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Abstract. We study the strong convergence of certain multidimensional continued frac-
tion algorithms. In particular, in the two- and three-dimensional case, we prove that the
second Lyapunov exponent of Selmer’s algorithm is negative and bound it away from zero.
Moreover, we give heuristic results on several other continued fraction algorithms. Our
results indicate that all classical multidimensional continued fraction algorithms cease to
be strongly convergent for high dimensions. The only exception seems to be the Arnoux–
Rauzy algorithm which, however, is defined only on a set of measure zero.

1. Introduction

In the present paper we study strong convergence properties of multidimensional con-
tinued fraction algorithms. In particular, we give results and numerical studies for the
second Lyapunov exponent of such algorithms. One of our main objects is Selmer’s al-
gorithm, which attracted a lot of interest in the recent years, mainly because of its rela-
tion to an (unordered) continued fraction algorithm defined by Cassaigne in 2015. This
algorithm, now called Cassaigne algorithm, was studied in the context of word combi-
natorics by Cassaigne, Labbé, and Leroy in [CLL17] where it was shown to be conju-
gate to Selmer’s algorithm. Other properties of Selmer’s algorithm have been studied in
[AL18, BFK15, BFK19, Tor09, FS19, Sch01b, Sch04].

The first results on the second Lyapunov exponent of Selmer’s algorithm AS in dimen-
sion d = 2 are due to Schweiger [Sch01b, Sch04], who proved strong convergence (see
Section 2 for a definition) almost everywhere. Nakaishi [Nak06] strengthened this result
by showing that the second Lyapunov exponent λ2(AS) satisfies λ2(AS) < 0. Negativity of
λ2(AS) was conjectured already by Baldwin [Bal92a], where Selmer’s algorithm is called
generalized mediant algorithm, GMA for short (see also [Bal92b]; in particular, eλ2(AS) is
numerically calculated in [Bal92a, Table I on p. 1522]). Labbé [Lab15] heuristically calcu-
lated the Lyapunov exponents for the Cassaigne and Selmer algorithms (for d = 2); it is
actually the equality of these values that indicated the conjugacy of the algorithms. We
mention that Bruin, Fokkink, and Kraaikamp [BFK15] give a thorough study of Selmer’s
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algorithm for dimensions d ≥ 2; however, their proof of the fact that λ2(AS) < 0 is in-
complete [BFK19]. The simplicity of the Lyapunov spectrum of the Cassaigne algorithm
is proved by Fougeron and Skripchenko [FS19]; see also [Tor09]. Heuristic calculations
for the second Lyapunov exponent of other algorithms are also provided by Baladi and
Nogueira [BN96]; see also [Nak02].

The proof of the negativity of the second Lyapunov exponent of Selmer’s algorithm in
dimension d = 2 provided by Nakaishi [Nak06] is intricate. In the present paper we provide
a simple proof for the fact that λ2(AS) < 0 for d = 2 which is based on ideas going back
to Lagarias [Lag93] as well as Hardcastle and Khanin [Har02, HK02]. Moreover, we show
that the matrices associated with the two-dimensional Selmer algorithm are Pisot whenever
they are primitive, and we give a strictly negative upper bound for λ2(AS). For d = 3,
using extensive computer calculations (which yield exact results due to an appropriate
error handling) we are able to prove that the second Lyapunov exponent is negative as
well. Again, we even provide a strictly negative upper bound for it. For higher dimensions
we provide heuristic results. These results indicate that Selmer’s algorithm is no longer
strongly convergent for dimensions d ≥ 4.

Another aim of the present paper is to provide numerical calculations in order to ob-
tain heuristic estimates for the second Lyapunov exponent of other well-known continued
fraction algorithms. In particular, we consider the Brun algorithm, the Jacobi–Perron al-
gorithm, the triangle map, and a new algorithm which is “in between” the Arnoux–Rauzy
algorithm and Brun’s algorithm. It is interesting to see that apart from the Arnoux–
Rauzy algorithm, which is strongly convergent in each dimension d ≥ 2 (see [AD15]),
all algorithms seem to be no longer strongly convergent for high dimensions. Since the
Arnoux–Rauzy algorithm is defined only on a set of zero measure (the so-called Rauzy
gasket, see [AS13, AHS16]), we are not aware of any multi-dimensional continued frac-
tion algorithm such as defined in Section 2 which acts on a set of positive measure and
is strongly convergent in all dimensions. It was widely expected that the uniform approx-
imation exponent, when it can be expressed in terms of the first and second Lyapunov

exponents of the algorithm A as 1− λ2(A)
λ1(A)

(see [Lag93, Theorem 1]) would be larger than 1

(and strictly smaller than Dirichlet’s bound 1 + 1
d
) for all d ≥ 2; see e.g. [Lag93]. Our

experimental studies indicate that this conjecture might not be true.
Let us sketch the contents of this paper. The formalism of multidimensional continued

fraction algorithms considered in the present paper is recalled in Section 2 together with
the conditions given by Lagarias [Lag93]. The second Lyapunov exponent is discussed in
Section 3. We deal with the connections with the Paley–Ursell inequality in Section 4.
After that we consider the Selmer algorithm in Section 5, the Brun algorithm in Section 6,
the Jacobi–Perron algorithm in Section 7, a new algorithm inspired by the Arnoux–Rauzy
algorithm in Section 8, and the triangle map in Section 9. Comparisons between these
algorithms are provided in Section 10. In the appendix we comment on the error handling
needed for the floating point calculations used for the estimation of λ2(AS) for d ∈ {2, 3}.

Acknowledgment. We warmly thank Sébastien Labbé for his help with numerical simu-
lations.
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2. Multidimensional continued fraction algorithms

We first introduce the formalism of multidimensional continued fraction algorithms that
will be used in the sequel. Observe that the algorithms we are dealing with in this paper
mainly act on sets of vectors whose entries are ordered (the only exception being the
Jacobi–Perron algorithm considered in Section 7). A d-dimensional algorithm acts on a
subset of the real vector space Rd for its renormalized version and on a subset of the real
projective space Pd for its homogeneous version. More precisely, for given d ≥ 2 let

Λ = {(y0, y1, . . . , yd) ∈ Rd+1 \ {0} : y0 ≥ y1 ≥ · · · ≥ yd ≥ 0},
∆ = {(x1, . . . , xd) ∈ Rd : 1 ≥ x1 ≥ · · · ≥ xd ≥ 0},

and the mappings

ι : ∆→ Λ, (x1, . . . , xd) 7→ (1, x1, . . . , xd),

κ : Λ→ ∆, (y0, . . . , yd) 7→
(y1

y0

, . . . ,
yd
y0

)
.

(2.1)

Let the multidimensional continued fraction algorithm

A : ∆→ GL(d+ 1,Z)

be defined in a way that the homogeneous version of the (ordered) multidimensional con-
tinued fraction algorithm (y = (y0, . . . , yd))

L : Λ→ Λ, y 7→ yA(κ(y))−1 = yA
(y1

y0

, . . . ,
yd
y0

)−1

is well defined (i.e., L maps Λ into itself). The projective version of the (ordered) multidi-
mensional continued fraction algorithm T is then defined by the commutative diagram

Λ
L−−−→ Λyκ yκ

∆
T−−−→ ∆

We work with row vectors in the definition of the mappings L and T because this entails
that

A(n)(x) = A(T n−1x) · · · A(Tx)A(x)

is a linear cocycle which we shall call the cocycle associated with A (or just the cocycle A).
Indeed, A(n) fulfills the cocycle property

(2.2) A(m+n)(x) = A(m)(T nx)A(n)(x).
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This cocycle produces the d+1 sequences of rational convergents that are aimed to converge
to x. Indeed, writing

(2.3) A(n)(x) =


q

(n)
0 p

(n)
0,1 · · · p

(n)
0,d

q
(n)
1 p

(n)
1,1 · · · p

(n)
1,d

...
...

. . .
...

q
(n)
d p

(n)
d,1 · · · p

(n)
d,d


and p

(n)
i = (p

(n)
i,1 , . . . , p

(n)
i,d ), we consider the convergence of limn→∞ p

(n)
i /q

(n)
i to x, 0 ≤ i ≤ d.

