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Abstract. Shift radix systems form a collection of dynamical systems depending on a parame-

ter r which varies in the d-dimensional real vector space. They generalize well-known numeration
systems such as beta-expansions, expansions with respect to rational bases, and canonical num-

ber systems. Beta-numeration and canonical number systems are known to be intimately related

to fractal shapes, such as the classical Rauzy fractal and the twin dragon. These fractals turned
out to be important for studying properties of expansions in several settings.

In the present paper we associate a collection of fractal tiles with shift radix systems. We

show that for certain classes of parameters r these tiles coincide with affine copies of the well-
known tiles associated with beta-expansions and canonical number systems. On the other hand,

these tiles provide natural families of tiles for beta-expansions with (non-unit) Pisot numbers
as well as canonical number systems with (non-monic) expanding polynomials.

We also prove basic properties for tiles associated with shift radix systems. Indeed, we prove

that under some algebraic conditions on the parameter r of the shift radix system, these tiles
provide multiple tilings and even tilings of the d-dimensional real vector space. These tilings

turn out to have a more complicated structure than the tilings arising from the known number

systems mentioned above. Such a tiling may consist of tiles having infinitely many different
shapes. Moreover, the tiles need not be self-affine (or graph directed self-affine).

1. Introduction

Number systems, dynamics and fractal geometry. In the last decades, dynamical systems
and fractal geometry have been proved to be deeply related to the study of number systems (see
e.g. the survey [14]). Famous examples of fractal tiles that stem from number systems are given
by the twin dragon fractal (upper left part of Figure 1 below) which is related to expansions of
Gaussian integers in base −1 + i (see [27, p. 206]), or by the classical Rauzy fractal (upper right
part of Figure 1) which is related to beta-expansions with respect to the Tribonacci number β
(satisfying β3 = β2 + β + 1; cf. [35, 41]). Moreover, we mention the Hokkaido tile (lower left part
of Figure 1) which is related to the smallest Pisot number (see [3]) and has been studied frequently
in the literature.

For several notions of number system geometric and dynamical considerations on fractals imply
various non-trivial number theoretical properties. The boundary of these fractals is intimately
related to the addition of 1 in the underlying number system. Moreover, the fact that the origin is
an inner point of such a fractal has several implications. For instance, in beta-numeration as well as
for the case of canonical number systems it implies that the underlying number system admits finite
expansions (all these relations are discussed in [14]). In the case of the classical Rauzy fractal, this
allows the computation of best rational simultaneous approximations of the vector (1, 1/β, 1/β2),
where β is the Tribonacci number (see [18, 22]). Another example providing a relation between
fractals and numeration is given by the local spiral shape of the boundary of the Hokkaido tile:
by constructing a realization of the natural extension for the so-called beta-transformation, one
proves that unexpected non-uniformity phenomena appear in the beta-numeration associated with
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the smallest Pisot number. Indeed, the smallest positive real number that can be approximated by
rational numbers with non-purely periodic beta-expansion is an irrational number slightly smaller
than 2/3 (see [1, 10]).

All the fractals mentioned so far are examples of the new class of tiles associated with shift
radix systems which forms the main object of the present paper.

Figure 1. Examples of SRS tiles: The upper left tile is the so-called twin dragon
fractal (cf. [27]), right beside it is the well-known Rauzy fractal associated with
the Tribonacci number (cf. [35]). The lower left tile is known as “Hokkaido frac-
tal” and corresponds to the smallest Pisot number which has minimal polynomial
x3 − x − 1 (cf. [3]). The lower right one seems to be new, and is an SRS tile
associated with the parameter r = (9/10,−11/20).

Shift radix systems: a common dynamical formalism. Shift radix systems have been pro-
posed in [5] to unify various notions of radix expansion such as beta-expansions (see [20, 33, 36]),
canonical number systems (CNS for short, see [28, 34]) and number systems with respect to ra-
tional bases (in the sense of [9]) under a common roof. Instead of starting with a base number (or
base polynomial), one considers a vector r ∈ Rd and defines the mapping τr : Zd → Zd by

τr(z) = (z1, . . . , zd−1,−brzc)t
(
z = (z0, . . . , zd−1)t

)
.

Here, rz denotes the scalar product of the vectors r and z; moreover, for x being a real number,
bxc denotes the largest integer less than or equal to x. We call (Zd, τr) a shift radix system (SRS,
for short). A vector r gives rise to an SRS with finiteness property if each integer vector z ∈ Zd
can be finitely expanded with respect to the vector r, that is, if for each z ∈ Zd there is an n ∈ N
such that the n-th iterate of τr satisfies τnr (z) = 0.

In the papers written on SRS so far (see e.g. [5, 6, 7, 8, 40]), relations between SRS and well-
known notions of number system such as beta-expansions with respect to unit Pisot numbers and
canonical number systems with a monic expanding polynomial1 have been established (we will
give a short account on these relations in Section 5 and 6, respectively). In particular, SRS turned
out to be a fruitful tool in order to deal with the problem of finite representations in these number
systems.

1An expanding polynomial is a polynomial each of whose roots has modulus strictly larger than one.
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SRS tiles: an extension of arithmetically meaningful known constructions. In the
present paper, we study geometric properties of SRS: we introduce a family of tiles for each
r ∈ Rd with contractive and regular companion matrix, and prove geometric properties of these
tiles. Figure 1 shows four examples of such tiles, called SRS tiles.

We prove that our definition unifies the notions of self-affine tiles known for CNS with respect
to monic polynomial (see [14, 26]) and beta-numeration related to a unit Pisot number (see [3]).

Result 1. The following relations between SRS tiles and classical tiles related to number systems
hold:

• If the parameter r of an SRS is related to a monic expanding polynomial over Z, the SRS
tile is a linear image of the self-affine tile associated with this polynomial.

• If the parameter r of an SRS comes from a unit Pisot number, the SRS tile is a linear
image of the central tile associated with the corresponding beta-numeration.

It is well-known that these classical tiles are self-affine and associated with (multiple) tilings
that are highly structured (see e.g. the surveys [12, 17]). Indeed, these tiles satisfy a set equa-
tion expressed as a graph-directed iterated function system (GIFS) in the sense of Mauldin and
Williams [32] which means that each tile can be decomposed with respect to the action of an affine
mapping into several copies of a finite number of tiles, with the decomposition being produced by
a finite graph (see [14]).

In the present SRS situation, we prove that our construction gives rise to new classes of tiles,
in particular we want to emphasize on tiles related to a non-monic expanding polynomial or to
a non-unit Pisot number. In both cases, we are actually able to extend the usual definition of
tiles used for unit Pisot numbers and monic polynomials. The tiles defined in the usual way are
not satisfactory in this more general setting, since they always produce overlaps in their self-affine
decomposition. A first strategy to remove overlaps consists in enlarging the space of representation
by adding arithmetic components (p-adic factors) as proposed in [4]. However, such tiles are of
limited topological importance since they have totally disconnected factors.

We prove that our construction, however, allows to insert arithmetic criteria in the construc-
tion of the tiles: roughly speaking, the SRS mapping τr naturally selects points in appropriate
submodules. This arithmetic selection process removes the overlaps.

Result 2. SRS provide a natural collection of tiles for number systems related to non-monic
expanding polynomials as well as to non-unit Pisot numbers.

