# A REMARKABLE INTEGER SEQUENCE RELATED TO $\pi$ AND $\sqrt{2}$ 

Wieb Bosma<br>Department of Mathematics, Radboud University, Nijmegen, the Netherlands<br>bosma@math.ru.nl<br>Michel Dekking<br>Faculty EEMCS, Delft University of Technology, Delft, the Netherlands<br>F.M.Dekking@math.tudelft.nl<br>Wolfgang Steiner ${ }^{1}$<br>IRIF, CNRS UMR 8243, Université Paris Diderot - Paris 7, Paris, France<br>steiner@irif.fr

Dedicated to Jeff Shallit on the occasion of his 60 th birthday
Received:, Revised: , Accepted: , Published:


#### Abstract

We prove that five ways to define entry A086377 in the OEIS do lead to the same integer sequence.


## 1. Introduction

In September of 2003 Benoit Cloitre contributed a sequence to the On-Line Encyclopedia of Integer Sequences [4], defined by him as $a_{1}=1$, and for $n \geq 2$ by

$$
a_{n}= \begin{cases}a_{n-1}+2 & \text { if } n \text { is in the sequence }  \tag{1}\\ a_{n-1}+2 & \text { if } n \text { and } n-1 \text { are not in the sequence } \\ a_{n-1}+3 & \text { if } n \text { is not in the sequence, but } n-1 \text { is in the sequence. }\end{cases}
$$

The first 25 values of this sequence are

$$
1,4,6,8,11,13,16,18,21,23,25,28,30,33,35,37,40,42,45,47,49,52,54,57,59 .
$$

The purpose of this paper is to prove equivalence of five ways to define this integer sequence, most of them already conjecturally stated in the OEIS article on A086377. Besides a simplified recursion, the alternatives involve statements in terms of a morphic sequence, of a Beatty sequence, and of approximation properties linking a classical continued fraction of $\frac{4}{\pi}$ to that of $\sqrt{2}$.

[^0]
## 2. The theorem

Theorem 1. The following five definitions produce the same integer sequence:
( $a_{n}$ ) defined by $a_{1}=1$ and for $n \geq 2$ :

$$
a_{n}= \begin{cases}a_{n-1}+2 & \text { if } n \text { is in the sequence } \\ a_{n-1}+2 & \text { if } n \text { and } n-1 \text { are not in the sequence } \\ a_{n-1}+3 & \text { if } n \text { is not in the sequence, but } n-1 \text { is in the sequence }\end{cases}
$$

$\left(b_{n}\right)$ defined by $b_{1}=1$ and for $n \geq 2$ :

$$
b_{n}= \begin{cases}b_{n-1}+2 & \text { if } n-1 \text { is not in the sequence } \\ b_{n-1}+3 & \text { if } n-1 \text { is in the sequence }\end{cases}
$$

$\left(c_{n}\right)$ for $n \geq 1$ defined as the position of the $n$-th zero in the fixed point of the morphism

$$
\phi:\left\{\begin{array}{l}
0 \mapsto 011 \\
1 \mapsto 01
\end{array}\right.
$$

$\left(d_{n}\right)$ defined by $d_{n}=\left\lfloor(1+\sqrt{2}) \cdot n-\frac{1}{2} \sqrt{2}\right\rfloor$ for $n \geq 1$;
( $e_{n}$ ) defined by $e_{n}=\left\lceil r_{n}\right\rfloor=\left\lfloor r_{n}+\frac{1}{2}\right\rfloor$, with $r_{1}=\frac{4}{\pi}$ and $r_{n+1}=\frac{n^{2}}{r_{n}-(2 n-1)}$, for $n \geq 1$.

At first we found it hard to believe the equivalence of these definitions, but a verification of the first 130000 terms $\left(a_{130000}=313847\right)$ convinced us to look for proofs.

## 3. Simplification and a morphic sequence

To show that $\left(b_{n}\right)$ defines the same sequence as $\left(a_{n}\right)$, simply note that $a_{n}-a_{n-1} \geq 2$ for all $n$ : hence if $n$ is in the sequence then $n-1$ is not, and we can combine the first two cases in Equation (1).

