001̄
and yj−2yj−1yj = 101 or yj−3 · · · yj = 1̄001 only if j = n.

4.4 Weight of the expansions

In this section, we study the average weight of F -expansions of minimal weight. For
every N ∈ Z, let ‖N‖F be the weight of a corresponding F -expansion of minimal
weight, i.e., ‖N‖F = ‖x‖ if x is an F -expansion of minimal weight with x ∼F N .

Theorem 4.10. For positive integers M , we have, as M →∞,

1
2M + 1

M∑
N=−M

‖N‖F =
1
5

log M

log 1+
√

5
2

+O(1).

Proof. Consider first M = Gn for some n > 0, where Gn is defined as in the proof of
Proposition 4.8, and let Wn be the set of words x = x1 · · ·xn ∈ {−1, 0, 1}n avoiding
11, 101, 1001, 11̄, 101̄, and their opposites. Then we have

1
2Gn + 1

Gn∑
N=−Gn

‖N‖F =
1

#Wn

∑
x∈Wn

‖x‖ =
n∑

j=1

EXj ,

where EXj is the expected value of the random variable Xj defined by

Pr[Xj = 1] =
#{x1 · · ·xn ∈ Wn : xj 6= 0}

#Wn
, Pr[Xj = 0] =

#{x1 · · ·xn ∈ Wn : xj = 0}
#Wn

Instead of (Xj)1≤j≤n, we consider the sequence of random variables (Yj)1≤j≤n de-
fined by

Pr[Y1 = y1y2y3, . . . , Yj = yjyj+1yj+2]

= #{x1 · · ·xn+2 ∈ Wn00 : x1 · · ·xj+2 = y1 · · · yj+2}/#Wn,

Pr[Yj−1 = xyz, Yj = x′y′z′] = 0 if x′ 6= y or y′ 6= z. It is easy to see that (Yj)1≤j≤n is
a Markov chain, where the non-trivial transition probabilities are given by

1− Pr[Yj+1 = 000 | Yj = 100] = Pr[Yj+1 = 001̄ | Yj = 100] =
Gn−j−2 −Gn−j−3

Gn−j+1 −Gn−j
,

1− 2 Pr[Yj+1 = 001 | Yj = 000] = Pr[Yj+1 = 000 | Yj = 000] =
2Gn−j−3 + 1
2Gn−j−2 + 1

,

and the opposite relations. Since Gn = cβn + O(1) (with β = 1+
√

5
2 , c = β3/5), the
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transition probabilities satisfy Pr[Yj+1 = v | Yj = u] = pu,v +O(β−n+j) with

(pu,v)u,v∈{100,010,001,000,001̄,01̄0,001̄} =



0 0 0 2
β2

1
β3 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1

2β2
1
β

1
2β2 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1

β3
2
β2 0 0 0


.

The eigenvalues of this matrix are 1, −1
β , ±i

β , 1± i
√

3
2β , −1

β2 . The stationary distribution
vector (given by the left eigenvector to the eigenvalue 1) is ( 1

10 , 1
10 , 1

10 , 2
5 , 1

10 , 1
10 , 1

10),
thus we have

EXj = Pr[Yj = 100] + Pr[Yj = 1̄00] = 1/5 +O
(
β−min(j,n−j)),

cf. [9]. This proves the theorem for M = Gn.
If Gn < M ≤ Gn+1, then we have ‖N‖F = 1 + ‖N − Fn‖F if Gn < N ≤ M , and

a similar relation for −M ≤ N < −Gn. With Gn + 1− Fn = −Gn−2, we obtain

M∑
N=−M

‖N‖F =
Gn∑

N=−Gn

‖N‖F +
M−Fn∑

N=−Gn−2

(1 + ‖N‖F ) +
Gn−2∑

N=Fn−M

(1 + ‖N‖F )

=
Gn∑

N=−Gn

‖N‖F +
Gn−2∑

N=−Gn−2

‖N‖F + sgn(M − Fn)
|M−Fn|∑

N=−|M−Fn|

‖N‖F +O(M)

=
2

5 log β

(
Fn log M + (M − Fn) log |M − Fn|

)
+O(M) =

2M log M

5 log β
+O(M)

by induction on n and using M−Fn

M log |M−Fn

M | = O(1).

Remark 4.11. As in [9], a central limit theorem for the distribution of ‖N‖F can be
proved, even if we restrict the numbers N to polynomial sequences or prime numbers.
Remark 4.12. If we partition the interval

[ −β2

β2+1 , β2

β2+1

)
, where the transformation τ :

z 7→ βz −
⌊

β2+1
2β z + 1/2

⌋
of the proof of Proposition 4.2 is defined, into intervals

I1̄00 =
[ −β2

β2+1 , −β
β2+1

)
, I01̄0 =

[ −β
β2+1 , −1

β2+1

)
, I001̄ =

[ −1
β2+1 , −1/β

β2+1

)
, I000 =

[−1/β
β2+1 , 1/β

β2+1

)
,

I001 =
[ 1/β

β2+1 , 1
β2+1

)
, I010 =

[ 1
β2+1 , β

β2+1

)
, I100 =

[
β

β2+1 , β2

β2+1

)
, then we have pu,v =

λ(τ(Iu) ∩ Iv)/λ(τ(Iu)), where λ denotes the Lebesgue measure.