Nonetheless, the geometrical structure of these tiles is much more complicated than the structure
of the classical ones. As we shall illustrate for r = (−2/3), there may be infinitely many shapes
of tiles associated with certain parameters r. Actually, the description of SRS tiles requires a
set equation that cannot be captured by a finite graph. Equation (3.3) suggests that an infinite
hierarchy of set equations is needed to describe an SRS tile. Therefore, SRS tiles in general cannot
be regarded as GIFS attractors. Furthermore, an SRS tile is not always equal to the closure of its
interior (Example 3.12 exhibits a case of an SRS tile that is equal to a single point). Also, due to
the lack of a GIFS structure, we have no information on the measure of the boundary of tiles.

Tiling properties. Despite of their complicated geometrical structure, we are able to prove tiling
properties for SRS tiles. We first prove that, for each fixed parameter r, the associated tiles form
a covering, extending the results known for unit Pisot numbers and monic expanding polynomials.
In the classical cases, exhibiting a multiple tiling (that is, a covering with an almost everywhere
constant degree) from this covering is usually done by exploiting specific features of the tiling
together with the GIFS structure of the tiles: this allows to transfer local information to the
whole space in order to obtain global information. The finiteness property is then used to prove
that 0 belongs to only one tile, leading to a tiling. In the present SRS situation, however, this
strategy does not work any more. The finiteness property is still equivalent to the fact that 0
belongs to exactly one SRS tile, but the fact that SRS tiles are no longer GIFS attractors prevents
us from spreading this local information to the whole space. In order to get global information,
we impose additional algebraic conditions on the parameter r, and we use these conditions to
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exhibit a dense set of points that are proved to belong to a fixed number of tiles. This leads to
the multiple tiling property.

Our main result can thus be stated as follows (for the corresponding definitions and for a more
precise statement, see Section 4, in particular Theorem 4.6 and Corollary 4.7):

Result 3. Let r be an SRS parameter with contractive and regular companion matrix, and assume
that either r ∈ Qd or r is related to a Pisot number or r has algebraically independent coordinates.
Then the following assertions hold.

• The collection of SRS tiles associated with the parameter r forms a weak multiple tiling.
• If the finiteness property is satisfied, then the collection of SRS tiles forms a weak tiling.

By weak tiling, we mean here that the tiles cover the whole space and have disjoint interiors.
Stating a “strong” tiling property would require to have information on the boundaries of the
tiles, which is deeply intricate if d ≥ 2 since the tiles are no longer GIFS attractors, and deserves
a specific study. For d = 1 the situation becomes easier. Indeed, we will prove in Theorem 4.9
that in this case SRS tiles are (possibly degenerate) intervals which form a tiling of R.

Structure of the paper. In Section 2, we introduce a way of representing integer vectors by
using the shift radix transformation τr. In Section 3, SRS tiles are defined and fundamental
geometric properties of them are studied. Section 4 is devoted to tiling properties of SRS tiles.
We show that SRS tiles form tilings or multiple tilings for large classes of parameters r ∈ Rd.
As the tilings are no longer self-affine we have to use new methods in our proofs. In Section 5,
we analyse the relation between tiles associated with expanding polynomials and SRS tiles more
closely. We prove that the SRS tiles given by a monic CNS parameter r coincide up to a linear
transformation with the self-affine CNS tile. For non-monic expanding polynomials, SRS tiles give
rise to a new class of tiles. At the end of this section, we prove for the parameter r = (−2/3) that
the associated tiling has infinitely many shapes of tiles. In Section 6, after proving that the shift
radix transformation is conjugate to the beta-transformation restricted to Z[β], we investigate the
relation between beta-tiles and SRS tiles. It turns out that beta-tiles associated with a unit Pisot
number are linear images of SRS tiles related to a parameter associated with this Pisot number.
Moreover, we define a new class of tiles associated with non-unit Pisot numbers. The paper ends
with a short section in which conjectures and possible directions of future research related to the
topic of the present paper are discussed.

2. The SRS representation

2.1. Definition of shift radix systems and their parameter domains. Shift radix systems
are dynamical systems defined on Zd as follows (see [5]).

Definition 2.1 (Shift radix system, finiteness property). For r = (r0, . . . , rd−1) ∈ Rd, d ≥ 1, set

τr : Zd → Zd,
z = (z0, z1, . . . , zd−1)t 7→ (z1, . . . , zd−1,−brzc)t,

where rz denotes the scalar product of r and z. We call the dynamical system (Zd, τr) a shift
radix system (SRS, for short). The SRS parameter r is said to be reduced if r0 6= 0.

We say that (Zd, τr) satisfies the finiteness property if for every z ∈ Zd there exists some n ∈ N
such that τnr (z) = 0.

Remark 2.2. If r0 = 0, then every vector τnr (z), z ∈ Zd, n ≥ 1, can be easily obtained from the
SRS (Zd−1, τr′) with r′ = (r1, . . . , rd−1) since τr′ ◦ π = π ◦ τr, where π : Zd → Zd−1 denotes the
projection defined by π(z0, z1, . . . , zd−1) = (z1, . . . , zd−1).
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The companion matrix of r = (r0, . . . , rd−1) is denoted by

Mr :=



0 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
−r0 −r1 · · · −rd−2 −rd−1

 ∈ Rd×d.

Its characteristic polynomial is given by Xd+rd−1X
d−1 + · · ·+r1X+r0. The matrix Mr is regular

if r0 6= 0. We will work with M−1
r (see e.g. Proposition 2.6), hence we will assume r reduced in

all that follows. For z = (z0, . . . , zd−1)t, note that

Mrz = (z1, . . . , zd−1,−rz)t

and thus

(2.1) τr(z) = Mrz + (0, . . . , 0, {rz})t,

where {x} = x− bxc denotes the fractional part of x.
The sets

Dd :=
{
r ∈ Rd | (τnr (z))n∈N is eventually periodic for all z ∈ Zd

}
and

D(0)
d :=

{
r ∈ Rd | τr is an SRS with finiteness property

}
are intimately related to the notion of SRS. Obviously we have D(0)

d ⊂ Dd. Apart from its
boundary, the set Dd is easy to describe.

Lemma 2.3 (see [5]). A point r ∈ Rd is contained in the interior of Dd if and only if the spectral
radius of the companion matrix Mr generated by r is strictly less than 1.

The shape of D(0)
d is of a more complicated nature. While D(0)

1 = [0, 1) is quite easy to describe

(cf. [5, Proposition 4.4]), already for d = 2 no complete description of D(0)
2 is known. The available

partial results (see [6, 40]) indicate that D(0)
d is of a quite irregular structure for d ≥ 2. Nonetheless,

an algorithm is given in [5, Proposition 4.4] which decides whether a given r belongs to D(0)
d . This

algorithm was used to draw the approximation of D(0)
2 depicted in Figure 2.

Apart from the easier case d = 1, in this paper, we are going to consider three classes of points
r assumed to be reduced which belong to Dd. The first two classes are dense in int(Dd), while the
third one has full measure in int(Dd).