In a comment to sequence $\mathbf{A 0 8 6 3 7 7}$, Clark Kimberling asked if the integers in this sequence coincide with the positions of the zeroes in sequence A189687, which is the fixed point of the substitution

$$
\phi:\left\{\begin{array}{l}
0 \mapsto 011 \\
1 \mapsto 01
\end{array}\right.
$$

defining the sequence $\left(c_{n}\right)$ in the Theorem. It is not hard to see that this indeed produces the same as sequence $\left(b_{n}\right)$; repeatedly applying the morphism $\phi$ to 0 produces after a few steps the initial segment

$$
0110101011010110101101010110101101010110101101010110101101011 \cdots .
$$

The position $c_{n}$ of the $n$-th zero is 2 ahead of $c_{n-1}$ precisely when the latter is followed by a single 1 , that is, when there is a 1 at position $n-1$, and it is 3 ahead of $c_{n-1}$ if that zero is followed by 11 , which means that there was a 0 at position $n-1$. Thus the rule is exactly that defining $\left(b_{n}\right)$.

## 4. Beatty sequence

Every pair of real numbers $\alpha$ and $\beta$ determines a Beatty sequence by

$$
\mathrm{B}(\alpha, \beta)_{n}:=\lfloor n \alpha+\beta\rfloor, \quad n=1,2, \ldots
$$

The numbers $\alpha$ and $\beta$ also determine sequences by

$$
\operatorname{St}(\alpha, \beta)_{n}:=\lfloor(n+1) \alpha+\beta\rfloor-\lfloor n \alpha+\beta\rfloor, \quad n=1,2, \ldots,
$$

which is a Sturmian sequence (of slope $\alpha$ ), over the alphabet $\{0,1\}$, provided that $0 \leq \alpha<1$.

Thus Sturmian sequences are first differences of Beatty sequences (when $0 \leq \alpha<$ 1), but Beatty sequences and Sturmian sequences are also linked in another way.

Lemma 1. Let $\alpha>1$ be irrational, and let $\left(s_{n}\right)_{n \geq 1}$ be given by $s_{n}=\operatorname{St}\left(\frac{1}{\alpha},-\frac{\beta}{\alpha}\right)_{n}$, for some real number $\beta$ with $\alpha+\beta>1$ and such that $k \alpha+\beta \notin \mathbb{Z}$ for all positive integers $k$. Then $\mathrm{B}(\alpha, \beta)$ is the sequence of positions of 1 in $\left(s_{n}\right)$.

Proof. This is a generalization of Lemma 9.1.3 in [1], from homogeneous to inhomogeneous Sturmian sequences. The proof also generalizes:

$$
\begin{array}{ll}
\text { there exists } k \geq 1: n=\lfloor k \alpha+\beta\rfloor & \text { if and only if } \\
\text { there exists } k \geq 1: n \leq k \alpha+\beta<n+1 & \text { if and only if } \\
\text { there exists } k \geq 1: \frac{n-\beta}{\alpha} \leq k<\frac{n+1-\beta}{\alpha} & \text { if and only if } \\
\text { there exists } k \geq 1:\left\lfloor\frac{n-\beta}{\alpha}\right\rfloor=k-1 \text { and }\left\lfloor\frac{n-\beta}{\alpha}+\frac{1}{\alpha}\right\rfloor=k & \text { if and only if } \\
\qquad\left\lfloor\frac{n+1}{\alpha}-\frac{\beta}{\alpha}\right\rfloor-\left\lfloor\frac{n}{\alpha}-\frac{\beta}{\alpha}\right\rfloor=1 & \text { if and only if } \\
\qquad \operatorname{St}\left(\frac{1}{\alpha},-\frac{\beta}{\alpha}\right)_{n}=1 . &
\end{array}
$$

Our goal in this section is to prove that $\left(c_{n}\right)=\left(d_{n}\right)$. Let $\psi$ be the morphism $\psi:\left\{\begin{array}{l}0 \rightarrow 10 \\ 1 \rightarrow 100\end{array}\right.$, and let $w$ be the fixed point. Then

$$
w=1001010100101001010010101001010010101001010010101001010010100 \cdots
$$

which is obtained by exchanging 0 s and 1 s in the fixed point of $\phi$, i.e., $\psi=E \phi E$, with $E$ the exchange morphism given by $E(0)=1, E(1)=0$. So the positions of 0 in the fixed point of $\phi$ correspond to the positions of 1 in the fixed point $w$ of $\psi$.