5 Tribonacci case

In this section, let β > 1 be the Tribonacci number, β3 = β2 + β + 1 (β ≈ 1.839).
Since 1 = .1110ω, the condition of Example 1.1 is satisfied. The proofs of the results
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in this section run along the same lines as in the Golden Ratio case. Therefore we give
only an outline of them and point out the differences to the Golden Ratio case.

5.1 β-expansions of minimal weight

All words which are not accepted by the automaton Mβ in Figure 7, where all states
are terminal, are β-heavy since they contain a factor which is accepted by the input
automaton of Sβ (without the dashed arrows) in Figure 8.

0

1 1̄ 1

0

1̄

0

0

0

1

0

0

1̄

01

0

1

1̄

1̄11̄

0

1

0

0

0

1̄

0

0

1

0 1̄

0

1̄

1

0

0

Figure 7. Automata Mβ , β3 = β2 + β + 1, and MT .

Proposition 5.1. If β > 1 is the Tribonacci number, then every z ∈ R has a β-
expansion of the form z = y1 · · · yk.yk+1yk+2 · · · with yj ∈ {−1, 0, 1} such that y1y2 · · ·
avoids the set X = {11, 101, 11̄, and their opposites}. If z ∈ Z[β] = Z[β−1], then this
expansion is unique up to leading zeros.

The expansion in Proposition 5.1 is provided by the transformation

τ :
[
−β

β + 1
,

β

β + 1

)
→

[
−β

β + 1
,

β

β + 1

)
, τ(z) = βz −

⌊
β + 1

2
z +

1
2

⌋
.

Note that the word avoiding X with maximal value is (100)ω, .(100)ω = β
β+1 .

Remark 5.2. The transformation τ(z) = βz −
⌊

β2−1
2 z + 1

2

⌋
on

[ −β
β2−1 , β

β2−1

)
provides

a unique expansion avoiding the factors 11, 11̄, 101̄ and their opposites.

If x is a word accepted by Mβ , then there exists a path in the transducer Nβ in
Figure 9 going from (0, 0; 0) to a state (0, 0; w) with input 0x04 and output of the same
weight avoiding the set X given by Proposition 5.1. The sets Qu and Q′

u are given by
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0, 0 −1, 1

1 − β, 0

−1/β,−1

−1,−1

1 − β,−2

−1/β,−31 − 1/β,−2

1/β3,−1

1/β2,−1 1/β − 1,−2

1/β2 − 1,−2−1 − 1/β2,−2

1/β3 − 1/β,−2

1/β3,−3 −1/β2,−3

0,−2

0, 0 1, 1

β − 1, 0

1/β,−1

1,−1

β − 1,−2

1/β,−31/β − 1,−2

−1/β3,−1

−1/β2,−1 1 − 1/β,−2

1− 1/β2,−21 + 1/β2,−2

1/β − 1/β3,−2

−1/β3,−3 1/β2,−3

1̄|0 1|0

1|0

1|0

0|0

0|1̄

1|0

0|1̄

1|0

0|0

1̄|0

0|0

0|1̄

1̄|0

1|0

0|0

1|1̄
0|0

1|0

1|0 1̄|0

1̄|0

1̄|0

0|0

0|1

1̄|0

0|1

1̄|0

0|0

1|0

0|0

0|1

1|0

1̄|0

0|0

1̄|1
0|0

1̄|0

0|0

1|1̄

0|0

1̄|1

0|0

0|1

0|1̄

1|1̄

0|1̄

0|0

0|1̄

0|0

1̄|1

0|1

0|1

0|0

0|0

Figure 8. The relevant part of Sβ(1), β3 = β2 + β + 1, and ST (1).

Q0 = {(0, 0; 0), (1, 1), (−1, 1)} = Q′
0, Q11̄101̄ = {(1/β − 1,−2)} = Q′

11̄101̄,

Q1 = {(0, 0; 1), (1,−1), (1 − β, 0; 0)}, Q′
1 = {(0, 0; 1̄0), (1,−1), (1 − β, 0; 1̄)},

Q10 = {(0, 0; 10), (β − 1, 0; 1), (−1 − 1/β, 0), (−1/β, 1)},

Q′
10 = {(0, 0; 0), (−1, 1), (β − 1, 0; 1)},

Q11 = {(−1/β,−1; 0), (1 − 1/β, 0)}, Q′
11 = {(0, 0; 1), (1,−1), (−1/β,−1; 1)},

Q11̄ = {(−1,−1), (−1/β3,−1; 1)}, Q′
11̄ = {(−1/β3,−1; 0)},

Q11̄0 = {(1 − β, 0; 1̄), (−1/β2,−1; 10)}, Q′
11̄0 = {(−1/β2,−1; 0)},

Q11̄01 = {(−1/β,−1; 1), (1 − 1/β,−2)} = Q′
11̄01,

Q11̄1 = {(1/β3,−1; 1̄)}, Q′
11̄1 = {(1 − 1/β2,−2), (−1/β2,−1; 1)},

Q11̄10 = {(1/β2,−1; 1̄0)}, Q′
11̄10 = {(1/β2,−1; 1), (−1/β,−1; 0)}.
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Figure 9. Normalizing transducer Nβ , β3 = β2 + β + 1.