The convergence is said to be weak if limn→∞ p
(n)
i /q

(n)
i = x for all i with 0 ≤ i ≤ d, and

strong if limn→∞ |p(n)
i − q

(n)
i x| = 0 for all 0 ≤ i ≤ d.

Since we focus on the action of the matrices produced by the algorithm on the orthogonal
space ι(x)⊥ of ι(x), we use left-multiplication for the description of the linear action in
order to simplify notation and to avoid the use of the transpose.

Throughout this paper we suppose that a multidimensional continued fraction algorithm
satisfies the following conditions which go back to Lagarias [Lag93]. Similar to [FS19] we
just explain them briefly and refer to Lagarias’ paper for details.

(H1) Ergodicity: The map T admits an ergodic invariant probability measure µ
that is absolutely continuous with respect to Lebesgue measure on ∆.

(H2) Covering Property: The map T is piecewise continuous with non-vanishing
Jacobian almost everywhere.

(H3) Semi-weak convergence: This is a mixing condition for T which implies
weak convergence. If T admits a Markov partition it can be checked by mak-
ing sure that the cylinders of the Markov partition decrease geometrically. For
some examples this is worked out in [Lag93]. See [FS19] for a sufficient condition
expressed in terms of the existence of a special acceleration providing a simplex on
which the induced algorithm is uniformly expanding.

(H4) Boundedness: This is log-integrability of the cocycle A, i.e., finiteness of the
expectation of log(max(‖A‖, 1). This is necessary in order to apply the Oseledets
Theorem.

(H5) Partial quotient mixing: This condition says that the expectation of the
number n for which A(n)(x) becomes a strictly positive matrix is finite.

Throughout the paper the Lyapunov exponents of the cocycle A are denoted as

λ1(A) ≥ λ2(A) ≥ · · · ≥ λd+1(A).

Our motivation for studying the second Lyapunov exponent is due to the fact that it
is related to the uniform approximation exponent, a quantity that estimates the rate of
convergence of a continued fraction algorithm. We recall the definition of this object; see
also [Sch00, Definition 38] or [Lag93, Section 1].
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Let A be a multidimensional continued fraction algorithm with cocycle A(n) given as in
(2.3). For x ∈ ∆ and i ∈ {0, . . . , d} set (for an arbitrary norm ‖ · ‖ in Rd)

η∗A(x, i) = sup

{
δ > 0 : ∃n0 = n0(x, i, δ) ∈ N s. t. ∀n ≥ n0,

∥∥∥∥x− p
(n)
i

q
(n)
i

∥∥∥∥ < (q
(n)
i )−δ

}
.

Then

η∗A(x) = min
0≤i≤d

η∗A(x, i)

is called the uniform approximation exponent for x using the algorithm A.
The following result links the second Lyapunov exponent with the uniform approximation

exponent; see [HK00, Theorem 1] for a variant of this result and [Bal92a, Proposition 4].

Proposition 2.1 ([Lag93, Theorem 4.1]). Let η∗A be the uniform approximation exponent
of a d-dimensional multidimensional continued fraction algorithm A satisfying conditions
(H1) to (H5). We have λ1(A) > λ2(A) and

η∗A(x) = 1− λ2(A)

λ1(A)

holds for almost all x ∈ ∆. In particular, if λ2(A) < 0 then A is a.e. strongly convergent.

We wish to show that λ2(A) < 0 for various classical multidimensional continued fraction
algorithms A. To apply Proposition 2.1 we need to make sure that these algorithms satisfy
conditions (H1) to (H5). As we will see in the subsequent sections, these conditions are
known to hold for most of the algorithms we discuss (and will be treated for the remaining
ones in a forthcoming paper).

3. The second Lyapunov exponent

The action of a continued fraction algorithm is given by a matrix A acting by left-
multiplication on some direction. To understand the quality of approximation, it is useful
to work on the orthogonal of this direction. The action on the orthogonal is then given by
the matrix A acting by right-multiplication. We are thus interested in the action of the
matrix A and of the associated cocyle on a restricted hyperplane. By choosing a suitable
basis of this hyperplane, the action of the algorithm is then described as a matrix that
involves the usual differences that have the form qnx − pn in the one-dimensional case,
where pn/qn are the convergents of x.

In order to give estimates of the second Lyapunov exponent of a multidimensional con-
tinued fraction algorithm we follow the ideas of Hardcastle and Khanin [Har02, HK02] who
built on the work of Lagarias [Lag93].

Since T is ergodic by (H1), the Lyapunov exponents of A are the same for almost all
x ∈ ∆ w.r.t. the invariant measure of T . Under the conditions of Proposition 2.1, the
Oseledets Theorem gives, for generic x ∈ ∆,

lim
n→∞

1

n
log ‖A(n)(x) v‖ ≤ λ2(A) if and only if v ∈ ι(x)⊥,
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where y⊥ = {v ∈ Rd+1 : yv = 0}; see [Lag93, Theorem 4.1] for more details. Note that
A(n)(x) ι(x)⊥ = ι(T nx)⊥. Using the notation in (2.3), the matrix D(n)(x) defined by

(3.1) D(n)(x1, x2, . . . , xd) =

p
(n)
1,1 − q

(n)
1 x1 · · · p

(n)
1,d − q

(n)
1 xd

...
. . .

...

p
(n)
d,1 − q

(n)
d x1 · · · p

(n)
d,d − q

(n)
d xd


is a cocycle of T [HK02, Proposition 4.1] satisfying λ2(A) = λ1(D) [HK02, Lemma 3.1].
For the sake of self-containedness, we prove the cocycle property here (see (2.2)) and the
equality of the Lyapunov exponents in Remark 4.5 below. We have

(3.2) D(n)(x) = ΠA(n)(x)H(x),

with

Π =


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . 1 0

0 · · · · · · 0 1

 , H(x1, x2, . . . , xd) =


−x1 −x2 · · · −xd

1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 .

and we also have that

(3.3) H(T nx) ΠA(n)(x)H(x) = A(n)(x)H(x).

Indeed, the matrix Id+1 −H(T nx) Π is zero except for the first row, which is ι(T nx), and
we have ι(T nx)A(n)(x)H(x) = ι(x)H(x) = 0. Using (3.2), (3.3), and (2.2) we obtain that

D(m)(T nx)D(n)(x) = ΠA(m)(T nx)A(n)(x)H(x) = D(m+n)(x),

thus D(n)(x) is a cocycle of T .
Therefore, it suffices to estimate the first Lyapunov exponent of the cocycle D(n)(x). This

is convenient because it is usually easier to obtain estimates for the first Lyapunov exponent
of a cocycle than for the second one. As observed by Hardcastle and Khanin [Har02, HK02],
the Subadditive Ergodic Theorem yields that

(3.4) λ2(A) = λ1(D) = inf
n∈N

1

n

∫
∆

log ‖D(n)(x)‖ dµ(x)

for any matrix norm, see [HK02, Lemma 3.3]. We note that the matrices D(n)(x) were first
studied by Fujita, Ito, Keane, and Ohtsuki [FIKO96, IKO93]. Observe also that strong con-
vergence at a point x is equivalent to limn→∞ ‖D(n)(x)‖ = 0. Indeed, limn→∞ ‖D(n)(x)‖ = 0

means that limn→∞ |p(n)
i,j − q

(n)
i xj| = 0 for i, j ≥ 1, and we then use the orthogonality of the

columns of A(n)(x)H(x) to ι(T nx) to deduce that limn→∞ |p(n)
0,j − q

(n)
0 xj| = 0 for j ≥ 1.

There exist several methods for providing numerical estimates for the computation of
the second Lyapunov exponent. The approach of [BN96], which is inspired by [JPS87], is
based on the decomposition of matrices as a product of a unitary matrix Q and an upper
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triangular matrix R. For low dimensions d, we can also evaluate the integrals in (3.4) sym-
bolically (using polylogarithms) with a computer algebra software such as Mathematica or
use estimates for the measure µ to show that λ2(A) < 0 for some continued fraction algo-
rithms, in particular for the Selmer algorithm. Indeed, the densities of invariant measures
have simple particular forms; see e.g. (5.1) below. For higher dimensions, these calculations
take too much time and we can only make simulations of the behaviour of D(n)(x) for ran-
domly chosen points x. According to these simulations, it seems that we have λ2(A) > 0
for all known continued fraction algorithms when d gets large, contrary to conjectures of
e.g. [Lag93, Har02].