Let $\alpha_{d}=1+\sqrt{2}$ and $\beta_{d}=-\frac{1}{2} \sqrt{2}$; then $d_{n}=\mathrm{B}\left(\alpha_{d}, \beta_{d}\right)_{n}$, for $n \geq 1$.
Applying Lemma 1, we deduce that $d_{n}$ also equals the position of the $n$-th 1 in the Sturmian sequence $\operatorname{St}(\alpha, \beta)$, generated by

$$
\alpha=\frac{1}{\alpha_{d}}=\sqrt{2}-1, \beta=\frac{-\beta_{d}}{\alpha_{d}}=1-\frac{1}{2} \sqrt{2}
$$

Lemma 2. $\operatorname{St}\left(\sqrt{2}-1,1-\frac{1}{2} \sqrt{2}\right)=w$.
Proof. This was already proved by Nico de Bruijn in 1981 (2), where it is the main example. See also Lemma 2 in [6]. Note, however, that our Sturmian sequences start at $n=1$.

For a 'modern' proof as suggested by [3, Section 4], let $\psi_{1}$ and $\psi_{2}$ be the elementary morphisms given by $\psi_{1}(0)=01, \psi_{1}(1)=0$, and $\psi_{2}(0)=10, \psi_{2}(1)=0$. Then $\psi=\psi_{2} \psi_{1} E$. This implies that the fixed point $w$ of $\psi$ is a Sturmian word (see [5], Corollary 2.2.19]). To find its parameters $(\alpha, \beta)$, use the 2D fractional linear maps that describe how the parameters of a Sturmian word change when one applies an elementary morphism. For Sturmian words starting at $n=0$, the maps for $E, \psi_{1}$ and $\psi_{2}$ are ${ }^{2}$ respectively (see [5, Lemma 2.2.17, Lemma 2.2.18, Exercise 2.2.6])
$T_{0}(x, y)=(1-x, 1-y), T_{1}(x, y)=\left(\frac{1-x}{2-x}, \frac{1-y}{2-x}\right), T_{2}(x, y)=\left(\frac{1-x}{2-x}, \frac{2-x-y}{2-x}\right)$.
The change of parameters by applying $\psi$ is therefore the composition

$$
T_{210}(x, y):=T_{2} T_{1} T_{0}(x, y)=\left(\frac{1}{2+x}, \frac{2+x-y}{2+x}\right)
$$

But the parameters $\alpha$ and $\beta$ of $w$ do not change when one applies $\psi$. This means that $(\alpha, \beta)$ is a fixed point of $T_{210}$, and one easily computes $\alpha=\sqrt{2}-1$, and then $\beta=\frac{1}{2} \sqrt{2}$. Since our Sturmian words start at $n=1$, we have to subtract $\alpha$ from $\beta$ and obtain that $w=\operatorname{St}\left(\sqrt{2}-1,1-\frac{1}{2} \sqrt{2}\right)$.

[^1]
## 5. Converging recurrence

In a comment to entry A086377, Joseph Biberstine conjectured a beautiful connection with the infinite continued fraction expansion

$$
\frac{4}{\pi}=1+\frac{1^{2}}{3+\frac{2^{2}}{5+\frac{3^{2}}{7+\frac{4^{2}}{9+\frac{5^{2}}{11+\frac{6^{2}}{\ddots}}}}}},
$$

derived from the arctangent function expansion. If we define $R_{n}$ for $n \geq 1$ by

$$
R_{n}=2 n-1+\frac{n^{2}}{2 n+1+\frac{(n+1)^{2}}{2 n+3+\frac{(n+2)^{2}}{2 n+5+\frac{(n+3)^{2}}{\ddots}}}},
$$

then $R_{1}=4 / \pi$ and $R_{n}=2 n-1+\frac{n^{2}}{R_{n+1}}$. We see that

$$
\frac{R_{n}}{n} \frac{R_{n+1}}{n+1}-\frac{2 n-1}{n} \frac{R_{n+1}}{n+1}-\frac{n^{2}}{n(n+1)}=0
$$

This implies that if $R_{n} / n$ converges, for $n \rightarrow \infty$, then it does so to a (positive) zero of $x^{2}-2 x-1$, that is, to $1+\sqrt{2}$; cf. Lemma 3 below.

We consider now, conversely and slightly more generally, for any real $h \geq 1$, a sequence of positive numbers $r_{n}$ satisfying

$$
\begin{equation*}
r_{n}=h n-1+\frac{n^{2}}{r_{n+1}} \tag{2}
\end{equation*}
$$

for $n \geq 1$. We first show that this sequence is unique, i.e., there is a unique $r_{1}>0$ such that $r_{n}>0$ for all $n \geq 1$, and give estimates for its terms.