Theorem 5.3. If β is the Tribonacci number, then the set of β-expansions of minimal
weight in {−1, 0, 1}∗ is recognized by the finite automaton Mβ of Figure 7 where all
states are terminal.

5.2 Branching transformation

Contrary to the Golden Ratio case, we cannot obtain all β-expansions of minimal
weight by the help of a piecewise linear branching transformation: If z = .01(001)n,
then we have no β-expansion of minimal weight of the form z = .1x2x3 · · · , whereas
z′ = .0011 has the expansion .11̄, and z′ < z. On the other hand, z = .1(100)n11 has
no β-expansion of minimal weight of the form z = .1x2x3 · · · (since 1(100)n11 is β-
heavy but (100)n11 is not β-heavy), whereas z′ = .1101 is a β-expansion of minimal
weight, and z′ > z. Hence the maximal interval for the digit 1 is [.(010)ω, .1(100)ω],
with .(010)ω = β

β3−1 = 1
β+1 and .1(100)ω = 2β+1

β(β+1) . The corresponding branching
transformation and the possible expansions are given in Figure 10.
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(

−2β−1
β(β+1)

,
−β
β+1

)

(

−2−1/β

β(β+1)
,
−2β−1
β(β+1)

)

(

−1
β+1

, 1
β+1

)

(

1
β+1

,
−1

β+1

)

(

2+1/β

β(β+1)
,

2β+1
β(β+1)

)

(

2β+1
β(β+1)

,
β

β+1

)

0
.1̄(1̄00)ω, .1(100)ω .(01̄0)ω, .(100)ω

.(01̄0)ω, .(001)ω

.(1̄00)ω, .1(100)ω

.(1̄00)ω, .(010)ω

.(001̄)ω, .(010)ω

.1̄(1̄00)ω, .(100)ω

0

1

01

0

1

1̄

1̄

0 1̄

0

1̄

1

0

0

Figure 10. Branching transformation, corresponding automaton, β3 = β2 + β + 1.

5.3 Tribonacci numeration system

The linear numeration system canonically associated with the Tribonacci number is
the Tribonacci numeration system defined by the sequence T = (Tn)n≥0 with T0 = 1,
T1 = 2, T2 = 4, and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3. Any non-negative integer
N < Tn has a representation N =

∑n
j=1 xjTn−j with the property that x1 · · ·xn ∈

{0, 1}∗ does not contain the factor 111. The relation ∼T and the properties T -heavy,
T -expansion of minimal weight and strongly T -heavy are defined analogously to the
Fibonacci numeration system. We have 20n ∼T 100010n−3 for n ≥ 3, 200 ∼T 1001,
20 ∼T 100 and 2 ∼T 10, therefore for every x ∈ Z∗ there exists some y ∈ {−1, 0, 1}∗
with x ∼T y and ‖y‖ ≤ ‖x‖. Since the difference of 1(01̄0)n/3 and (100)n/3 is
1(1̄1̄0)n/3 ∼T 1, we obtain the following proposition.
Proposition 5.4. Every N ∈ Z has a unique representation N =

∑n
j=1 yjTn−j with

y1 6= 0 and y1 · · · yn ∈ {−1, 0, 1}∗ avoiding X = {11, 101, 11̄, and their opposites}.
If z = a1 · · · an. = m2m1m0., then N =

∑n
j=1 ajTn−j = 4m2 + 2m1 + m0 = 0

if and only if m0 = 2m′
0 and m1 = −2m2 − m′

0, i.e., z = −m2/β2 + m′
0/β3, hence

all states s = m/β2 + m′/β3 with some m,m′ ∈ Z are terminal states in the re-
dundancy transducer RT (1). The transducer ST , which is given by Figure 8 includ-
ing the dashed arrows except that the states (±1/β,−3) are not terminal, shows that
all strictly β-heavy words in {−1, 0, 1}∗ are strongly T -heavy, but that some other
x ∈ {−1, 0, 1}∗ are T -heavy as well. Thus the T -expansions of minimal weight
are a subset of the set recognized by the automaton Mβ in Figure 7. Every set Qu

and Q′
u, u ∈ {0, 1, 10, 11}, contains a terminal state (0, 0; w) or (1 − 1/β, 0), hence

the words labelling paths ending in these states are T -expansions of minimal weight.
The sets Qu and Q′

u, u ∈ {11̄, 11̄0, 11̄1, 11̄0, 11̄01}, contain states (±1/β3,−1; w),
(±1/β2,−1; w), (±(1 − 1/β),−2), hence the words labelling paths ending in these
states are T -heavy, and we obtain the following theorem.
Theorem 5.5. The T -expansions of minimal weight in {−1, 0, 1}∗ are exactly the
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words which are accepted by MT , which is the automaton in Figure 7 where only the
states with a dashed outgoing arrow are terminal. The words given by Proposition 5.4
are T -expansions of minimal weight.

5.4 Weight of the expansions

Let Wn be the set of words x = x1 · · ·xn ∈ {−1, 0, 1}n avoiding the factors 11, 101,
11̄, and their opposites. Then the sequence of random variables (Yj)1≤j≤n defined by

Pr[Y1 = y1y2, . . . , Yj = yjyj+1] =
#{x1 · · ·xn+1 ∈ Wn0 : x1 · · ·xj+1 = y1 · · · yj+1}

#Wn

is Markov with transition probabilities Pr[Yj+1 = v | Yj = u] = pu,v +O(β−n+j),

(pu,v)u,v∈{10,01,00,01̄,1̄0} =


0 0 β2−1

β2
1
β2 0

1 0 0 0 0
0 β−1

2β
1
β

β−1
2β 0

0 0 0 0 1
0 1

β2
β2−1

β2 0 0

 .