4. On the Paley–Ursell inequality

We recall that the notation fn � gn means that there exists C > 0 such that fn ≤ Cgn
for all n. Let A be a multidimensional continued fraction algorithm and let D(n) be as in
(3.1). For certain algorithms A we have

(4.1) ‖D(n)(x)‖ � 1 uniformly for all x,

which is a form of the Paley–Ursell inequality, going back to Paley and Ursell [PU30].
This inequality essentiall says that the second Lyapunov exponent of the algorithm is
nonpositive. This inequality can be formulated in terms of an inequality for D(n) as in
(4.1), or for the minors of size 2 of the matrices A(n) (see Proposition 4.1 below).

Recall that (4.1) means that |p(n)
i,j − q

(n)
i xj| � 1 for all i, j ∈ {1, . . . , d} uniformly in x.

Thus the Paley–Ursell inequality is a statement on the quality of the approximation of a
sequence of convergents. In this section we discuss the relations between different forms
of the Paley–Ursell inequality. In particular, we show that (4.1) implies an inequality
bounding the norm of the second exterior product of A(n) in terms of the norm of A(n).

We will see in Section 5 that (4.1) holds for Selmer in dimension d = 2. It also holds for
Brun in dimension d = 2 and for Arnoux–Rauzy for arbitrary dimension d ≥ 2 according
to Avila and Delecroix [AD15] and Remark 4.4 below. The original version in [PU30] is
proved for Jacobi–Perron in dimension d = 2. In the form we state it below, it is contained
in Broise and Guivarc’h [BAG01].

Contrary to the results we discussed in the previous section, the results of this section
are true for all x ∈ ∆ (except pathological cases when the algorithm terminates and is not
defined). The price we have to pay for getting a result that is valid everywhere is that it
is weaker than the metric results we expect to be true. Indeed, while Section 3 is tailored
to be the starting point for proving that λ2(A) < 0 almost everywhere, inequality (4.1)
implies that λ2(A) ≤ 0 everywhere. Moreover, (4.1) is true for each time n in an orbit and
not only in the limit.

In the following proposition ∧2 denotes the second exterior product.

Proposition 4.1. Consider a multidimensional continued fraction algorithm satisfying
conditions (H1) to (H5). If ‖D(n)(x)‖ � 1 holds uniformly in x, then

(4.2) ‖ ∧2 A(n)(x)‖ � ‖A(n)(x)‖
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holds uniformly in x.

This result implies that A(n)(x) maps the unit sphere in Rn to an ellipsoid whose second
largest semi-axis δ2(A(n)(x)) is uniformly bounded in x ∈ ∆ and n ∈ N. Moreover, since
the elements of ∧2A(n)(x) are the 2 × 2 minors of A(n)(x) this inequality shows that the
2× 2 minors of A(n)(x) cannot be much larger than its elements.

To prove this result we need the following preparatory lemma. We write δi(M) for the
i-th largest singular value of a k × k matrix M (1 ≤ i ≤ k, k ∈ N).

Lemma 4.2. The inequality

δ2(A(n)(x))� δ1(D(n)(x))

holds uniformly for all x ∈ ∆.

Proof. Recall that D(n)(x) = ΠA(n)(x)H(x). In order to estimate the singular values of
D(n)(x), we map the unit ball Sd−1 in Rd step by step by the matrices H(x), A(n)(x), and
Π, and keep track of the length of the semi-axes of the ellipsoids which are deformed. The

ellipsoid H(x)Sd−1 is a subset of the hyperplane ι(x)⊥ whose semi-axes a
(1)
i satisfy 1 �

‖a(1)
i ‖ � 1 (1 ≤ i ≤ d). By the definition of the singular values δi(A

(n)(x)) (1 ≤ i ≤ d+1),

this implies that the ellipse A(n)(x)H(x)Sd−1 ⊂ ι(T nx)⊥ has semi-axes a
(2)
i satisfying

(4.3) ‖a(2)
i ‖ � δi+1(A(n)(x)) (1 ≤ i ≤ d).

It remains to apply the projection Π. Since ι(T nx) = (1, y1, . . . , yd) with |yi| ≤ 1 (1 ≤
i ≤ d), the angle between the hyperplanes ι(T nx)⊥ and (1, 0, . . . , 0)⊥ of Rd+1 is greater
than c > 0 for some constant c not depending on n. Thus the projection Π shrinks each
vector v ∈ ι(T nx)⊥ by a factor which is greater than or equal to sin c. Thus, because
A(x)H(x)Sd−1 ⊂ ι(T nx)⊥ we get from (4.3) that

δ2(A(n)(x))� δ1(ΠA(n)(x)H(x)) = δ1(D(n)(x)). �

We can now finish the proof of Proposition 4.1.

Proof of Proposition 4.1. Suppose that ‖D(n)(x)‖ � 1 holds. Lemma 4.2 implies that

‖ ∧2 A(n)(x)‖2 = δ1(∧2A(n)(x)) = δ1(A(n)(x))δ2(A(n)(x))

� δ1(A(n)(x))δ1(D(n)(x)) = δ1(A(n)(x))‖D(n)(x)‖2

� ‖A(n)(x)‖2,

where the implied constants do not depend on x and n. The estimate in (4.2) follows from
this by the equivalence of norms. �

We note that the converse of Proposition 4.2 is not true in general. In particular, to get
the converse, assumptions on the sequence of matrices (A(n)(x))n are needed in order to

guarantee that all the quantities q
(i)
n (0 ≤ i ≤ d) are roughly of the same size for each n

(as is true for instance for the Jacobi–Perron algorithm, see [BAG01, Section 5.2]); see also
Proposition 4.3 below. More precisely, one says that the balancedness condition holds for
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the sequence (A(n)(x))n if the (vector) norms of the lines of A(n)(x) are comparable (up
to multiplicative constants) with the (matrix) norm of A(n)(x), with these constants being
uniform in n.

Proposition 4.3. Assume that the balancedness condition hods for (A(n)(x))n. Then

‖D(n)(x)‖‖A(n)(x)‖ � ‖ ∧2 A(n)(x)‖.

Proof. By definition, ι(x) is equal to ι(T nx)A(n)(x) divided by its first coordinate. In other
words, for 1 ≤ i ≤ d,

xi =
p

(n)
0,i + p

(n)
1,i x

(n)
1 + · · ·+ p

(n)
d,i x

(n)
d

q
(n)
0 + q

(n)
1 x

(n)
1 + · · ·+ q

(n)
d x

(n)
d

.

Hence, for all 1 ≤ i, j ≤ d, one has∣∣∣∣∣xi − p
(n)
j,i

q
(n)
j

∣∣∣∣∣ =
p

(n)
0,i q

(n)
j − q

(n)
0 p

(n)
j,i + x

(n)
1 (p

(n)
1,i q

(n)
j − q

(n)
1 p

(n)
j,i ) + · · ·+ x

(n)
d (p

(n)
d,i q

(n)
j − q

(n)
d p

(n)
j,i )

(q
(n)
0 + q

(n)
1 x

(n)
1 + · · ·+ q

(n)
d x

(n)
d )q

(n)
j

,

which implies together with the balancedness assumption that

‖D(n)(x)‖ � d ‖ ∧2 A(n)(x)‖
(d+ 1) ‖A(n)‖

. �

Remark 4.4. A condition similar to (4.1) is used in Avila and Delecroix [AD15], namely

‖A(n)|ι(Tnx)⊥‖ � 1

uniformly in x. This implies (4.1) and, hence, by Proposition 4.1 also (4.2) .

Remark 4.5. For a multidimensional continued fraction algorithm satisfying conditions
(H1) to (H5), we recover the fact that λ1(D) = λ2(A) from Propositions 4.1 and 4.3, by

using that the denominators q
(n)
i grow at the same exponential rate, as observed in [Lag93].