(1) r ∈ Qd ∩ int(Dd). This class includes the parameters r =
(

1
a0
, ad−1

a0
, . . . , a1a0

)
∈ int(Dd)

with a0, . . . , ad−1 ∈ Z, which correspond to expansions with respect to monic expanding
polynomials, including CNS. If the first coordinate of r has numerator greater than one,
this extends to non-monic polynomials in a natural way (see Section 5 for details).

(2) r = (r0, . . . , rd−1) is obtained by decomposing the minimal polynomial of a Pisot number β
as (x− β)(xd + rd−1x

d−1 + · · ·+ r0). In view of Lemma 2.3, this implies that r ∈ int(Dd),
and by [8] this set of parameters is dense in int(Dd). These parameters correspond to
beta-numeration with respect to Pisot numbers (see Section 6). Note that even non-unit
Pisot numbers are covered here.

(3) r = (r0, . . . , rd−1) ∈ int(Dd) with algebraically independent coordinates r0, . . . , rd−1.

2.2. SRS representation of d-dimensional integer vectors. For r ∈ Rd we can use the SRS
transformation τr to define an expansion for d-dimensional integer vectors.

Definition 2.4 (SRS representation). Let r ∈ Rd. For z ∈ Zd, the SRS representation of z with
respect to r is defined to be the sequence (v1, v2, v3, . . .), with vn =

{
rτn−1

r (z)
}

for all n ≥ 1.
The representation is said to be finite if there is an n0 such that vn = 0 for all n ≥ n0. It is

said to be eventually periodic if there are n0, p such that vn = vn+p for all n ≥ n0.
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Figure 2. An approximation of D(0)
2 .

By definition, every SRS representation is finite if r ∈ D(0)
d , and every SRS representation is

eventually periodic if r ∈ Dd. The following simple properties of SRS representations show that
integer vectors can be expanded according to τr. The matrix Mr acts as a base and the vectors
(0, . . . , 0, vj) are the digits.

Lemma 2.5. Let r ∈ Rd and (v1, v2, . . .) be the SRS representation of z ∈ Zd with respect to r.
Then the following properties hold for all n ∈ N:

(1) 0 ≤ vn < 1,
(2) τnr (z) has the SRS representation (vn+1, vn+2, vn+3, . . .),
(3) we have

(2.2) Mn
r z = τnr (z)−

n∑
j=1

Mn−j
r (0, . . . , 0, vj)

t.

Proof. Assertions (1) and (2) follow immediately from the definition of the SRS representation.
By iterating (2.1), we obtain

τnr (z) = Mn
r z +

n∑
j=1

Mn−j
r

(
0, . . . , 0,

{
rτ j−1

r (z)
})t

,

which yields (2.2). �

Note that the set of possible SRS digits (0, . . . , 0, v) is infinite unless r ∈ Qd.
We prove that the SRS representation is unique in the following sense.

Proposition 2.6. Let r ∈ Rd be reduced and suppose that the SRS-representation of an element
z0 ∈ Zd is (v1, v2, v3, . . .). Assume that for some reals v0, v−1, . . . , v−n+1 ∈ [0, 1), n ∈ N, we have

z−k := M−kr

(
z0 −

k−1∑
j=0

M j
r (0, . . . , 0, v−j)

t
)
∈ Zd for all 1 ≤ k ≤ n.
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Then τnr (z−n) = z0 and z−n has the SRS representation (v−n+1, v−n+2, v−n+3, . . .).

Proof. The assertion is obviously true for n = 0. Now continue by induction on n. We have

τr(z−n) = τr
(
M−1

r

(
z−n+1− (0, . . . , 0, v−n+1)t

))
= z−n+1− (0, . . . , 0, v−n+1)t+(0, . . . , 0, {rz−n})t.

Since τr(z−n) ∈ Zd, we obtain τr(z−n) = z−n+1 and v−n+1 = {rz−n}. Therefore the first SRS
digit of z−n is v−n+1. By induction, we have τnr (z−n) = z0, hence, the SRS representation of z−n
is (v−n+1, v−n+2, v−n+3, . . .). �

3. Definition and first properties of SRS tiles

We now define a new type of tiles based on the mapping τr when the matrix Mr is contractive
and r is reduced. By analogy with the definition of tiles for other dynamical systems (see e.g.
[2, 17, 26, 35, 38, 41]), we consider elements of Zd which are mapped to a given x ∈ Zd by τnr ,
renormalize by a multiplication with Mn

r , and let n tend to∞. To build this set, we thus consider
vectors whose SRS expansion coincides with the expansion of x up to an added finite prefix and
we then renormalize this expansion. We will see in Sections 5 and 6 that some of these tiles are
related to well-known types of tiles, namely CNS tiles and beta-tiles. We recall that four examples
of central SRS tiles are depicted in Figure 1.

3.1. Definition of SRS tiles. An SRS tile will turn out to be the limit of the sequence of compact
sets (Mn

r τ
−n
r (x))n≥0 with respect to the Hausdorff metric. As it is a priori not clear that this

limit exists, we first define the tiles as lower Hausdorff limits of these sets and then show that
the Hausdorff limit exists. Recall that the lower Hausdorff limit Lin→∞An of a sequence (An) of
subsets of Rd is the (closed) set of all t ∈ Rd having the property that each neighborhood of t
intersects An provided that n is sufficiently large. If the sets An are compact and (An) is a Cauchy
sequence w.r.t. the Hausdorff metric δ, then the Hausdorff limit Lim

n→∞
An exists and

Lim
n→∞

An = Li
n→∞

An

(see [29, Chapter II, §29] for details on Hausdorff limits).

Definition 3.1 (SRS tile). Let r ∈ int(Dd) be reduced and x ∈ Zd. The SRS tile associated
with r is defined as

Tr(x) := Li
n→∞

Mn
r τ
−n
r (x).

Remark 3.2. Note that this means that t ∈ Rd is an element of Tr(x) if and only if there exist
vectors z−n ∈ Zd, n ∈ N, such that τnr (z−n) = x for all n ∈ N and limn→∞Mn

r z−n = t.

We will see in Theorem 3.5 that the lower limit in Definition 3.1 is equal to the limit with
respect to the Hausdorff metric.

3.2. Compactness, a set equation, and a covering property of Tr(x). In this subsection we
will show that each SRS tile Tr(x) is a compact set that can be decomposed into subtiles which are
obtained by multiplying other tiles by Mr. Moreover, we prove that for each reduced r ∈ int(Dd)
the collection {Tr(x) | x ∈ Zd} covers the real vector space Rd.

If r ∈ int(Dd), then the matrix Mr is contractive by Lemma 2.3. Let ρ < 1 be the spectral
radius of Mr, ρ < ρ̃ < 1 and ‖ · ‖ be a norm satisfying

‖Mrx‖ ≤ ρ̃‖x‖ for all x ∈ Rd

(for the construction of such a norm see for instance [30, Equation (3.2)]). Then we have

(3.1) R :=

∞∑
n=0

∥∥Mn
r (0, . . . , 0, 1)t

∥∥ ≤ ‖(0, . . . , 0, 1)t‖
1− ρ̃

.