The eigenvalues of this matrix are 1,± 1
β ,

−β−1± i
√

3β3−β

2β3 , and the stationary distri-

bution vector of the Markov chain is
( β3/2

β5+1 , β3/2
β5+1 , β3+β2

β5+1 , β3/2
β5+1 , β3/2

β5+1

)
. We obtain the

following theorem (with β3

β5+1 = .(0011010100)ω ≈ 0.28219).
Theorem 5.6. For positive integers M , we have, as M →∞,

1
2M + 1

M∑
N=−M

‖N‖T =
β3

β5 + 1
log M

log β
+O(1).

6 Smallest Pisot number case

The smallest Pisot number β ≈ 1.325 satisfies β3 = β + 1. Since 1 = .011 = .10001
implies 2 = 100.00001 as well as 2 = 1000.0001̄, (D′) is satisfied with B = 2.

6.1 β-expansions of minimal weight

Let Mβ be the automaton in Figure 11 without the dashed arrows where all states are
terminal and Sβ be the automon in Figure 13. To see that all words which are not
accepted by Mβ are β-heavy, we put labels on its states which stand for sets of states
in Sβ: A,B, C, D, E, F,G stand for (1/β5,−1), (1/β4,−1), . . . , (β,−1), H, I, J, K
stand for (1/β, 0), . . . , (β2, 0), L,M,N,O stand for (1/β5, 0), . . . , (1/β2, 0), and the
lowercase letters stand for the corresponding states (s, δ) with s < 0. If the label of a
state u contains z, then all paths leading to u in Mβ have a suffix which is the input
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Figure 11. Automata Mβ , β3 = β + 1, and MS .

of a path in Sβ leading to z. This implies that the following lettter cannot be 1̄ if the
label of u contains one of the states B,C, . . . ,H . If it contains b, c, . . . , h, then 1 is
forbidden.
Proposition 6.1. If β is the smallest Pisot number, then every z ∈ R has a β-expansion
of the form z = y1 · · · yk.yk+1yk+2 · · · with yj ∈ {−1, 0, 1} such that y1y2 · · · avoids the
set X = {1061, 10k1, 10k1̄, 0 ≤ k ≤ 5, and their opposites}. If z ∈ Z[β] = Z[β−1],
then this expansion is unique up to leading zeros.

The expansion is provided by the transformation

τ :
[ −β3

β2 + 1
,

β3

β2 + 1

)
→

[ −β3

β2 + 1
,

β3

β2 + 1

)
, τ(x) = βx−

⌊β2 + 1
2β2 x +

1
2

⌋
since τ

[
β2

β2+1 , β3

β2+1

)
=

[
β3

β2+1 − 1, β4

β2+1 − 1
)

=
[
− 1/β3

β2+1 , 1/β4

β2+1

)
. The word avoiding X

with maximal value is (107)ω, .(107)ω = β7/(β8 − 1) = β3/(β2 + 1).

Remark 6.2. The transformation τ(z) = βz −
⌊ 1

β z + 1
2

⌋
on

[
− β2

2 , β2

2

)
provides a

unique expansion avoiding 1061̄ instead of 1061.
If x is a word accepted by Mβ , then there exists a path in the transducer Nβ in

Figure 14 going from (0, 0; 0) to a state (0, 0; w) with input 00x05 and output of the
same weight. Since an automaton where all outputs avoiding the factors given by
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Figure 12. Compact representation of Mβ .

Proposition 6.1 would be very large, we decided to draw a smaller automaton and to
split up the states (s, δ) into states (s, δ; w) only in the sets Qu and Q′

u.

Q0 = Q′
0 = {(0, 0; 0), (1, 1; 1̄), (−1, 1; 1), (β, 1; 1̄0), (−β, 1; 10)}

Q1 = {(0, 0; 1), (1,−1; 0), (−1/β4, 0; 10), (−1/β, 0; 102)}

Q′
1 = {(0, 0; 1), (1,−1; 0), (−1/β4, 0; 1̄02), (−1/β, 0; 1̄0)}

Q10 = {(0, 0; 10), (1/β4, 0; 1), (β,−1; 0), (−1/β3, 0; 102), (−1, 0; 103)}

Q′
10 = {(0, 0; 10), (1/β4, 0; 1), (β,−1; 0), (−1/β3, 0; 1̄03), (−1, 0; 1̄02)}

Q100 = {(0, 0; 102), (1/β3, 0; 10), (1/β, 0; 1), (−1/β2, 0; 103), (−β, 0; 104)}

Q′
100 = {(0, 0; 102), (1/β3, 0; 10), (1/β, 0; 1), (−1/β2, 0; 1̄04), (−β, 0; 1̄03)}