Lemma 3. For each $h \geq 1$, there is a unique sequence of positive real numbers $\left(r_{n}\right)_{n \geq 1}$ satisfying the recurrence (2). Moreover, we have for this sequence, for all $n \geq 1$,

$$
\begin{equation*}
0<r_{n}-\alpha n+c<\frac{(\alpha-c)(c-1)}{\alpha n} \tag{3}
\end{equation*}
$$

with $\alpha=\frac{h+\sqrt{h^{2}+4}}{2}$ and $c=\frac{1+\alpha}{2 \alpha-h}=\frac{1}{2}+\frac{h+2}{2 \sqrt{h^{2}+4}}$.

Proof. Let $f_{n}(x)=h n-1+n^{2} / x$. Suppose that a sequence of positive numbers $r_{n}$ satisfies (2), i.e., that $f_{n}\left(r_{n+1}\right)=r_{n}$ for all $n \geq 1$. Then we have $r_{n}>h n-1$ and thus $r_{n}<(h+1 / h) n$ for all $n \geq 1$. We deduce that there exists some $\delta>0$ and $N \geq 1$ such that $r_{n}>(h+\delta) n$ for all $n \geq N$. Suppose that there is another sequence of positive numbers $\tilde{r}_{n}$ satisfying (22). Since $\left|f_{n}^{\prime}(x)\right|=|n / x|^{2}<1 /(h+\delta)$ for all $x>(h+\delta) n$, we have

$$
\begin{aligned}
\left|r_{N}-\tilde{r}_{N}\right| & =\left|f_{N} f_{N+1} \cdots f_{n-1}\left(r_{n}\right)-f_{N} f_{N+1} \cdots f_{n-1}\left(\tilde{r}_{n}\right)\right| \\
& <\frac{\left|r_{n}-\tilde{r}_{n}\right|}{(h+\delta)^{n-N}}<\frac{n / h}{(h+\delta)^{n-N}}
\end{aligned}
$$

for all $n \geq N$, hence $r_{N}=\tilde{r}_{N}$, which implies that $r_{n}=\tilde{r}_{n}$ for all $n \geq 1$.
Next we show that

$$
f_{n}(\alpha(n+1)-c)<\alpha n-c+\frac{(\alpha-c)(c-1)}{\alpha n}
$$

and

$$
f_{n}\left(\alpha(n+1)-c+\frac{(\alpha-c)(c-1)}{(n+1) \alpha}\right)>\alpha n-c
$$

Indeed, using that $\alpha^{2}=h \alpha+1$ and $2 \alpha c-h c=1+\alpha$, we have

$$
\begin{aligned}
(\alpha n+\alpha-c) f_{n}(\alpha(n & +1)-c)=(h n-1)(\alpha n+\alpha-c)+n^{2} \\
& =(h \alpha+1) n^{2}+(h \alpha-h c-\alpha) n-(\alpha-c) \\
& <\alpha^{2} n^{2}+\left(\alpha^{2}-2 \alpha c\right) n-(\alpha-c)+\frac{(\alpha-c)^{2}(c-1)}{\alpha n} \\
& =(\alpha n+\alpha-c)\left(\alpha n-c+\frac{(\alpha-c)(c-1)}{\alpha n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(\alpha n & \left.+\alpha-c+\frac{(\alpha-c)(c-1)}{\alpha(n+1)}\right)(\alpha n-c) \\
& <\alpha^{2} n^{2}+\left(\alpha^{2}-2 \alpha c\right) n-(\alpha-c)-\frac{c(\alpha-c)(c-1)}{\alpha(n+1)} \\
& <(h \alpha+1) n^{2}+(h \alpha-h c-\alpha) n-(\alpha-c)-\frac{(\alpha-c)(c-1)}{\alpha(n+1)} \\
& <(h n-1)\left(\alpha n+\alpha-c+\frac{(\alpha-c)(c-1)}{\alpha(n+1)}\right)+n^{2} \\
& =\left(\alpha n+\alpha-c+\frac{(\alpha-c)(c-1)}{\alpha(n+1)}\right) f_{n}\left(\alpha(n+1)-c+\frac{(\alpha-c)(c-1)}{\alpha(n+1)}\right)
\end{aligned}
$$