Lemma 3.3. Let r ∈ int(Dd) be reduced. Then every Tr(x), x ∈ Zd, is contained in the closed ball
of radius R with center x. Therefore the cardinality of the sets {x ∈ Zd | t ∈ Tr(x)} is uniformly
bounded in t ∈ Rd. Furthermore, the family of SRS tiles {Tr(x) | x ∈ Zd} is locally finite, that is,
any open ball meets only a finite number of tiles of the family.
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Proof. Let x ∈ Zd, t ∈ Tr(x) and z−n as in Remark 3.2. Let the SRS representation of z−n be

(v
(n)
−n+1, v

(n)
−n+2, v

(n)
−n+3, . . .). Then by (2.2) we have

Mn
r z−n = x−

n∑
j=1

Mn−j
r (0, . . . , 0, v

(n)
−n+j)

t,

thus ‖Mn
r z−n − x‖ < R and, hence, ‖t− x‖ ≤ R. The uniform boundedness of the cardinality of

{x ∈ Zd | t ∈ Tr(x)} and the local finiteness follow immediately. �

Lemma 3.4. Let r ∈ int(Dd) be reduced and denote by δ(·, ·) the Hausdorff metric induced by a
norm satisfying (3.1). Then (Mn

r τ
−n
r (x))n≥0 is a Cauchy sequence w.r.t. δ, in particular,

δ
(
Mn

r τ
−n
r (x),Mn+1

r τ−n−1
r (x)

)
≤ ρ̃n‖(0, . . . , 0, 1)t‖.

Proof. Let t ∈Mn
r τ
−n
r (x). Then

(3.2) Mn+1
r τ−1

r (M−nr t) ⊂Mn+1
r τ−n−1

r (x).

Note that τr is surjective since 0 < |r0| = |detMr| < 1. Thus there exists some t′ ∈ τ−1
r (M−nr t).

By the definition of τr, there is a v = (0, . . . , 0, v) with v ∈ [0, 1) such that τr(t
′) = Mrt

′+v. Now
we have Mrt

′ + v = M−nr t. Using (3.2), this gives t−Mn
r v = Mn+1

r t′ ∈Mn+1
r τ−n−1

r (x).
On the other hand, let t ∈ Mn+1

r τ−n−1
r (x). Then Mn

r τr(M
−n−1
r t) ∈ Mn

r τ
−n
r (x). As there

exists a v = (0, . . . , 0, v) with v ∈ [0, 1) such that τr(M
−n−1
r t) = M−nr t + v, we conclude that

t +Mn
r v ∈Mn

r τ
−n
r (x).

Since ‖Mn
r v‖ ≤ ρ̃n‖(0, . . . , 0, 1)t‖ we are done. �

Theorem 3.5 (Basic properties of SRS tiles). Let r ∈ int(Dd) be reduced and x ∈ Zd. The SRS
tile Tr(x) can be written as

Tr(x) = Lim
n→∞

Mn
r τ
−n
r (x)

where Lim denotes the limit w.r.t. the Hausdorff metric δ. It is a non-empty compact set that
satisfies the set equation

(3.3) Tr(x) =
⋃

y∈τ−1
r (x)

MrTr(y).

Proof. The fact that the Hausdorff limit Limn→∞Mn
r τ
−n
r (x) exists and equals Tr(x) follows from

Lemma 3.4. Moreover, Tr(x) is closed since Hausdorff limits are closed by definition. As it is also
bounded by Lemma 3.3 the compactness of Tr(x) is shown. The fact that Tr(x) is non-empty
follows from the surjectivity of τr. It remains to prove the set equation. This follows from

Tr(x) = Lim
n→∞

Mn
r τ
−n
r (x) = Mr Lim

n→∞

⋃
y∈τ−1

r (x)

Mn−1
r τ−n+1

r (y)

= Mr

⋃
y∈τ−1

r (x)

Lim
n→∞

Mn−1
r τ−n+1

r (y) = Mr

⋃
y∈τ−1

r (x)

Tr(y). �

The points in an SRS tile are characterized by the following proposition.

Proposition 3.6. Let r ∈ int(Dd) be reduced and x ∈ Zd. Then t ∈ Tr(x) if and only if there
exist some numbers v−j ∈ [0, 1), j ∈ N, such that

(3.4) t = x−
∞∑
j=0

M j
r (0, . . . , 0, v−j)

t

and

(3.5) M−nr

(
x−

n−1∑
j=0

M j
r (0, . . . , 0, v−j)

t
)
∈ Zd for all n ∈ N.

Set z−n := M−nr

(
x−

∑n−1
j=0 M

j
r (0, . . . , 0, v−j)

t
)

. Then condition (3.5) is equivalent to z0 = x,

(3.6) τr(z−n) = z−n+1 and v−n+1 = {rz−n} for all n ≥ 1.
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Proof. The equivalence of (3.5) and (3.6) follows from Proposition 2.6. If these conditions hold
and t is defined by (3.4), then it is clear from Remark 3.2 that t ∈ Tr(x).

Now let t ∈ Tr(x). We show that we can choose the z−n given in Remark 3.2 such that
τr(z−n) = z−n+1 for all n ≥ 1. Let z0 = x. By (3.3), there is some z−1 ∈ τ−1

r (z0) with
M−1

r t ∈ Tr(z−1), and inductively z−n ∈ τ−1
r (z−n+1) with M−nr t ∈ Tr(z−n) for all n ≥ 1. By

Lemma 3.3, we have ‖M−nr t − z−n‖ ≤ R, thus limn→∞Mn
r z−n = t, and t is of the form (3.4)

with v−n+1 = {rz−n}. �

It remains to show the covering property.

Proposition 3.7. Let r ∈ int(Dd) be reduced. The family of SRS tiles {Tr(x) | x ∈ Zd} is a
covering of Rd, i.e., ⋃

x∈Zd
Tr(x) = Rd.

Proof. Set C =
⋃

x∈Zd Tr(x). By Lemma 3.3 and the non-emptiness of Tr(x), the set C is relatively

dense in Rd. By (3.3), we have MrC ⊆ C. As Mr is contractive, this implies that C is dense in Rd.
We conclude by noticing that the SRS tiles are compact by Theorem 3.5 and that the family of
SRS tiles {Tr(x) | x ∈ Zd} is locally finite, according to Lemma 3.3. �

3.3. Around the origin. The tile associated with 0 plays a specific role.

Definition 3.8 (Central SRS tile). Let r ∈ int(Dd) be reduced. The tile Tr(0) is called central
SRS tile associated with r.

Since τr(0) = 0 for every r ∈ int(Dd), the origin is an element of the central tile. However, in
general it can be contained in finitely many other tiles of the collection {Tr(x) | x ∈ Zd}. Whether
or not 0 is contained exclusively in the central tile plays an important role in numeration. Indeed,
for beta-numeration, 0 is contained exclusively in the central beta-tile (see Definition 6.5 below)
if and only if the so-called finiteness property (F) is satisfied (see [3, 20]). An analogous criterion
holds for CNS (cf. [11]). Now, we show that this characterizes also the SRS with finiteness property.

Definition 3.9 (Purely periodic point). Let r ∈ Dd. A point z ∈ Zd is called purely periodic if
τpr (z) = z for some p ≥ 1.

Theorem 3.10. Let r ∈ int(Dd) be reduced and x ∈ Zd. Then 0 ∈ Tr(x) if and only if x is purely
periodic. There are only finitely many purely periodic points.