Q103 = Q′
103 = {(0, 0; 103), (1/β2, 0; 102), (1, 0; 10), (−1/β, 0; 104)}

Q104 = Q′
104 = {(0, 0; 104), (1/β, 0; 103), (−1, 0; 105)}

Q105 = Q′
105 = {(0, 0; 105), (1, 0; 104), (−β, 0; 106)}

Q106 = Q′
106 = {(0, 0; 106), (β, 0; 105), (−β2, 0; 0), (−1/β, 1; 1̄)}

Q107 = Q′
107 = {(0, 0; 0), (1, 1; 1̄), (β2, 0; 106), (−β, 1; 1̄), (−1, 1; 1̄0)}

Q101 = {(1/β3,−1; 103), (−1/β4,−1; 104)}, Q′
101 = {(1/β3,−1; 1̄04), (−1/β4,−1; 1̄03)}

Q1010 = {(1/β2,−1; 104), (−1/β3,−1; 105)}, Q′
1010 = {(1/β2,−1; 1̄05), (−1/β3,−1; 1̄04)}

Q10100 = {(1/β,−1; 105), (−1/β2,−1; 106)}, Q′
10100 = {(1/β,−1; 1̄06), (−1/β2,−1; 1̄05)}
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Figure 13. The relevant part of Sβ(1), β3 = β + 1.

Q10103 = {(1,−1; 106), (−1/β,−1; 0), (1/β5, 0; 1̄)}

Q′
10103 = {(1,−1; 0), (−1/β,−1; 1̄06), (0, 0; 1)}

Q10104 = {(β,−1; 0), (−1,−1; 0), (0, 0; 1̄), (1/β4, 0; 1̄0)}

Q′
10104 = {(β,−1; 0), (−1,−1; 0), (0, 0; 10), (1/β4, 0; 1)}

Q10105 = {(1/β, 0; 1), (−β,−1; 0), (−1/β4, 0; 1̄), (0, 0; 1̄0), (1/β3, 0; 1̄02)}

Q′
10105 = {(1/β, 0; 1), (−β,−1; 0), (−1/β4, 0; 1̄), (0, 0; 102), (1/β3, 0; 10)}

Q10106 = {(1, 0; 10), (−1/β, 0; 1̄), (−1/β3, 0; 1̄0), (0, 0; 1̄02), (1/β2, 0; 1̄03)}

Q′
10106 = {(1, 0; 10), (−1/β, 0; 1̄), (−1/β3, 0; 1̄0), (0, 0; 103), (1/β2, 0; 102)}

Q1001 = {(1/β5,−1; 104), (−1/β,−1; 105)}, Q′
1001 = {(1/β5,−1; 1̄05), (−1/β,−1; 1̄04)}

Q10010 = {(1/β4,−1; 105), (−1,−1; 106)}, Q′
10010 = {(1/β4,−1; 1̄06), (−1,−1; 1̄05)}

Q100100 = {(1/β3,−1; 106), (−β,−1; 0), (−1/β4, 0; 1̄)}

Q′
100100 = {(1/β3,−1; 0), (−β,−1; 1̄06), (−1/β2, 0; 1)}
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Figure 14. Transducer Nβ normalizing β-expansions of minimal weight, β3 = β + 1.

Q100103 = {(1/β2,−1; 0), (−1/β, 0; 1̄), (−1/β3, 0; 1̄0)}

Q′
100103 = {(1/β2,−1; 0), (−1/β, 0; 10), (−1/β3, 0; 1)}

Q100104 = {(1/β,−1; 0), (−1/β5, 0; 1), (−1, 0; 1̄0), (−1/β2, 0; 1̄02)}

Q′
100104 = {(1/β,−1; 0), (−1/β5, 0; 1), (−1, 0; 102), (−1/β2, 0; 10)}

Q10001̄ = {(1/β4,−1; 102), (−1/β5,−1; 103)}, Q′
10001̄ = {(1/β4,−1; 1̄03), (−1/β5,−1; 1̄02)}

If u
a→ v is a transition in Mβ , then we have Qu

a→ Qv or Qu
a→ Q′

v, and Q′
u

a→ Qv

or Q′
u

a→ Q′
v, where Q

a→ R now means that for every (s′, δ′; w′) ∈ R there exists

(s, δ; w) ∈ Q such that (s, δ)
a|b−→ (s′, δ′) is a transition in Nβ and w

b→ w′ is allowed.
The allowed transitions w

b→ w′ are 0 1→ 1, 1̄06 1→ 1, 10k 0→ 10k′ with k′ ≤ k + 1,
10k 0→ 1̄0k′ with k′ ≤ k, 106 0→ 0, 0 0→ w′ for all w′ and the opposites. This implies
that if x labels a path leading to u in Mβ , then there exists paths with input 00x and
output avoiding the set X given by Proposition 6.1 leading to all states in Qu or to all
states in Q′

u, and we obtain the following theorem.

Theorem 6.3. If β is the smallest Pisot number, then the set of β-expansions of minimal
weight in {−1, 0, 1}∗ is recognized by the finite automaton Mβ of Figure 11 (without
the dashed arrows) where all states are terminal.
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6.2 Branching transformation

In the case of the smallest Pisot number β, it is easy to see that the maximal interval for
the digit 1 is [.(0106)ω, .1(05102)ω], with .(0106)ω = β2

β2+1 and .1(05102)ω = β2+1/β
β2+1 .

The corresponding branching transformation and expansions are given in Figure 15.