5. Selmer algorithm

5.1. Definition. In its (ordered) homogeneous form, Selmer’s algorithm is defined by sub-
tracting the smallest element of a vector from the largest one and reordering the elements
in the resulting vector; see Selmer [Sel61] or Schweiger [Sch00, Chapter 7]. Formally,

TS : ∆→ ∆, TS(x1, . . . , xd) = κ(ord(1− xd, x1, x2, . . . , xd)),

where κ is defined in (2.1) and

ord : Rn → Rn

orders the entries of its argument descendingly. Let

AS(x) =

{
Sa if x ∈ ∆Sa := {(x1, . . . , xd) ∈ ∆ : 2xd > 1},
Sb if x ∈ ∆Sb

:= {(x1, . . . , xd) ∈ ∆ : 2xd < 1 ≤ xd−1 + xd},
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with

Sa =


0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0
1 0 · · · 0 1
1 0 · · · 0 0

 , Sb =


0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0
1 0 · · · 0 0
1 0 · · · 0 1

 .

Since for almost all x ∈ ∆, we have T nSx ∈ ∆Sa ∪∆Sb
for all sufficiently large n (see [Sch00,

Theorem 22]), it suffices to consider the absorbing set ∆Sa ∪ ∆Sb
. In all that follows, we

do not care about the behaviour of TS on the boundary of ∆Sa and ∆Sb
because we are

interested only in metric results. The invariant measure of TS is

(5.1) dµS = c
dx1

x1

dx2

x2

· · · dxd
xd

on ∆Sa ∪ ∆Sb
, with normalizing constant c such that µS(∆Sa ∪ ∆Sb

) = 1; see [Sch00,
Theorem 22]. As shown in [Lag93, Section 6], Selmer’s algorithm satisfies the assumptions
of Proposition 2.1 (in particular, it satisfies the assumptions (H1) to (H5)).

Observe that a multiplicative version of Selmer’s algorithm can also be considered; see
e.g. [Kop12, Sch04]. This algorithm is not an acceleration of the additive version. Moreover,
it does not behave well in terms of convergence; see [Sch04, Section 2].

5.2. Second Lyapunov exponent, d = 2. As mentioned before, Nakaishi [Nak06] gave
an intricate proof of the fact that λ2(AS) < 0 for d = 2; see also [Sch01b]. We provide a
very simple proof of this fact and, on top of this, we are able to bound λ2(AS) away from 0.
The following result should be compared to Labbé [Lab15], who conjectures on the basis of
computer experiments that −0.07072 is a good approximation to λ2(AS) (and to Table 1,
where we confirm this value by our computer estimates).

Theorem 5.1. For d = 2, the second Lyapunov exponent of the Selmer algorithm satisfies

λ2(AS) < −0.052435991.

In particular, for d = 2 the Selmer algorithm is a.e. strongly convergent.

Proof. We have

S2
a =

1 0 1
1 1 0
0 1 0

 , SaSb =

1 0 0
1 1 1
0 1 0

 , SbSa =

1 0 1
0 1 0
1 1 0

 , S2
b =

1 0 0
0 1 0
1 1 1

 ,

and the corresponding matrices D
(2)
S (x1, x2) are(

1− x1 −x2

1 0

)
,

(
1− x1 1− x2

1 0

)
,

(
1 0

1− x1 −x2

)
,

(
1 0

1− x1 1− x2

)
.

Since x1 +x2 > 1 > x1 > x2 > 0, we have thus ‖D(2)
S (x)‖∞ = 1 for all x ∈ ∆Sa ∪∆Sb

. This
already implies that λ1(DS) ≤ 0 by (3.4).
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Moreover, this implies that ‖D(4)
S (x)‖∞ ≤ 1 for all x ∈ ∆Sa ∪∆Sb

. We have

(SaSb)
2 =

1 0 0
2 2 1
1 1 1

 , thus D
(4)
S (x1, x2) =

(
2− 2x1 1− 2x2

1− x1 1− x2

)
for (x1, x2) ∈ ∆Sb

∩ T−1
S ∆Sa ∩ T−2

S ∆Sb
∩ T−3

S ∆Sa , i.e., (x1, x2) in the triangle with corners
(3/4, 1/2), (3/5, 2/5), (2/3, 1/3). We have thus

‖D(4)
S (3/4− ε, 1/2− ε)‖∞ = 3/4 + 2ε,

hence, λ1(DS) ≤ 1
4

∫
∆

log ‖D(4)
S (x)‖∞dµS(x) < 0.

To get better upper bounds for λ1(DS), note that A
(n)
S (x) = M ∈ {Sa, Sb}n for all x in

the triangle

(5.2) ∆M = {x ∈ ∆ : ι(x) ∈ R ι(∆Sa ∪∆Sb
)M}.

We have thus

(5.3) λ1(DS) ≤ 1

n

∑
M∈{Sa,Sb}n

µS(∆M) max
x∈∆M

log ‖D(n)
S (x)‖∞

for all n ≥ 1. The measure of ∆M can be calculated using dilogarithms; here we only need
to bound it by

(5.4) µS(∆M) ≥ 12

π2
min
x∈∆M

1

x1x2

Leb(∆M) ≥ 12

π2
min
x∈∆M

1

x1

min
x∈∆M

1

x2

Leb(∆M);

note that c = 12/π2 in the definition of µS for d = 2. Since log ‖D(2n)
S (x)‖∞ ≤ 0 for all

x ∈ ∆Sa ∪ ∆Sb
, we obtain, by using (5.4) to estimate µS(∆M) in (5.3) and taking even

powers of matrices, that

(5.5) λ1(DS) ≤ 6

π2n

∑
M∈{Sa,Sb}2n

min
x∈∆M

1

x1

min
x∈∆M

1

x2

Leb(∆M) max
x∈∆M

log ‖D(2n)
S (x)‖∞.

As noted in [HK02, Lemma 4.5], the function x 7→ ‖D(2n)
S (x)‖∞ is convex on ∆M , hence,

the maximum maxx∈∆M
log ‖D(2n)

S (x)‖∞ is attained in one of the corners of ∆M . This
makes (5.5) amenable for estimating λ1(DS) with help of computer calculations. Indeed,
taking n = 25 in (5.5) we gain λ2(AS) = λ1(DS) < −0.052435991. We refer to the appendix
for details on how we handle the numerical issues of this computer calculation. �

In view of Proposition 4.1 we can formulate a result that is true uniformly for all x ∈ ∆.

Proposition 5.2. For the Selmer algorithm with d = 2 there exists C > 0 such that for

all x and all i, j ∈ {1, . . . , d} we have |p(n)
i,j − q

(n)
i xj| ≤ C. Moreover, the inequality

‖ ∧2 A(n)(x)‖ � ‖A(n)(x)‖

holds. Here the implied constant does not depend on x and n ∈ N.
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Proof. In the proof of Theorem 5.1 we showed that ‖D(2n)(x)‖ ≤ 1. By submultiplicativity
this implies that ‖D(n)(x)‖ � 1 holds uniformly for all x ∈ ∆ and all n ∈ N. The result
thus follows from Proposition 4.1. �

Avila and Delecroix [AD15] proved that primitive Brun matrices for d = 2 and primitive
Arnoux–Rauzy matrices with d ≥ 2 are Pisot, i.e., all eigenvalues except the Perron–
Frobenius eigenvalue have absolute value less than 1. We prove the analogous result for
Selmer with d = 2.

Theorem 5.3. Let d = 2 and M ∈ {Sa, Sb}n for some n ≥ 1. The following are equivalent.

(1) M is a primitive matrix.
(2) M is a Pisot matrix.
(3) M2 6∈ {SaSb, S2

b }n ∪ {SbSa, S2
b }n.

Proof. Let first M ∈ {Sa, Sb}n be a primitive matrix. By taking a suitable power of M
if necessary, we may assume w.l.o.g. that M is a positive matrix. Let v ∈ Λ be the left
eigenvalue of M corresponding to the Perron–Frobenius eigenvalue and set (v1, v2) = κ(v).
Then from (3.2) (cf. [HK02, Section 3]) we easily derive that, up to a change of basis,
D(2n)(v1, v2) is the restriction of M2 to v⊥. We gain from the proof of Theorem 5.1 that

(5.6) ‖D(2n)(x1, x2)‖∞ ≤ 1 for each (x1, x2) ∈ ∆M2 .