Proof. We first show that, if x is purely periodic with period p, then 0 ∈ Tr(x). We have τpr (x) = x.
Therefore x ∈ τ−kpr (x) for all k ∈ N, and since Mr is contractive we gain

0 = lim
k→∞

Mkp
r x ∈ Tr(x).

To prove the other direction, let 0 ∈ Tr(x), x ∈ Zd. Let z−n ∈ τ−nr (x) be defined as in
Proposition 3.6, with t = 0. Multiplying (3.4) by M−nr , we gain 0 ∈ Tr(z−n) for all n ∈ N by
Proposition 3.6 because the expression in (3.5) is zero for each n ∈ N in this case. By Lemma 3.3,
the set {z−n | n ∈ N} is finite, therefore we have z−n = z−k for some n > k ≥ 0. Since
τn−kr (z−n) = z−k, we gain that z−n is purely periodic, and thus the same is true for x = τnr (z−n).

Again, by Lemma 3.3, it follows that only points x ∈ Zd with ‖x‖ ≤ R can be purely periodic.
Note that this was already proved in [5]. �

A point t ∈ Rd that satisfies t ∈ Tr(x) \
⋃

y 6=x Tr(y) for some x ∈ Zd is called an exclusive

point of Tr(x) according to the terminology introduced in [3] in the case of beta-tiles. Note
that every exclusive point of Tr(x) is an inner point of Tr(x) because SRS tiles are compact
(Theorem 3.5) and because the collection {Tr(x) | x ∈ Zd} is locally finite (Lemma 3.3) and
covers Rd (Proposition 3.7). We will come back to the notion of exclusive points in Section 4. The
following corollary is a consequence of Theorem 3.10.

Corollary 3.11. Let r ∈ int(Dd) be reduced. Then r ∈ D(0)
d if and only if 0 ∈ Tr(0)\

⋃
y 6=0 Tr(y).
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Proof. Note that r ∈ D(0)
d if and only if each orbit ends up in 0, implying that 0 is the only purely

periodic point. �

It immediately follows that for r ∈ D(0)
d the central tile Tr(0) has non-empty interior. One may

ask if the interior of Tr(x) is non-empty for each choice r ∈ int(Dd), x ∈ Zd. The answer is no, as
the following example shows.

Example 3.12. Set r = ( 9
10 ,−

11
20 ). Consider the points

z1 = (−1,−1)t, z2 = (−1, 1)t, z3 = (1, 2)t, z4 = (2, 1)t, z5 = (1,−1)t.

It can easily be verified that

τr : z1 7→ z2 7→ z3 7→ z4 7→ z5 7→ z1.

Thus, each of these points is purely periodic. Now calculate τ−1
r (z1):

τ−1
r (z1) =

{
(x,−1)t

∣∣∣ x ∈ Z, 0 ≤ 9

10
x+

11

20
− 1 < 1

}
=
{

(1,−1)t
}

= {z5}.

Similarly it can be shown that τ−1
r (zi) = {zi−1} for i ∈ {2, 3, 4, 5}. Hence every tile Tr(zi),

i ∈ {1, 2, 3, 4, 5}, consists of a single point (the point 0). The central tile Tr(0) for this parameter
is the one shown in Figure 1 on the lower right hand side.

Example 3.13. For r = ( 3
4 , 1), the tiles Tr(x) with ‖x‖∞ ≤ 2 are depicted in Figure 3. As r ∈ D(0)

d ,

we will see in Corollary 4.7 that the collection {Tr(x) | x ∈ Zd} is a weak tiling of Rd.

Figure 3. The SRS tiles Tr(x) with ‖x‖∞ ≤ 2 corresponding to r = ( 3
4 , 1).
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4. Multiple tilings and tiling conditions

According to Proposition 3.7, the family {Tr(x) | x ∈ Zd} of SRS tiles forms a covering of Rd.
Various tiling conditions concerning CNS and beta-tiles are spread in the literature (see e.g. the
references in [14, 17]). They are of a combinatorial or dynamical nature, or they are expressed
in terms of number systems. Among these conditions, the fact that 0 is an inner point of the
central tile plays an important role, which is related to the finiteness property (F) introduced and
discussed in Sections 6 (see e.g. [2] for the case of beta-tiles).

In this section, we study tiling properties of SRS tiles. The notions of covering and tiling we
will use here are discussed in Section 4.1. In Section 4.2, some facts on m-exclusive points are
shown. A sufficient condition for coverings to be in fact tilings is given in Section 4.3.

4.1. Coverings and tilings. According to Lemma 3.3 and Proposition 3.7, the family of SRS
tiles {Tr(x) | x ∈ Zd} is a covering with bounded degree, that is, every point t ∈ Rd is contained
in a finite and uniformly bounded number of tiles. Thus there exists a unique positive integer
m such that every point t ∈ Rd is contained in at least m SRS tiles and there exists a point
that is contained in exactly m tiles. Let us introduce several definitions concerning the notions of
covering and tiling.

Definition 4.1 (Covering and tiling; exclusive and inner point). Let K be a locally finite collection
of compact subsets covering Rd.

• The covering degree with respect to K of a point t ∈ Rd is given by deg(K, t) := #{K ∈
K | t ∈ K}.

• The covering degree of K is given by deg(K) := min{deg(K, t) | t ∈ Rd}.
• The collection K is a weak m-tiling if deg(K) = m and

⋂m+1
i=1 int(Ki) = ∅ for every choice

of m+ 1 pairwise different K1, . . . ,Km+1 ∈ K. A weak 1-tiling is also called weak tiling.
• A point t ∈ Rd is m-exclusive with respect to K if deg(K, t) = deg(K) = m.
• A point t ∈ Rd is an inner point of the collection K if t 6∈

⋃
K∈K ∂K.

In particular, the collection K is a weak tiling if each inner point of K belongs to exactly one
element of K. Moreover, the definition of 1-exclusive points with respect to {Tr(x) | x ∈ Zd}
recovers the notion of exclusive points introduced in Section 3.3.

Let us recall that a tiling by translation is often defined as a collection of tiles having finitely
many tiles up to translation, with a tile being assumed to be the closure of its interior. We study
weak tilings in the sense of Definition 4.1 because of the following reasons:

• There exist choices of r ∈ int(Dd), x ∈ Zd, such that the tile Tr(x) is not the closure of its
interior, see Example 3.12.

• There exist parameters r ∈ int(Dd) such that the family {Tr(x) | x ∈ Zd} is not a collection
of finitely many tiles up to translation, e.g. r = (−2/3), see Corollary 5.20. We conjecture
that this holds for every r related to a non-monic CNS (see Section 5) or a non-unit Pisot
number (see Section 6).

• We are not able to show that the boundaries of the tiles Tr(x) have zero d-dimensional
Lebesgue measure. If r is related to a monic CNS or a unit Pisot number, the fact that the
boundary of each tile has zero measure is a direct consequence of the self-affine structure of
the boundary of the tiles (cf. [3, 25, 30]). For other parameters r, we have no appropriate
description of the boundary, and we cannot evaluate its measure.

We are now going to prove that, for a large class of parameters r, the collection {Tr(x) | x ∈ Zd}
is a weak m-tiling, by showing that the set of m-exclusive points is dense in Rd.

4.2. m-exclusive points. Let us first prove that m-exclusive points are always inner points of
{Tr(x) | x ∈ Zd}.