(

−β2
−1/β

β2+1
,
−1/β2

β2+1

)

(

−β−1/β2

β2+1
,
−β2

−1/β

β2+1

)

(

−β2

β2+1
,

1/β3

β2+1

)

(

β2

β2+1
,
−1/β3

β2+1

)

(

β+1/β2

β2+1
,

β2+1/β

β2+1

)

(

β2+1/β

β2+1
,

1/β2

β2+1

)

0

.1̄(051̄02)ω, .1(05102)ω

.(01̄06)ω, .(107)ω.(1̄07)ω, .(0106)ω

0
1051̄05

106

1̄06

0202

0105 , 01̄0601̄05, 0106

Figure 15. Branching transformation and corresponding automaton, β3 = β + 1.

6.3 Integer expansions

Let (Sn)n≥0 be a linear numeration system associated with the smallest Pisot number
β which is defined as follows:

S0 = 1, S1 = 2, S2 = 3, S3 = 4, Sn = Sn−2 + Sn−3 for n ≥ 4.

Note that we do not choose the canonical numeration system associated with the small-
est Pisot number, which is defined by U0 = 1, U1 = 2, U2 = 3, U3 = 4, U4 = 5, Un =
Un−1 + Un−5 for n ≥ 5, since Un = Un−2 + Un−3 holds only for n ≡ 1 mod 3, n ≥ 4.

For every x ∈ Z∗, there exists y ∈ {−1, 0, 1}∗ with x ∼S y, ‖y‖ ≤ ‖x‖ since
2 ∼S 10, 20 ∼S 1000, 200 ∼S 1010, 203 ∼S 10100, 204 ∼S 100100, 205 ∼S 10104,
20n ∼S 10610n−5 for n ≥ 6.
Proposition 6.4. Every N ∈ Z has a unique representation N =

∑n
j=1 yjSn−j with

y1 6= 0 and y1 · · · yn ∈ {−1, 0, 1}∗ avoiding the set X = {1061, 10k1, 10k1̄, 0 ≤ k ≤ 5,
and their opposites}, with the exception that 1061, 1051, 1051̄, 1041̄ and their opposites
are possible suffixes of y1 · · · yn.

As for the Fibonacci numeration system, this proposition is proved by considering
gn, the smallest positive integer with an expansion of length n starting with 1 avoiding
these factors, and Gn, the largest integer of this kind. The representations of gn+1
and Gn, n ≥ 1, depending on the congruence class of n modulo 8 are given by the
following table.
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n ≡ j mod 8 gn+1 Gn gn+1 −Gn

1, 2, 3, 4 1(061̄0)n/8 (107)n/8 11̄0j−1 ∼S 1
5 1(061̄0)(n−5)/8041̄ (107)(n−5)/8104 11̄0001̄ ∼S 1
6 1(061̄0)(n−6)/8051̄ (107)(n−6)/8105 11̄00001̄ ∼S 11̄ ∼S 1
7 1(061̄0)(n−7)/8061̄ (107)(n−7)/81051 11̄000002̄ ∼S 102̄ ∼S 1
0 1(061̄0)n/8 (107)n/8−11061 11̄000001̄1̄ ∼S 101̄1̄ ∼S 1

For the calculation of gn+1−Gn we have used Sn−Sn−1−Sn−7 = Sn−5−Sn−7 = Sn−8
for n ≥ 9. In the rest of the section, we prove the following theorem.
Theorem 6.5. The set of S-expansions of minimal weight in {−1, 0, 1}∗ is recognized
by MS , which is the automaton in Figure 11 including the dashed arrows. The words
given by Proposition 6.4 are S-expansions of minimal weight.

Since Sn = Sn−2−Sn−3 holds only for n ≥ 4 and not for n = 3, determining when
x ∼S y is more complicated than for ∼F and ∼T . If z = a1 · · · an. = m3m2m1an.,
then we have N =

∑n
j=1 ajSn−j = 4m3 + 3m2 + 2m1 + an. We have to distinguish

between different values of an.
If an = 0, we obtain N = 0 if and only if m2 = 2m′

2,m1 = −2m3 − 3m′
2, hence

z = m3(β3 − 2β) + m′
2(2β2 − 3β) = −m3/β4 −m′

2(1/β4 + 1/β7).

In particular, m′
2 = 0,m3 ∈ {0,±1} implies N = 0 if z ∈ {0,±1/β4}.

If an = 1, we obtain N = 0 if and only if m2 = 2m′
2 − 1,m1 = −2m3 − 3m′

2 + 1,
hence

z = m3(β3−2β)+m′
2(2β2−3β)−β2 +β+1 = −m3/β4−m′

2(1/β4 +1/β7)+1/β2.

In particular, m3m
′
2 ∈ {00, 1̄1, 01} provides N = 0 if z ∈ {1/β2, 1/β3, 1/β5}.