As $f_{n}$ is monotonically decreasing for $x>0$, we deduce that

$$
0<f_{n}(x)-\alpha n+c<\frac{(\alpha-c)(c-1)}{\alpha n}
$$

for all $x$ with $0 \leq x-\alpha(n+1)+c \leq \frac{(\alpha-c)(c-1)}{\alpha(n+1)}$. Then we also have

$$
0<f_{n} f_{n+1} \cdots f_{n+k-1}(\alpha(n+k)-c+x)-\alpha n+c<\frac{(\alpha-c)(c-1)}{\alpha n}
$$

for all $k, n \geq 1,0 \leq x-\alpha(n+k)+c \leq \frac{(\alpha-c)(c-1)}{\alpha(n+k)}$. As $f_{n}$ is contracting for $x \geq$ $\alpha(n+1)-c$, the intervals $\left[f_{1} f_{2} \cdots f_{n}(\alpha(n+1)-c), f_{1} f_{2} \cdots f_{n}\left(\alpha(n+1)-c+\frac{(\alpha-c)(c-1)}{\alpha(n+1)}\right)\right]$ converge to a point $r_{1}$. Then the numbers $r_{n}$ given by (2) satisfy (3) for all $n \geq 1$. By the first paragraph of the proof, this is the unique sequence of positive numbers satisfying (2).

Now consider when $\alpha n-c+\frac{1}{2}$ is close to $\left\lceil\alpha n-c+\frac{1}{2}\right\rceil$. Let $p_{k} / q_{k}$ be the convergents of the regular continued fraction $\alpha=[h ; h, h, \ldots]$, i.e., $q_{-1}=0, q_{0}=1$, $q_{k+1}=h q_{k}+q_{k-1}$ for $k \geq 1, p_{k}=q_{k+1}$. Then we have

$$
q_{k}=\frac{\alpha^{k+1}+(-1)^{k} / \alpha^{k+1}}{\alpha+1 / \alpha}
$$

and thus

$$
\begin{equation*}
q_{k} \alpha-p_{k}=\frac{(-1)^{k}}{\alpha^{k+1}} \tag{4}
\end{equation*}
$$

Lemma 4. Let $h$ be a positive integer and $\alpha=\frac{h+\sqrt{h^{2}+4}}{2}$. Then we have

$$
\lceil\alpha n\rceil-\alpha n= \begin{cases}j / \alpha^{2 k} & \text { if } n=j q_{2 k-1}, k \geq 1,1 \leq j<\alpha^{2 k} \\ (\alpha-1) / \alpha^{2 k+1} & \text { if } n=q_{2 k-1}+q_{2 k}, k \geq 0 \\ (\alpha+1) / \alpha^{2 k+2} & \text { if } n=q_{2 k+1}-q_{2 k}, k \geq 0\end{cases}
$$

and $n(\lceil\alpha n\rceil-\alpha n) \geq 1$ for all other $n \geq 1$.
Proof. The formulas for $n=j q_{2 k-1}, n=q_{2 k-1}+q_{2 k}$ and $n=q_{2 k+1}-q_{2 k}$ are immediate from (4). By [7, Ch. 2, §5, Theorem 2], we have $n(\lceil\alpha n\rceil-\alpha n) \geq 1$ for all $n \geq 1$ that are not of the form $j q_{k}, 1 \leq j<\alpha / \sqrt{h}, q_{k}+q_{k-1}$ or $q_{k}-q_{k-1}$. Since $\alpha q_{2 k}-\left\lfloor\alpha q_{2 k}\right\rfloor=1 / \alpha^{2 k+1}, \alpha\left(q_{2 k}+q_{2 k+1}\right)-\left\lfloor\alpha\left(q_{2 k}+q_{2 k+1}\right)\right\rfloor=(\alpha-1) / \alpha^{2 k+2}$ and $\alpha\left(q_{2 k}-q_{2 k-1}\right)-\left\lfloor\alpha\left(q_{2 k}-q_{2 k-1}\right)\right\rfloor=(\alpha+1) / \alpha^{2 k+1}$, we have $\lceil\alpha n\rceil-\alpha n>1 / 2$ for $n=j q_{2 k}, n=q_{2 k}+q_{2 k+1}$ and $n=q_{2 k}-q_{2 k-1}$. If moreover $n \geq 2$, then we have thus $n(\lceil\alpha n\rceil-\alpha n) \geq 1$ for these $n$ as well. Since $q_{0}+q_{-1}=1$, the case $n=1$ has already been treated.