Lemma 4.2. Let r ∈ int(Dd) be reduced and let m be the covering degree of {Tr(x) | x ∈ Zd}.
Then there exists an m-exclusive point. Every m-exclusive point t ∈

⋂m
i=1 Tr(xi) satisfies t ∈⋂m

i=1 int(Tr(xi)). In particular, m-exclusive points are inner points of {Tr(x) | x ∈ Zd}.
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Proof. The existence of anm-exclusive point is a direct consequence of the definition of the covering
degree.

Assume that t is an m-exclusive point. Let Tr(x1), . . . , Tr(xm) be the m tiles it belongs to.
Assume that there exists a sequence of points (tn)n∈N with values in Rd such that limn→∞ tn = t,
and a sequence of points (zn)n∈N with values in Zd such that tn ∈ Tr(zn) for all n ∈ N, with
zn distinct from all xi’s. Since the collection is locally finite, an infinite subsequence of zn’s
is constant, say equal to z. Since the tiles are compact, this implies that t ∈ Tr(z), which
contradicts the m-exclusivity. Thus there exists a neighbourhood U of t with U ∩ Tr(z) = ∅ for
each z ∈ Zd \ {x1, . . . ,xm}. By the m-covering property, we know that each point belongs to at
least m tiles, which implies that U ⊆

⋂m
i=1 Tr(xi). �

Let us now prove that an m-exclusive point t ∈
⋂m
i=1 Tr(xi) is somehow characterized by any se-

quence of approximations Mn
r z−n defined in Proposition 3.6. Note that t = Limn→∞Mn

r Tr(z−n),
and that Mn

r Tr(z−n) is a tile in the n-fold subdivision Tr(xi) =
⋃

z∈τ−nr (xi)
Mn

r Tr(z) for some xi,

which is given by applying (3.3) n times. The following proposition states that a point t is m-
exclusive provided that, for some n ∈ N, each Mn

r Tr(z−n + y) with ‖y‖ ≤ 2R occurs in the
subdivision of some tile Tr(xi), 1 ≤ i ≤ m.

Proposition 4.3. Let m be the covering degree of {Tr(x) | x ∈ Zd}, t ∈ Rd, (z−n)n∈N as in
Proposition 3.6, and R defined by (3.1). Then t is m-exclusive and contained in the intersection⋂m
i=1 Tr(xi) if and only if there exists some n ∈ N such that

(4.1) τnr (z−n + y) ∈ {x1, . . . ,xm} for all y ∈ Zd with ‖y‖ ≤ 2R.

If, for some z ∈ Zd, n ∈ N,

(4.2) #{τnr (z + y) | y ∈ Zd, ‖y‖ ≤ R
}

= m,

then Mn
r z is an m-exclusive point.

Proof. Assume that t is an m-exclusive point. By Lemma 4.2, there exists some ε > 0 such
that every point t′ ∈ Rd satisfying ‖t′ − t‖ < ε lies only in the tiles Tr(x1), . . . , Tr(xm). Let
n ∈ N satisfy 4ρ̃nR < ε. Since M−nr t ∈ Tr(z−n), we have ‖M−nr t−z−n‖ ≤ R by Lemma 3.3, thus
‖t−Mn

r (z−n+y)‖ ≤ 3ρ̃nR if ‖y‖ ≤ 2R. By Theorem 3.5, there exists a point t′ ∈ Tr
(
τnr (z−n+y)

)
with ‖t′−Mn

r (z−n+y)‖ ≤ ρ̃nR. Since ‖t′−t‖ ≤ 4ρ̃nR < ε, we obtain τnr (z−n+y) ∈ {x1, . . . ,xm}.
For the other direction, assume that there exists some n ∈ N such that (4.1) holds. We have

to show that t ∈ Tr(z′0) implies z′0 ∈ {x1, . . . ,xm}. Let (z′−n)n∈N be as in Proposition 3.6. Since
‖M−nr t − z′−n‖ ≤ R and ‖M−nr t − z−n‖ ≤ R, (4.1) implies τnr (z′−n) ∈ {x1, . . . ,xm}. Since
z′0 = τnr (z′−n), the point t is m-exclusive.

For the second statement, let {τnr (z + y) | y ∈ Zd, ‖y‖ ≤ R
}

= {x1, . . . ,xm}, Mn
r z ∈ Tr(z′0),

and (z′−n)n∈N be as in Proposition 3.6, with t = Mn
r z. Then we have ‖z′−n − z‖ ≤ R, thus

z′0 ∈ {x1, . . . ,xm} and Mn
r z is m-exclusive. �

Note that Proposition 4.3 provides an easy way to show that a point is m-exclusive. However,
it does not provide a finite method to prove that a point is not m-exclusive.

The following corollary of Proposition 4.3 permits us to obtain an m-exclusive point from
another one, by finding a translation preserving the local configuration of tiles up to the n-th
level, with n such that (4.2) holds.

Corollary 4.4. Let m be the covering degree of {Tr(x) | x ∈ Zd}, and assume that z ∈ Zd, n ∈ N
satisfy (4.2). Let a ∈ Zd. If there exists some b ∈ Zd such that

τnr (z + a + y) = τnr (z + y) + b for all y ∈ Zd with ‖y‖ ≤ R,

then Mn
r (z + a) is an m-exclusive point.

A simple way to obtain an infinite number of m-exclusive points from one m-exclusive point
t 6= 0 is provided by the following lemma.

Lemma 4.5. If t is an m-exclusive point, then Mrt is an m-exclusive point.
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Proof. If Mrt ∈ Tr(xi), then there exists some yi ∈ τ−1
r (xi) such that t ∈ Tr(yi), and all yi are

mutually different if the xi are. Therefore the number of tiles to which a point Mrt belongs cannot
be larger than that for t. �

4.3. Weak m-tilings. In what follows we will establish our tiling results. In order to prove
these results we first show that if r has certain algebraic properties then there exists a set that is
relatively dense in Rd containing only vectors that stabilize the configuration of tiles. Together
with Corollary 4.4 and Lemma 4.5, this will prove that {Tr(x) | x ∈ Zd} forms a weak m-tiling.
If r also satisfies the finiteness property, it even forms a weak tiling.

Theorem 4.6. Let r = (r0, . . . , rd−1) ∈ int(Dd) with r0 6= 0, let m be the covering degree of
{Tr(x) | x ∈ Zd}, and assume that r satisfies one of the following conditions:

• r ∈ Qd,
• (x− β)(xd + rd−1x

d−1 + · · ·+ r1x+ r0) ∈ Z[x] for some β > 1,
• r0, . . . , rd−1 are algebraically independent over Q.

Then the set of m-exclusive points is dense in Rd, and {Tr(x) | x ∈ Zd} is a weak m-tiling.

Proof. By the definition of the covering degree (Definition 4.1), there exists an m-exclusive point
t with respect to {Tr(x) | x ∈ Zd}. Thus the first part of Proposition 4.3 implies that there exist
z ∈ Zd and n ∈ N satisfying (4.2). If we find a relatively dense set Λ of vectors a ∈ Zd satisfying
the conditions of Corollary 4.4, then the set {Mn

r (z + a) | a ∈ Λ} forms a set of m-exclusive inner
points which is relatively dense in Rd. Applying Lemma 4.5 to the elements of this set yields that
the set of m-exclusive points is dense in Rd. In view of Definition 4.1, this already proves that
{Tr(x) | x ∈ Zd} forms a weak m-tiling.