If an = 2, then m3m2m1 ∈ {001̄, 1̄01} provides N = 0 if z ∈ {2− β, 1}.
We have x1 · · ·xn ∼S y1 · · · yn if the corresponding path in Rβ(1) ends in a state z

corresponding to an = xn − yn (or in −z, an = yn − xn).
It is easy to see that 11, 101̄ and their opposites are strongly S-heavy. Therefore x1

is strongly S-heavy if x is the input of a path in Sβ leading to (−1/β4,−1). The same
is true for the states (−1/β3,−1), . . . , (−1,−1) because of the following transitions
leading to terminal states in SF :

• (−1/β3,−1) 1|0−→ (1/β3,−2) 0|1−→ (−1/β3,−1);
(−1/β3,−1) 1|0−→ (1/β3,−2) 0|0−→ 0|1−→ (−1/β5,−1) 0|0−→ (−1/β4,−1);
(−1/β3,−1) 1|0−→ (1/β3,−2) 0|0−→ 0|0−→ 0|1̄−→ 0|0−→ (0,−1)

• (−1/β2,−1) 1|0−→ (1/β5,−2) 0|0−→ (1/β4,−2) 0|1−→ (−1/β3,−1);
(−1/β2,−1) 1|0−→ 0|0−→ 0|0−→ (1/β3,−2) can be continued as above

• (−1/β,−1) 1|1̄−→ (1,−1); (−1/β,−1) 1|0−→ 0|0−→ (0,−2)
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• (−1,−1) 1|1̄−→ (2− β,−1); (−1,−1) 1|0−→ 0|1̄−→ (1/β2,−1);
(−1,−1) 1|0−→ 0|0−→ (−1/β3,−2) can be continued as above

For (−β,−1), we can assume that the incoming transition is (−1,−1) 0|0−→ (−β,−1)
since we already know that 11 is strongly S-heavy. With (−1,−1) 0|1̄−→ 1|0−→ (1/β2,−1),
(−β,−1) 1|1̄−→ 0|0−→ (1/β4,−1), (−β,−1) 1|0−→ 0|1̄−→ 0|0−→ (0,−1), we obtain that these x1
are strongly S-heavy as well. If x is the input of a path in Sβ ending in (−1/β, 0), then
x10j is S-heavy for j ≥ 1, but not necessarily for j = 0, e.g. 10001 is not S-heavy.

In other words, if the label of a state in Figure 11 contains a letter b, c, d, e, f, g,
then the following letter cannot be 1. The same is true if it contains h, except if
the following letter is the last letter of the word. For the last letter we have other
restrictions: Because of (−1/β4, 0) 1|0−→ (1/β2,−1), (−1/β3, 0) 1|0−→ (1/β3,−1),
(−1/β2, 0) 1|0−→ (1/β5,−1), it cannot be 1 if the state contains m,n, o. By symme-
try, the last letter cannot be −1 if the label contains a corresponding capital letter. With
(±1/β5,−1) 0|0−→ (±1/β4,−1), the last letter cannot be 0 if the label contains a or A.

Therefore all words which are not accepted by MS , which is the automaton in Fig-
ure 11 including the dashed arrows, are S-heavy. It remains to show that for every ter-

minal transition u
a→ v in MS , there exists transitions q

a|b−→ r, q′
a|b′−→ r′ with q ∈ Qu,

q′ ∈ Q′
u, leading to terminal states, with output satisfying the conditions of Proposi-

tion 6.4. We provide this transition in case that it is not of the form (0, 0; w)
a|a−→ (0, 0).

102104 0→ 1 : (−1/β5, 0; 1) 0|0−→ (−1/β4, 0)

101 0→ 1010 : (−1/β4,−1; 104) 0|1̄−→ (1/β2, 0), (1/β3,−1; 1̄04) 0|1−→ (−1/β3, 0)

1010 0→ 10102 : (−1/β3,−1; 105) 0|1̄−→ (1/β3, 0), (1/β2,−1; 1̄05) 0|1−→ (−1/β5, 0)

10102 0→ 10103 : (−1/β2,−1; 106) 0|1̄−→ (1/β5, 0), (−1/β2,−1; 1̄05) 0|1̄−→ (1/β5, 0)

10103 0→ 10104 : (1/β5, 0; 1̄) 0|0−→ (1/β4, 0)

10210 0→ 102102 : (1/β4,−1; 105) 0|1−→ (−1/β2, 0), (1/β4,−1; 1̄06) 0|1−→ (−1/β2, 0)

102102 0→ 102103 : (1/β3,−1; 106) 0|1−→ (−1/β3, 0), (1/β3,−1; 0) 0|1−→ (−1/β3, 0)

102103 0→ 102104 : (1/β2,−1; 0) 0|1−→ (−1/β5, 0)

103 1→ 1031 : (−1/β, 0; 104) 1|1̄−→ (1, 0)

104 1→ 1041 : (−1, 0; 105) 1|1̄−→ (2− β, 0)
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6.4 Weight of the expansions

Let Wn be the set of words x = x1 · · ·xn ∈ {−1, 0, 1}n avoiding the factors given by
Proposition 6.4. Then the sequence of random variables (Yj)1≤j≤n defined by

Pr[Y1 = y1 · · · y7, . . . , Yj = yj · · · yj+6]

= #{x1 · · ·xn+6 ∈ Wn06 : x1 · · ·xj+6 = y1 · · · yj+6}/#Wn

is Markov with transition probabilities Pr[Yj+1 = v | Yj = u] = pu,v +O(β−n+j),

(pu,v)u,v∈{106,...,061,07,061̄,...,1̄06} =



0 · · · · · · 0 2
β3

1
β7 0 · · · 0

1
. . .

... 0 0
...

...

0
. . . . . .

...
...

...
...

...
...

. . . 1 0 0 0
...

...
... 0 1

2β5
1
β

1
2β5 0

...
...

... 0 0 0 1
. . .

...
...

...
...

...
...

. . . . . . 0
...

... 0 0
...