Since ‖ · ‖∞ is a consistent matrix norm this implies that each eigenvalue of M , except its
Perron–Frobenius eigenvalue, has modulus less than or equal to 1.

Suppose that M and, hence, M2 = (mi,j)0≤i,j≤2 has an eigenvalue of modulus 1. Then,
by the compatibility of the norm, we have ‖D(2n)(v1, v2)‖∞ = 1. By (3.1) we have

(5.7) D(2n)(x1, x2) =

(
m1,1 −m1,0x1 m1,2 −m1,0x2

m2,1 −m2,0x1 m2,2 −m2,0x2

)
for each (x1, x2) ∈ ∆M2 .

Since M is positive, by the definition of ∆M in (5.2) the point (v1, v2) is contained in the
interior of ∆M2 ; indeed, a positive matrix maps each (closed) positive cone into its interior.
Let U ⊂ ∆M2 be a neighborhood of (v1, v2). Since ‖D(2n)(v1, v2)‖∞ = 1, we see from (5.7)
and the definition of ‖ · ‖∞ (noting that the entries mi,0 of M2 are nonzero for 1 ≤ i ≤ 2)
that there is (x1, x2) ∈ U with ‖D(2n)(x1, x2)‖∞ > 1, a contradiction to (5.6). Thus, save
for the Perron–Frobenius eigenvalue, each eigenvalue of M has modulus less than 1. Since
M is regular, this entails that the characteristic polynomial of M is the minimal polynomial
of a Pisot number, hence, M is a Pisot matrix.

Conversely, it is well known that Pisot matrices are primitive (see e.g. [Fog02, Theo-
rem 1.2.9]), i.e., we have (1) ⇔ (2).

If M2 ∈ {SaSb, S2
b }n, then the first line of M2k equals (1, 0, 0) for all k ≥ 1, hence, M

is not primitive (and 1 is an eigenvalue of M). Similarly, for each product of the matrices
SbSa and S2

b , the second line equals (0, 1, 0), hence M is not primitive if M2 ∈ {SbSa, S2
b }n.

Finally, when M2 6∈ {SaSb, S2
b }n ∪ {SbSa, S2

b }n, then M2 contains a product of the form
SaS

2k
b Sa for some k ≥ 0. Note that the diagonals of S2

b , (SaSb)
2 and (SbSa)

2 are positive,
hence multiplying a nonnegative matrix by one of these matrices does not decrease any of
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its elements. Therefore, we find that M5 contains a factor that is at least as large as S5
a,

S4
aSb, S

3
aSbSa or (S2

aSb)
2, which are all positive matrices. This shows that M is primitive,

thus (1) ⇔ (3). �

5.3. Second Lyapunov exponent, d = 3. In this case the situation is more intricate
than for d = 2. Firstly, Sa has now a pair of complex eigenvalues outside the unit circle,

hence, ‖D(n)
S (x)‖ ≤ 1 cannot hold for all x ∈ ∆Sa ∪∆Sb

. Secondly, the conjectured value
of λ2(AS) is approximately −0.02283 (see Table 1) and therefore much closer to zero than
in the case d = 2. Nevertheless, we are able to establish the following convergence result.

Theorem 5.4. For d = 3, the second Lyapunov exponent of the Selmer algorithm satisfies

λ2(AS) < −0.000436459.

In particular, for d = 3 the Selmer algorithm is a.e. strongly convergent.

Proof. In the same way as in the proof of Theorem 5.1 we derive the estimate

λ2(AS) = λ1(DS) ≤ 1

52

∑
M∈{Sa,Sb}52

µS(∆M) max
x∈∆M

log ‖D(52)
S (x)‖∞.

However, since maxx∈∆M
log ‖D(52)

S (x)‖∞ can be positive as well as negative we have to
split this sum accordingly. In particular, we write

λ1(DS) ≤ 1

52

(
µS(∆S52

b
) max
x∈∆

S52
b

log ‖D(52)
S (x)‖∞

+
∑+

µS(∆M) max
x∈∆M

log ‖D(52)
S (x)‖∞ +

∑−
µS(∆M) max

x∈∆M

log ‖D(52)
S (x)‖∞

)
.

Here
∑+ ranges over all M ∈ {Sa, Sb}52 \ {S52

b } satisfying maxx∈∆M
log ‖D(52)

S (x)‖∞ ≥ 0

and
∑− ranges over all M ∈ {Sa, Sb}52 \ {S52

b } satisfying maxx∈∆M
log ‖D(52)

S (x)‖∞ < 0.
The summand corresponding to M = S52

b has to be treated separately because the density
of µS is not bounded in ∆S52

b
. We now use the estimates

c min
x∈∆M

1

x1

min
x∈∆M

1

x2

Leb(∆M) ≤ µS(∆M) ≤ c max
x∈∆M

1

x1

max
x∈∆M

1

x2

Leb(∆M),

where, in view of (5.1), we have

c =

(∫
∆Sa∪∆Sb

dx1dx2dx3

x1x2x3

)−1

=
8

ζ(3)
,
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with ζ(s) being the Riemann zeta function. We therefore arrive at

λ1(DS) ≤ 1

52

(
µS(∆S52

b
) max
x∈∆

S52
b

log ‖D(52)
S (x)‖∞

+
8

ζ(3)

∑+
max
x∈∆M

1

x1

max
x∈∆M

1

x2

Leb(∆M) max
x∈∆M

log ‖D(52)
S (x)‖∞

+
8

ζ(3)

∑−
min
x∈∆M

1

x1

min
x∈∆M

1

x2

Leb(∆M) max
x∈∆M

log ‖D(52)
S (x)‖∞

)
.

(5.8)

The right hand side of (5.8) can be bounded from above by −0.000436459 using extensive
computer calculations. This yields the result. Details on the computer calculations are
given in the appendix; we note already here that −0.000436459 is really an upper bound for
λ2(AS) because our programs are provided with an appropriate handling of the occurring
floating point errors. �

Note that ‖D(n)
S (x)‖ is not bounded by 1. Also, there is no reason for (4.1) and a

Paley–Ursell inequality to hold, although the algorithm AS satisfies λ2(AS) < 0.

5.4. Second Lyapunov exponent, d ≥ 4. Recall that, for arbitrary dimension d, the

cocyle D
(n)
S (x) is given by

D
(1)
S (x) =


0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0
−x1 −x2 · · · −xd−1 1− xd
−x1 −x2 · · · −xd−1 −xd

 if x ∈ ∆Sa ,

and the last two lines are exchanged for x ∈ ∆Sb
. (In dimension d = 2, we have

D
(1)
S (x) =

(
−x1 1− x2

−x1 −x2

)
if x ∈ ∆Sa , D

(1)
S (x) =

(
−x1 −x2

−x1 1− x2

)
if x ∈ ∆Sb

.) Evaluat-

ing 1
n

log ‖A(n)
S (x)‖ and 1

n
log ‖D(n)

S (x)‖ for randomly chosen points x and n = 230 gives the
estimates listed in Table 1 for λ1(AS) and λ1(DS) = λ2(AS) (without guaranteed accuracy;
compare [Lab15] for the value in the case d = 2). See the end of the Appendix for details
on the computation.

d λ2(AS) 1− λ2(AS)
λ1(AS)

2 −0.07072 1.3871
3 −0.02283 1.1444
4 +0.00176 0.9866
5 +0.01594 0.8577

Table 1. Heuristically estimated values for the second Lyapunov exponent
and the uniform approximation exponent of the Selmer Algorithm
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5.5. Cassaigne algorithm. In 2015, Cassaigne defined an (unordered) continued fraction
algorithm that was first studied in [CLL17, AL18] where it was shown to be conjugate
to Selmer’s algorithm. The motivation for defining this new algorithm came from word
combinatorics. Define the two matrices

Ca =

1 0 0
1 0 1
0 1 0

 , Cb =

0 1 0
1 0 1
0 0 1

 ,

set ∆′ = {(x0, x1, x2) ∈ R3
+ : x0 + x1 + x2 = 1}, and

AC : ∆′ → GL(3,Z), x 7→

{
Ca if x ∈ ∆′Ca

= {(x0, x1, x2) ∈ ∆′ : x0 > x2},
Cb if x ∈ ∆′Cb

= {(x0, x1, x2) ∈ ∆′ : x0 < x2}.