It remains to find a relatively dense set Λ of vectors a ∈ Zd satisfying the conditions of Corol-
lary 4.4. This is done separately for each of the three classes of parameters given in the statement
of the theorem.

Case 1: r ∈ Qd. Let z ∈ Zd and n ∈ N satisfying (4.2) be given as above. Choose q ∈ N in a way
that r ∈ q−1Zd. Then we have for every x,a ∈ Zd, k ≥ 1,

τr(x + qka) = Mr(x + qka) +
(
0, . . . , 0,

{
r(x + qka)

})
= τr(x) + qk−1a′

for some a′ ∈ Zd which does not depend on x. Iterating this, we get that τnr (x+ qna) = τnr (x) +b
for some b ∈ Zd which does not depend on x. In particular, this implies that

τnr (x + qna + y) = τnr (x + y) + b for all y ∈ Zd with ‖y‖ ≤ R.
Thus each element of the set Λ := {qna | a ∈ Zd} satisfies the conditions of Corollary 4.4. As Λ
is relatively dense in Rd, we are done in this case.

Case 2: A(x) = (x− β)(xd + rd−1x
d−1 + · · ·+ r1x+ r0) ∈ Z[x] for some β > 1. Let z ∈ Zd and

n ∈ N satisfying (4.2) be given as above. Since r ∈ int(Dd), all roots of xd+rd−1x
d−1+· · ·+r1x+r0

have modulus less than 1. Therefore, A(x) is irreducible. (Indeed, β is a Pisot number.) Let

ε := min
‖y‖≤R, 0≤k<n

β−k
(
1−

{
rτkr (z + y)

})
> 0.

From the definition of τr we know that for every x, a ∈ Zd, one has τr(x + a) = τr(x) + τr(a) if
and only if {rx + ra} = {rx} + {ra}. In Proposition 6.1, we will see that {rτkr (a)} = T kβ ({ra}),
where Tβ is the β-transformation defined in Section 6.1. If we choose a ∈ Zd such that {ra} < ε,
then we get {rτkr (a)} = βk{ra} for 0 ≤ k < n, and

(4.3) τkr (z + a + y) = τkr (z + y) + τkr (a) for all ‖y‖ ≤ R, 0 ≤ k ≤ n.
Thus each element of the set Λ := {a ∈ Zd | {ra} < ε} satisfies the conditions of Corollary 4.4.
Since A(x) is irreducible, the coordinates of r are linearly independent over Q. Thus Kronecker’s
theorem yields that Λ is relatively dense in Rd and we are done also in this case.

Case 3: r0, . . . , rd−1 are algebraically independent. Let z ∈ Zd and n ∈ N satisfying (4.2) be
given as above. Set

εk := min
‖y‖≤R

(
1−

{
rτkr (z + y)

})
for 0 ≤ k < n.
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We have εk > 0. Similarly to Case 2, each element of the set

Λ := {a ∈ Zd | {rτkr (a)} < εk for 0 ≤ k < n}

satisfies (4.3). Thus each a ∈ Λ satisfies the conditions of Corollary 4.4. It remains to prove that
Λ is relatively dense in Rd. To this matter we need the following notations. Let bxe denote the
nearest integer to x ∈ R (with bz + 1/2e = z for z ∈ Z), let {x}c = x − bxe be the “centralized
fractional part” and set

τ̃r(x) = Mrx + (0, . . . , 0, {rx}c).
Consider the partition Λ =

⋃
η∈{0,1}n Λη with

Λη := {a ∈ Zd | {rτkr (a)} ∈ ηkεk/2 + [0, εk/2) for 0 ≤ k < n} (η ∈ {0, 1}n)

(here η = (η0, . . . , ηn−1)). We will prove the following claim.
Claim. Let ej , 1 ≤ j ≤ d, be the canonical unit vectors. For each η ∈ {0, 1}n and j ∈ {1, . . . , d},
there exists zη,j ∈ Z with

(4.4)
{
rτ̃kr (zη,jej)}c ∈ (−1)ηk [0, εk/2) for all 0 ≤ k < n.

Before we prove this claim we show that it implies the relative denseness of Λ in Rd. Indeed,
let η ∈ {0, 1}n and j ∈ {1, . . . , d} be arbitrary. Then the claim yields that for each a ∈ Λη we have{

rτkr (a + zη,jej)
}

=
{
r
(
τkr (a) + τ̃kr (zη,jej)

)}
=
{
rτkr (a)}+ {rτ̃kr (zη,jej)

}
c
∈ [0, εk)

and thus a + zη,jej ∈ Λ. Moreover, by analogous reasoning we see that the claim implies the
following “dual” result: for each η ∈ {0, 1}n set η′ := (1, . . . , 1) − η ∈ {0, 1}n. Then for each
j ∈ {1, . . . , d} and each a ∈ Λη we have a− zη′,jej ∈ Λ.

Summing up, the claim implies that from each a ∈ Λ there exist other elements of Λ in uniformly
bounded distance in all positive and negative coordinate directions. This proves that Λ is relatively
dense in Rd. Thus it remains to prove the above claim.

To prove this claim let η = (η0, . . . , ηn−1) ∈ {0, 1}n and j ∈ {1, . . . , d} be arbitrary but fixed.
We need to find an integer zη,j satisfying (4.4). First observe that for b ∈ Zd

(4.5) τ̃kr (b) = Mk
r b +

k−1∑
j=0

Mk−j−1
r

(
0, . . . , 0, {rτ̃ jr (b)}c

)t
.

Let γk = {rMk
r ed}c, 0 ≤ k < n. If the arguments of all centralized fractional parts are small, then

multiplying (4.5) by r and applying {·}c yields

(4.6) {rτ̃kr (b)}c = {rMk
r b}c +

k−1∑
j=0

{rτ̃ jr (b)}c γk−j−1.

Inserting (4.6) iteratively in itself we gain

{rτ̃kr (b)}c = {rMk
r b}c +

∑
k=j0>j1>···>j`≥0, `≥1

{rM j`
r b}c

`−1∏
i=0

γji−ji+1−1

=

k∑
h=0

{rMh
r b}c

∑
k=j0>···>j`=h, `≥0

`−1∏
i=0

γji−ji+1−1.

Setting

ck :=
∑

k=j0>···>j`=0, `≥0

`−1∏
i=0

γji−ji+1−1

we get

{rτ̃kr (b)}c =

k∑
h=0

ck−h {rMh
r b}c.
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Now we inductively choose intervals Ik, 0 ≤ k < n, satisfying

Ik +

k−1∑
h=0

ck−hIh ⊆ (−1)ηk [0, εk/2).

W.l.o.g., we can choose the intervals Ik sufficiently small such that (4.6) holds provided that
{rMk

r b}c ∈ Ik for 0 ≤ k < n.
Since r0, . . . , rd−1 are algebraically independent, the numbers {rMk

r ej}c, for 0 ≤ k < n, are
linearly independent over Q. Thus Kronecker’s theorem yields the existence of an integer zη,j
satisfying {zη,jrMk

r ej}c ∈ Ik for 0 ≤ k < n, hence, zη,j satisfies (4.4) and we are done. �

Since Corollary 3.11 implies that for each SRS with finiteness property the origin is an exclusive
point of Tr(0) we gain the following tiling property.