. . . 1
0 · · · 0 1

β7
2
β3 0 · · · · · · 0



.

The left eigenvector to the eigenvalue 1 of this matrix is 1
14+4β2 (1, . . . , 1, 4β2, 1, . . . , 1),

and we obtain the following theorem (with 1
7+2β2 ≈ 0.09515).

Theorem 6.6. For positive integers M , we have, as M →∞,

1
2M + 1

M∑
N=−M

‖N‖S =
1

7 + 2β2
log M

log β
+O(1).

7 Concluding remarks

Another example of a number β < 2 of small degree satisfying (D′), which is not
studied in this article, is the Pisot number satisfying β3 = β2 + 1, with 2 = 100.00001̄.

A question which is not approached in this paper concerns β-expansions of minimal
weight restricted to alphabets which do not contain {1 − B, . . . , B − 1}, in particular
if β does not satisfy (D′).

In view of applications to cryptography, we present a summary of the average min-
imal weight of representations of integers in linear numeration systems (Un)n≥0 asso-
ciated with different β, with digits in A = {0, 1} or in A = {−1, 0, 1}.
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Un A β average ‖N‖U for N ∈ {−M, . . . , M}

2n {0, 1} 2 (log2 M)/2
2n {−1, 0, 1} 2 (log2 M)/3
Fn {0, 1} 1+

√
5

2 (logβ M)/(β2 + 1) ≈ 0.398 log2 M

Fn {−1, 0, 1} 1+
√

5
2 (logβ M)/5 ≈ 0.288 log2 M

Tn {−1, 0, 1} β3 = β2 + β + 1 (logβ M)β3/(β5 + 1) ≈ 0.321 log2 M

Sn {−1, 0, 1} β3 = β + 1 (logβ M)/(7 + 2β2) ≈ 0.235 log2 M

If we want to compute a scalar multiple of a group element, e.g. a point P on an
elliptic curve, we can choose a representation N =

∑n
j=0 xjUj of the scalar, compute

UjP , 0 ≤ j ≤ n, by using the recurrence of U and finally NP =
∑n

j=0 xj(UjP ). In the
cases which we have considered, this amounts to n+‖N‖U additions (or subtractions).
Since n ≈ logβ N is larger than ‖N‖U , the smallest number of additions is usually
given by a 2-expansion of minimal weight. (We have log(1+

√
5)/2 N ≈ 1.44 log2 N ,

logβ N ≈ 1.137 log2 M for the Tribonacci number, logβ N ≈ 2.465 log2 N for the
smallest Pisot number.)

If however we have to compute several multiples NP with the same P and different
N ∈ {−M, . . . , M}, then it suffices to compute UjP for 0 ≤ j ≤ n ≈ logβ M once,
and do ‖N‖U additions for each N . Starting from 10 multiples of the same P , the
Fibonacci numeration system is preferable to base 2 since (1 + 10/5) log(1+

√
5)/2 M ≈

4.321 log2 M < (1 + 10/3) log2 M . Starting from 20 multiples of the same P , S-
expansions of minimal weight are preferable to the Fibonacci numeration system since
(1+20/(7+2β2)) logβ M ≈ 7.156 log2 M < 7.202 log2 M ≈ (1+20/5) log(1+

√
5)/2 M .

Appendix

Proposition A.1. If β satisfies (D), β > 1, then β is a Pisot number.

Proof. First note that every polynomial P (X) = Xd+1 −BXd + b1X
d−1 + · · ·+ bd ∈

Z[X] with B >
∑d

j=1 |bj | has a root β > 1 except for the trivial cases X − 1 and
X2 − 2X + 1. It is easy to see (e.g. by multiplying both sides with β − 1) that

1 = .(B − 1)(B − b1 − 1) · · · (B − b1 − · · · − bd−1 − 1)(B − b1 − · · · − bd − 1)ω

is an expansion of 1 in base β with non-negative digits. We have

Xd+1 −BXd + b1X
d−1 + · · ·+ bd = (X − β)(Xd − r1X

d−1 − · · · − rd)
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with rj = .bjbj+1 · · · bd, and

d∑
j=1

|rj | =
d∑

j=1

∣∣∣∣∣∣
d∑

i=j

bi

βi−j+1

∣∣∣∣∣∣
≤

d∑
j=1

d∑
i=j

|bi|
βi−j+1 = .(|b1|+ · · ·+ |bd|)(|b2|+ · · ·+ |bd|) · · · (|bd|)

≤ .(B − 1)(B − |b1| − 1) · · · (B − |b1| − · · · − |bd−1| − 1)

≤ .(B − 1)(B − b1 − 1) · · · (B − b1 − · · · − bd−1 − 1)

≤ 1

We have equality everywhere if and only if B =
∑d

j=1 bj + 1. In this case,

1 = .t1t2 · · · td = .(B − 1)(B − b1 − 1) · · · (B − b1 − · · · − bd−1 − 1)

with t1 ≥ t2 ≥ · · · ≥ td, and it is well known that β is a Pisot number. If
∑d

j=1 |rj | < 1,
then

|xd| >
d∑

j=1

|rj | |x|d ≥
d∑

j=1

|rj | |x|d−j ≥ |r1x
d−1 + · · ·+ rd−1x + rd|

for all x with |x| ≥ 1, hence x cannot be a root of P (X) and β is a Pisot number.
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