We obtain that

$$
n(\lceil\alpha n\rceil-\alpha n)= \begin{cases}\frac{j^{2}\left(1-1 / \alpha^{4 k}\right)}{\sqrt{h^{2}+4}} & \text { if } n=j q_{2 k-1}, k \geq 1,1 \leq j<\alpha^{2 k} \\ \frac{h-(\alpha-1)^{2} / \alpha^{4 k+2}}{\sqrt{h^{2}+4}} & \text { if } n=q_{2 k-1}+q_{2 k}, k \geq 0 \\ \frac{h-(\alpha+1)^{2} / \alpha^{4 k+4}}{\sqrt{h^{2}+4}} & \text { if } n=q_{2 k+1}-q_{2 k}, k \geq 0\end{cases}
$$

The worst case for $n=q_{2 k-1}+q_{2 k}$ or $n=q_{2 k+1}-q_{2 k}$ is given by $n=q_{-1}+q_{0}=1$, hence

$$
n(\lceil\alpha n\rceil-\alpha n) \geq h+1-\alpha=1-\frac{1}{\alpha}
$$

for all $n \geq 1$ such that $n \neq q_{2 k-1}$ for all $k \geq 1$.
Now we come back to the case $h=2$ and consider the distance of $\alpha n-c+\frac{1}{2}$ to the nearest integer above $\alpha n-c+\frac{1}{2}$. Note that $c-\frac{1}{2}=\frac{1}{\sqrt{2}}$. We have

$$
\begin{aligned}
2\left(\left\lceil\alpha n-\frac{1}{\sqrt{2}}\right\rceil-\alpha n+\frac{1}{\sqrt{2}}\right) & =2\left\lceil\alpha n-\frac{1}{\sqrt{2}}\right\rceil-1-\alpha(2 n-1) \\
& \geq\lceil\alpha(2 n-1)\rceil-\alpha(2 n-1)>\frac{\alpha-1}{2 \alpha n}
\end{aligned}
$$

where we have used that $q_{2 k-1}$ is even for all $k \geq 1$; thus

$$
\left\lceil\alpha n-\frac{1}{\sqrt{2}}\right\rceil-\alpha n+\frac{1}{\sqrt{2}}>\frac{\alpha-1}{4 \alpha n}
$$

Since $(\alpha-c)(c-1)=\frac{1}{4 \alpha}$, we have

$$
\alpha n-\frac{1}{\sqrt{2}}<r_{n}+\frac{1}{2}<\alpha n-\frac{1}{\sqrt{2}}+\frac{1}{4 \alpha n}<\alpha n-\frac{1}{\sqrt{2}}+\frac{\alpha-1}{4 \alpha n}<\left\lceil\alpha n-\frac{1}{\sqrt{2}}\right\rceil
$$

for all $n \geq 1$, thus $d_{n}=e_{n}$. This completes the proof of Theorem 1 .
We remark that $h=2$ cannot be replaced by an arbitrary positive integer in the previous paragraph. For example, for $h=1$, we have $\alpha=\frac{1+\sqrt{5}}{2}, c=\frac{\alpha^{2}}{\sqrt{5}}$, $\left\lfloor 137 \alpha-c+\frac{1}{2}\right\rfloor=220$ and $\left\lfloor r_{137}+\frac{1}{2}\right\rfloor=221$. However, computer simulations suggest that (for any $h$ ) we always have $\lfloor\alpha n-c\rfloor=\left\lfloor r_{n}\right\rfloor$.

## 6. Acknowledgement

The authors gratefully acknowledge the organization of the Lorentz Center, Leiden, workshop Aperiodic Patterns in Crystals, Numbers and Symbols, in particular Robbert Fokkink, for bringing them together in a stimulating atmosphere.

## References

[1] J.-P. Allouche, and J. O. Shallit, Automatic Sequences, Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
[2] N. G. de Bruijn, Sequences of zeros and ones generated by special production rules, Indag. Math. 43 (1981), 27-37.
[3] F. M. Dekking, Substitution invariant Sturmian words and binary trees, arXiv: 1705.08607 (2017).
[4] Sequence A086377, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org/A086377
[5] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002; online publication date: April 2013.
[6] B. Parvaix, Propriétés d'invariance des mots sturmiens, J. Théorie Nombres Bordeaux 9 (1997), 351-369.
[7] A. M. Rockett and P. Szüsz. Continued Fractions, World Scientific Publishing Co., River Edge, NJ, 1992.


[^0]:    ${ }^{1}$ Supported by the ANR project 'Dyna3S' (ANR-13-BS02-0003).

[^1]:    ${ }^{2}$ Actually there is a subtlety here involving the ceiling representation of a Sturmian sequence, but that does not apply in our case since $\beta \notin \mathbb{Z} \alpha+\mathbb{Z}$.