Then the Cassaigne map is

TC : ∆′ → ∆′ defined by TC(x) =
xAC(x)−1

‖xAC(x)−1‖1

.

From [CLL17, Section 5], we know that the Cassaigne algorithm is conjugate to the semi-
sorted Selmer algorithm (defined e.g. in [CLL17, Section 4]) on the absorbing set, which
differs from the sorted version of the Selmer algorithm defined in Section 5.1 only by the
order of the elements. Therefore, all these algorithms have the same Lyapunov spectrum.

6. Brun and modified Jacobi–Perron algorithms

For the homogeneous version of the Brun algorithm [Bru19, Bru20, Bru58], the second
largest element of a vector is subtracted from the largest one and the resulting vector is
ordered descendingly, i.e., for its projective version we have

TB : ∆→ ∆, TB(x1, . . . , xd) = κ(ord(1− x1, x1, x2, . . . , xd))

with κ as in (2.1). To get the associated matrix valued function AB, we define

B0 =


1 0 · · · · · · 0

1 1
. . .

...

0 0
. . . . . .

...
...

...
. . . 1 0

0 0 · · · 0 1

 , Bk =



1 1 0 · · · · · · · · · · · · 0
0 0 1

. . .
...

k−1

{
... 0

. . . . . . . . .
...

0
...

. . . . . . 1
. . .

...
1

...
. . . 0 0

. . .
...

0
...

. . . 1
. . . 0

d−k

{
...

...
. . . . . . 0

0 0 · · · · · · · · · · · · 0 1


, 1 ≤ k ≤ d.

Setting x0 = 1, xd+1 = 0, and

∆Bk
= {(x1, . . . , xd) ∈ ∆ : xk+1 < 1− x1 < xk} (0 ≤ k ≤ d)

we have

AB(x) = Bk if x ∈ ∆Bk
(0 ≤ k ≤ d).
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In view of [Lag93, Section 6], Brun’s algorithm satisfies the assumptions of Proposition 2.1

(in particular, it satisfies the assumptions (H1) to (H5)). Evaluating 1
n

log ‖A(n)
B (x)‖ and

1
n

log ‖D(n)
B (x)‖ for randomly chosen points x and n = 230 gives the estimates listed in

Table 2 for λ1(DB) = λ2(AB) and for the uniform approximation exponent.

d λ2(AB) 1− λ2(AB)
λ1(AB)

d λ2(AB) 1− λ2(AB)
λ1(AB)

2 −0.11216 1.3683 7 −0.01210 1.0493
3 −0.07189 1.2203 8 −0.00647 1.0283
4 −0.04651 1.1504 9 −0.00218 1.0102
5 −0.03051 1.1065 10 +0.00115 0.9943
6 −0.01974 1.0746 11 +0.00381 0.9799

Table 2. Heuristically estimated values for the second Lyapunov exponent
and the uniform approximation exponent of the Brun Algorithm

The modified Jacobi–Perron algorithm (or d-dimensional Gauss algorithm), which goes
back to Podsypanin [Pod77], is an accelerated version of the Brun algorithm, defined by
the jump transformation x 7→ T nB(x) with the minimal n ≥ 1 such that T n−1

B (x) /∈ ∆B0 ;
see [Sch00, Section 6.2]. Its second Lyapunov exponent is thus negative if and only if
λ2(AB) < 0. In particular, the conjecture of [Har02] that the second Lyapunov exponent
is negative for all d ≥ 2 seems to be wrong in view of Table 2. We mention that for
d = 2 negativity of λ2(AB) is proved in [IKO93, FIKO96] by heavy use of computer
calculation. Later, Meester [Mee99] found a more elegant proof by deriving a Paley–Ursell
type inequality for this setting and adapting Schweiger’s argument from [Sch00, Chapter
16]. Avila and Delecroix [AD15] gave a simple proof by showing that the ∞-norm of the

restriction of A
(n)
B (x) to ι(x)⊥ is bounded by 1; see Remark 4.4. Schratzberger [Sch01a] gave

a proof of the strong convergence of Brun algorithm in dimension d = 3. Hardcastle [Har02]
even shows that λ2(AB) < 0 holds for d = 3. The dependence of the entropy of the Brun
algorithm with respect to the dimension is studied in [BLV18].

7. Jacobi–Perron algorithm

We now consider the Jacobi–Perron algorithm; see [Sch00, Chapter 4 and 16], earlier
references are [Ber71, Sch73]. A projective version of this algorithm is given by

TJ : [0, 1]d → [0, 1]d, (x1, x2, . . . , xd) 7→
(x2

x1

−
⌊x2

x1

⌋
, . . . ,

xd
x1

−
⌊xd
x1

⌋
,

1

x1

−
⌊ 1

x1

⌋)
.

Its matrix version is therefore

(x0, x1, . . . , xd) 7→
(
x1, x2 −

⌊x2

x1

⌋
x1, . . . , xd −

⌊xd
x1

⌋
x1, x0 −

⌊x0

x1

⌋
x1

)
,
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and we have

AJ(x1, . . . , xd) =


b 1
x1
c 1 bx2

x1
c · · · bxd−1

xd
c

0 0 1 0 0
...

...
. . . . . . 0

0
...

. . . 1
1 0 · · · · · · 0

 .

This is a multiplicative algorithm in the sense that divisions are performed instead of sub-
tractions, hence the coordinates are multiplied by arbitrarily large integers, and there are
infinitely many different matrices AJ(x). It is proved in [Lag93, Section 5] that the Jacobi–
Perron algorithm satisfies the assumptions of Proposition 2.1 (in particular, it satisfies the
assumptions (H1) to (H5)). The Jacobi–Perron algorithm is not ordered, thus it is defined
in the whole unit cube.

It is known that the second Lyapunov exponent of the Jacobi–Perron algorithm is neg-
ative for d = 2. A proof of this fact, based on an old result by Paley and Ursell [PU30], is
given in Schweiger [Sch00, Chapter 16]. Table 3 contains numerical estimates for the Lya-
punov exponents of the Jacobi–Perron algorithm for low dimensions. This table indicates
that, like for the Brun algorithm, the second Lyapunov exponent of the Jacobi–Perron
algorithm is negative for all d ≤ 9 and positive for all d ≥ 10. This gives evidence that
[Lag93, Conjecture 1.2] does not hold.

d λ2(AJ) 1− λ2(AJ )
λ1(AJ )

d λ2(AJ) 1− λ2(AJ )
λ1(AJ )

2 −0.44841 1.3735 7 −0.02819 1.0243
3 −0.22788 1.1922 8 −0.01470 1.0127
4 −0.13062 1.1114 9 −0.00505 1.0044
5 −0.07880 1.0676 10 +0.00217 0.9981
6 −0.04798 1.0413 11 +0.00776 0.9933

Table 3. Heuristically estimated values for the second Lyapunov exponent
and the uniform approximation exponent of the Jacobi–Perron Algorithm

8. An intermediate algorithm between Arnoux–Rauzy and Brun

From [AD15], we know that the second Lyapunov exponent of the Arnoux–Rauzy al-
gorithm is negative for all d ≥ 2, but this algorithm is only defined on a set of Lebesgue
measure zero. We propose an algorithm that is in some sense between Arnoux–Rauzy
and Brun: We subtract as many of the subsequent elements of a given vector from the
first one (which is also the largest one) as possible. (In the Arnoux–Rauzy algorithm, we
always subtract all but the largest element from the largest one.) The matrix version of
this algorithm is (with xd+1 = x0)

(x0, x1, . . . , xd) 7→ ord
(
x0 −

k∑
j=1

xj, x1, . . . , xd

)
if

k∑
j=1

xj < x0 <
k+1∑
j=1

xj (1 ≤ k ≤ d).
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Denote by ∆Ik,` , 1 ≤ k < d, k ≤ ` ≤ d, the set of (x1, . . . , xd) ∈ ∆ with
∑k

j=1 xj < 1 <∑k+1
j=1 xj and x` > 1 −

∑k
j=1 xj > x`+1 (where xd+1 = 0), and denote by ∆Id,` , 0 ≤ ` ≤ d,

the set of (x1, . . . , xd) ∈ ∆ with
∑d

j=1 xj < 1 and x` > 1−
∑d

j=1 xj > x`+1 (where x0 = 1,

xd+1 = 0). Then we have

AI(x) = Ik,` if x ∈ ∆Ik,` ,

with

Ik,` =



1 1 0 · · · · · · · · · · · · · · · · · · 0
k

{
... 0 1

. . .
...

1 0
. . . . . . . . .

...
0

...
. . . . . . . . . . . .

...
`−k

{
...

...
. . . . . . . . . . . .

...
0

...
. . . . . . 1

. . .
...

1
...

. . . 0 0
. . .

...
0

...
. . . 1

. . . 0
d−`

{
...

...
. . . . . . 0

0 0 · · · · · · · · · · · · · · · · · · 0 1


if 1 ≤ k ≤ ` ≤ d,

Id,` =



1 1 0 · · · · · · · · · 0
`

{
... 0

. . . . . .
...

1 0
. . . 1

. . .
...

1
...

. . . 0 0
. . .

...
1

...
. . . 1

. . . 0
d−`

{
...

...
. . . . . . 0

1 0 · · · · · · · · · 0 1


if 0 ≤ ` ≤ d.

The Arnoux–Rauzy algorithm is the special case where T nx ∈ ∆Id,` , 0 ≤ ` ≤ d, for all
n ≥ 0. It seems that the second Lyapunov exponent of our intermediate algorithm is
negative for all d ≤ 10 and positive for all d ≥ 11. The according heuristic estimates are
listed in Table 4.

d λ2(AI) 1− λ2(AI)
λ1(AI)

d λ2(AI) 1− λ2(AI)
λ1(AI)

2 −0.13648 1.3606 7 −0.02033 1.0729
3 −0.10803 1.2430 8 −0.01175 1.0468
4 −0.07540 1.1817 9 −0.00563 1.0246
5 −0.05035 1.1388 10 −0.00114 1.0054
6 −0.03263 1.1034 11 +0.00224 0.9886

Table 4. Heuristically estimated values for the second Lyapunov exponent
and the uniform approximation exponent of the intermediate algorithm

Using methods from Messaoudi, Nogueira, and Schweiger [MNS09] as well as from
Fougeron and Skripchenko [FS19] one can show that the assumptions of Proposition 2.1



SECOND LYAPUNOV EXPONENT 19

hold also for this algorithm. This will imply that negativity of the second Lyapunov expo-
nent is a sufficient condition for strong convergence also for this algorithm. We will come
back to this in a forthcoming paper.

9. Garrity’s triangle algorithm

A similar algorithm to the one in Section 8 was proposed by Garrity [Gar01], called the
triangle algorithm (or simplex algorithm for d ≥ 3), with the difference that the smallest
coefficient is subtracted as many times as possible from the largest one when all other
coefficients have already been subtracted. Similarly as in the case of Selmer’s algorithm
(see [Sch04, Section 2]), convergence properties are altered by taking divisions instead of
subtractions. This will be seen on the second Lyapunov exponent below. Observe that this
cannot be considered as a real acceleration (as in the regular continued fraction case, or as
in the Brun or in the Jacobi–Perron cases), since taking divisions instead of subtractions
yields a completely different algorithm (similarly to the Selmer case).

The matrix version of this algorithm is thus

(x0, x1, . . . , xd) 7→


ord
(
x0 −

∑k
j=1 xj, x1, . . . , xd

)
if
∑k

j=1 xj < x0 <
∑k+1

j=1 xj, 1 ≤ k ≤ d− 2,(
x1, . . . , xd, x0 −

∑d−1
j=1 xj − `xd

)
if
∑d−1

j=1 xj + `xd < x0 <
∑d−1

j=1(`+ 1)xd, ` ≥ 0.

We have

AI(x) = Gk,` if x ∈ ∆Gk,`
,

with Gk,` = Ik,` and ∆Gk,`
= ∆Ik,` for 1 ≤ k ≤ d− 2, ` ≤ k ≤ d,

Gd−1,` =


1 1 0 · · · 0
... 0

. . . . . .
...

1
...

. . . 1 0

`
...

. . . 1
1 0 · · · · · · 0

 for ` ≥ 0,

∆Gd−1,`
=
{

(x1, . . . , xd) ∈ ∆ :
d−1∑
j=1

xj + `xd < 1 <
d−1∑
j=1

(`+ 1)xd

}
.

Here we have the curious situation that the second Lyapunov exponent seems to be negative
if and only if 7 ≤ d ≤ 10. The according heuristic estimates are listed in Table 5.

Again using methods from [MNS09] and [FS19] one can show that the assumptions of
Proposition 2.1 hold also for this algorithm in any dimension (although this is a bit more
involved in this case because the algorithm is multiplicative). The case d = 2 is handled
in [FS19], and the general case will be addressed in a forthcoming paper.
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d λ2(AG) 1− λ2(AG)
λ1(AG)

d λ2(AG) 1− λ2(AG)
λ1(AG)

2 +0.34434 0.6859 7 −0.00644 1.0225
3 +0.37673 0.5798 8 −0.00768 1.0304
4 +0.25232 0.6286 9 −0.00435 1.0189
5 +0.10677 0.7778 10 −0.00074 1.0035
6 +0.01859 0.9468 11 +0.00237 0.9880

Table 5. Heuristically estimated values for the second Lyapunov exponent
and the uniform approximation exponent of Garrity’s simplex algorithm

10. Heuristical comparison between the algorithms

We conclude with a table that allows to compare the (heuristically estimated) uniform
approximation exponents of the algorithms considered in this paper. In this table we also
indicate Dirichlet’s bound 1 + 1/d.

d Selmer Brun Jacobi–Perron Intermediate Garrity 1 + 1/d
2 1.3871 1.3683 1.3735 1.3606 0.6859 1.5
3 1.1444 1.2203 1.1922 1.2430 0.5798 1.3333
4 0.9866 1.1504 1.1114 1.1817 0.6286 1.25
5 0.8577 1.1065 1.0676 1.1388 0.7778 1.2
6 0.7442 1.0746 1.0413 1.1034 0.9468 1.1667
7 0.6437 1.0493 1.0243 1.0729 1.0225 1.1429
8 0.5561 1.0283 1.0127 1.0468 1.0304 1.125
9 0.4810 1.0102 1.0044 1.0246 1.0189 1.1111
10 0.4173 0.9943 0.9981 1.0054 1.0035 1.1
11 0.3636 0.9799 0.9933 0.9886 0.9880 1.0909

Table 6. Synopsis of the uniform approximation exponents 1− λ2(A)
λ1(A)

Appendix: Comments on the floating point calculations

In this appendix we discuss the computational issues of the calculations leading to the
estimate of the Lyapunov exponent λ2(AS) for the Selmer algorithm in Theorem 5.1 (d = 2)
and Theorem 5.4 (d = 3). As these calculations are extensive we had to execute them using
a GPU. All calculations were performed on an Apple MacBook Pro 2019 with an Intel Iris
Plus Graphics 655 1536 MB card using the XCode environment. The language we used
is Objective C, where the code executed on the GPU is implemented in Apple’s Metal
language.

We start with Selmer’s algorithm for d = 3; the easier case d = 2 will be treated
after that. In order to estimate the second Lyapunov exponent λ2(AS) of the Selmer
algorithm, d = 3, we use inequality (5.8). Since x 7→ log ‖D52

S (x)‖∞ is convex (cf. [HK02,
Lemma 4.5]), for each M ∈ {Sa, Sb}52 it is sufficient to compare the values at the vertices
of ∆M to compute the maximum over ∆M in (5.8).
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We first deal with the case M ∈ {Sa, Sb}52 \ {S52
b }, i.e., with the sums

∑+ and
∑−

of (5.8). For each of the summands it is possible to calculate the rational numbers
‖D52

S (x)‖∞ for all x being a vertex of ∆M with M ∈ {Sa, Sb}52 \ {S52
b } by using integer

arithmetics and treating the denominator and the numerator separately. Also Leb(∆M),
maxx∈∆M

1
x1

maxx∈∆M

1
x2

, and minx∈∆M

1
x1

minx∈∆M

1
x2

Leb(∆M) can be calculated using in-
teger arithmetics. Thus these calculations are exact.

When taking the logarithm and multiplying it by maxx∈∆M

1
x1

maxx∈∆M

1
x2

Leb(∆M) and

minx∈∆M

1
x1

minx∈∆M

1
x2

Leb(∆M), respectively, we are forced to switch to floating point
arithmetics. The software we use, namely Metal and Objective C, complies with the IEEE
754 standard for floating point arithmetics.1 For relevant facts on floating point arithmetics
and details on this IEEE standard, we refer e.g. to [Gol91]; the language specification of
Metal is laid out in [App19].

Using floating point arithmetics entails rounding errors. Because we want an exact upper
bound in the estimate of λ2(AS) provided in Theorem 5.4 we need to make sure that the
error we produce by using floating point arithmetics yields a result which is not smaller
than the exact result would be. To guarantee this, after each floating point operation we
use the function2

float nextafterf( float x, float y ).

Setting y=INFINITY and y=-INFINITY this function returns the smallest floating point
number which is greater than x and the largest floating point number which is smaller
than x, respectively. Using this function makes the estimate for λ2(AS) in Theorem 5.4
exact (at the price that the modulus of the upper bound we gain is about 0.5% to 1%
larger than it would be without applying this function). Our calculations yield

∑+
max
x∈∆M

1

x1

max
x∈∆M

1

x2

Leb(∆M) max
x∈∆M

log ‖D(52)
S (x)‖∞

+
∑−

min
x∈∆M

1

x1

min
x∈∆M

1

x2

Leb(∆M) max
x∈∆M

log ‖D(52)
S (x)‖∞ ≤ −0.004845689,

(10.1)

where
∑+ and

∑− are defined as in (5.8).
The summand in (5.8) corresponding to M = S52

b has to be treated separately as follows.
First note that the estimate

µS(∆S52
b

) =
8

ζ(3)

∫
∆

S52
b

dx1dx2dx3

x1x2x3

≤ 0.004776713

1In Metal, float is the most precise data type for floating point calculations. For the part of the code
written in Objective C we use the data type long double to gain higher precision.

2See for instance https://en.cppreference.com/w/c/numeric/math/nextafter for a documentation
of this function as well as its sibling long double nextafterl( long double x, long double y ).
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follows if one evaluates the integral using polylogarithms (which we did with the help of

Mathematica). Since it is easy to see that maxx∈∆
S52
b

log ‖D(52)
S (x)‖∞ = 2 we gain

(10.2) µS(∆S52
b

) max
x∈∆

S52
b

log ‖D(52)
S (x)‖∞ ≤ 0.009553426.

Inserting (10.1) and (10.2) in (5.8) we end up with

λ2(AS) ≤ −0.000436459,

which is the upper bound for λ2(AS) stated in Theorem 5.4.
To treat the case d = 2 our starting point is (5.5) with n = 25. Since we always have

maxx∈∆M
log ‖D(2n)

S (x)‖∞ ≤ 0 the whole sum in (5.5) is of the type
∑− and, hence, also

the contribution of ∆S2n
b

does not need to be treated separately. By the same strategy as
the one outlined for d = 3 we gain the estimate∑

M∈{Sa,Sb}2n
min
x∈∆M

1

x1

min
x∈∆M

1

x2

Leb(∆M) max
x∈∆M

log ‖D(2n)
S (x)‖∞ ≤ −2.06343104875.

Inserting this in (5.5) yields the estimate stated in Theorem 5.1.

For the other dimensions and algorithms, we do not calculate upper bounds for the
second Lyapunov exponent. Instead, we get heuristics for λ2(A) by calculating D(n)(x) for
n = 230 and ten randomly chosen points x ∈ ∆, using a C program with double precision
floating point arithmetic. In order for the matrices not to become too small or too large,
we renormalize after each k = 210 steps by dividing by the top left coefficient of the matrix.
This means that we calculate iteratively

1

D
(jk+k)
1,1 (x)

D(jk+k)(x) =
D

(jk)
1,1 (x)

D
(jk+k)
1,1 (x)

D(k)(T jkx)
1

D
(jk)
1,1 (x)

D(jk)(x),

for 0 ≤ j < n/k, where D
(`)
1,1(x) denotes the top left coefficient of the matrix D(`)(x).

Keeping track of the normalisation factors, we have

log
∥∥D(n)(x)

∥∥ = log

∥∥∥∥D(n)(x)

D
(n)
1,1 (x)

∥∥∥∥+

n/k−1∑
j=0

log

∣∣∣∣D(jk+k)
1,1 (x)

D
(jk)
1,1 (x)

∣∣∣∣.
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Perron et de la transformation associée, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 3, 565–686.

[Bal92a] P. R. Baldwin, A convergence exponent for multidimensional continued-fraction algorithms, J.
Statist. Phys. 66 (1992), no. 5-6, 1507–1526.

[Bal92b] , A multidimensional continued fraction and some of its statistical properties, J. Statist.
Phys. 66 (1992), no. 5-6, 1463–1505.

[Ber71] L. Bernstein, The Jacobi-Perron algorithm—Its theory and application, Lecture Notes in Mathe-
matics, Vol. 207, Springer-Verlag, Berlin-New York, 1971.

[BFK15] H. Bruin, R. Fokkink, and C. Kraaikamp, The convergence of the generalised Selmer algorithm,
Israel J. Math. 209 (2015), no. 2, 803–823.

[BFK19] , Erratum to: “The convergence of the generalised Selmer algorithm”, Israel J. Math. 231
(2019), no. 1, 505.

[BLV18] V. Berthé, L. Lhote, and B. Vallée, The Brun gcd algorithm in high dimensions is almost always
subtractive, J. Symbolic Comput. 85 (2018), 72–107.

[BN96] V. Baladi and A. Nogueira, Lyapunov exponents for non-classical multidimensional continued
fraction algorithms, Nonlinearity 9 (1996), no. 6, 1529–1546.

[Bru19] V. Brun, En generalisation av kjedebrøken I, Skr. Vidensk.-Selsk. Christiana Math.-Nat. Kl.
(1919), no. 6, 1–29.

[Bru20] , En generalisation av kjedebrøken II, Skr. Vidensk.-Selsk. Christiana Math.-Nat. Kl.
(1920), no. 6, 1–24.

[Bru58] , Algorithmes euclidiens pour trois et quatre nombres, Treizième congrès des
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24 V. BERTHÉ, W. STEINER, AND J. M. THUSWALDNER

[Lag93] J. C. Lagarias, The quality of the Diophantine approximations found by the Jacobi-Perron algo-
rithm and related algorithms, Monatsh. Math. 115 (1993), no. 4, 299–328.

[Mee99] R. Meester, A simple proof of the exponential convergence of the modified Jacobi-Perron algorithm,
Ergodic Theory Dynam. Systems 19 (1999), no. 4, 1077–1083.

[MNS09] A. Messaoudi, A. Nogueira, and F. Schweiger, Ergodic properties of triangle partitions, Monatsh.
Math. 157 (2009), no. 3, 283–299.

[Nak02] K. Nakaishi, Exponentially strong convergence of non-classical multidimensional continued frac-
tion algorithms, Stoch. Dyn. 2 (2002), no. 4, 563–586.

[Nak06] , Strong convergence of additive multidimensional continued fraction algorithms, Acta
Arith. 121 (2006), no. 1, 1–19.

[Pod77] E. V. Podsypanin, A generalization of the continued fraction algorithm that is related to the Viggo
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