Corollary 4.7. If r ∈ D(0)
d is reduced and satisfies one of the conditions of Theorem 4.6, then

{Tr(x) | x ∈ Zd} is a weak tiling.

Let us stress the fact that we have no general algorithmic criterion to check Proposition 4.3.
This is mainly due to the fact that we have no IFS describing the boundary of an SRS tile.
Nonetheless, Theorem 4.6 implies a tiling criterion.

Corollary 4.8. If r ∈ int(Dd) is reduced and satisfies one of the conditions of Theorem 4.6, then
the collection {Tr(x) | x ∈ Zd} is a weak tiling if and only if it has at least one exclusive point.

We conclude this section with a result that treats the case d = 1 in a very complete way. (We
identify one dimensional vectors with scalars here.)

Theorem 4.9. Let r ∈ int(D1) be reduced, i.e., 0 < |r| < 1. Then {Tr(x) | x ∈ Z} is a tiling of R
by (possibly degenerate) intervals. Here, tiling has to be understood in the usual sense, i.e.,⋃

x∈Z
Tr(x) = R with #

(
Tr(x) ∩ Tr(x′)

)
≤ 1 for x, x′ ∈ Z, x 6= x′.

Proof. Let first r > 0 and x0, y0 ∈ Z. Then by the definition of τr we easily see that x0 > y0

implies that −x1 > −y1 for each x1 ∈ τ−1
r (x0), y1 ∈ τ−1

r (y0). Thus, by induction on n we have

(4.7) x0 > y0 implies that (−1)nxn > (−1)nyn for each xn ∈ τ−nr (x0), yn ∈ τ−nr (y0).

Observe that Mr = −r holds for the companion matrix in this case. Renormalizing (4.7) we now
get the following assertion. Suppose that x0 > y0. Then

(4.8) x ∈ (−r)nτ−nr (x0), y ∈ (−r)nτ−nr (y0) implies that x > y.

Since
Tr(z) = Lim

n→∞
(−r)nτ−nr (z)

holds for each z ∈ Z, (4.8) yields that Tr(x0) and Tr(y0) have at most one point in common. Thus
the result follows for the case r > 0. The case r < 0 can be treated similarly. �

5. SRS and canonical number systems

The aim of this section is to relate SRS tiles to tiles associated with expanding polynomials.
We recall that an expanding polynomial is a polynomial each of whose roots is strictly larger than
one in modulus.

5.1. Expanding polynomials over Z, SRS representations and canonical number sys-
tems. Let A = adx

d +ad−1x
d−1 + · · ·+ a1x+ a0 ∈ Z[x], a0 ≥ 2, ad 6= 0, and Q := Z[x]/AZ[x] the

factor ring, with X ∈ Q being the image of x under the canonical epimorphism. Furthermore, set
N = {0, . . . , a0 − 1}. We want to represent each element P ∈ Q formally as

(5.1) P =

∞∑
n=0

bnX
n (bn ∈ N ).

More precisely, we want to find a sequence (bn)n∈N as in the following definition.
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Definition 5.1 ((A,N )-representation). Let P ∈ Q = Z[x]/AZ[x]. A sequence (bn)n∈N with

bn ∈ N is called an (A,N )-representation of P if P −
∑m−1
i=0 bnX

n ∈ XmQ for all m ∈ N.

In order to show that such an representation exists and is unique, we introduce a backward
division mapping DA : Q → Q.

Lemma 5.2. The backward division mapping DA : Q → Q given for P =
∑`
i=0 piX

i, pi ∈ Z, by

DA(P ) =

`−1∑
i=0

pi+1X
i −

d−1∑
i=0

qai+1X
i, q =

⌊
p0

a0

⌋
,

is well defined. Every P ∈ Q has one and only one (A,N )-representation.

Proof. It is easy to see that DA(P ) does not depend on the choice of the representation of P , that
P = (p0 − qa0) +XDA(P ), and that b0 = p0 − qa0 is the unique element in N with P − b0 ∈ XQ
(for the case of monic polynomials A, this is detailed in [5]; for the non-monic case, see [37]).

The (A,N )-representation can be obtained by successively applying DA, which yields

P =

m−1∑
n=0

bnX
n +XmDm

A (P )

with bn = Dn
A(P )−XDn+1

A (P ) ∈ N . Therefore, the (A,N )-representation of P is unique. �

In order to relate DA to an SRS, we use an appropriate Z-submodule of Q, following [37].

Definition 5.3 (Brunotte basis and Brunotte module). The Brunotte basis modulo A is defined
by {W0, . . . ,Wd−1} with

(5.2) W0 = ad and Wk = XWk−1 + ad−k for 1 ≤ k ≤ d− 1.

The Brunotte module ΛA is the Z-submodule of Q generated by the Brunotte basis. The repre-
sentation mapping with respect to the Brunotte basis is denoted by

ΨA : ΛA → Zd, P =

d−1∑
k=0

zkWk 7→ (z0, . . . , zd−1)t.

Note that ΛA is isomorphic to Q if A is monic. (Here, monic means that ad ∈ {−1, 1}.) This
is easily seen by checking that the coordinate matrix of {W0, . . . ,Wd−1} w.r.t. {1, X, . . . ,Xd−1}
is given by

(5.3) V :=



ad ad−1 · · · · · · a1

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . ad−1

0 · · · · · · 0 ad


.

The restriction to Brunotte module ΛA allows us to relate the SRS transformation τr to the
backward division mapping DA in the following way.

Proposition 5.4. Let A = adx
d + ad−1x

d−1 + · · · + a1x + a0 ∈ Z[x], a0 ≥ 2, ad 6= 0, r =(
ad
a0
, . . . , a1a0

)
. Then we have

(5.4) Dn
AΨ−1

A (z) = Ψ−1
A τnr (z) for all z ∈ Zd, n ∈ N.

In particular, the restriction of DA to the Brunotte module ΛA is conjugate to τr.

Proof. On ΛA, the mapping DA can be written as

(5.5) DA

( d−1∑
k=0

zkWk

)
=

d−2∑
k=0

zk+1Wk −
⌊
z0ad + · · ·+ zd−1a1

a0

⌋
Wd−1

(see e.g. [5, Section 3]). Therefore, we have DAΨ−1
A (z) = Ψ−1

A τr(z), which implies (5.4). Since ΨA

is bijective, the restriction of DA to ΛA is conjugate to τr. �
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Note that in the monic case this gives a conjugacy between the backward division mapping on
the full set Q and the SRS transformation.

With help of the conjugacy proved in Proposition 5.4, we get a simple formula to gain the
(A,N )-representation (5.1) for each P ∈ ΛA using the associated transformation τr.

Lemma 5.5. Let A = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 ∈ Z[x], a0 ≥ 2, ad 6= 0, r =
(
ad
a0
, . . . , a1a0

)
.

The (A,N )-representation of P ∈ ΛA is given by

bn =
{
r τnr ΨA(P )

}
a0 for all n ∈ N.

Proof. For fixed n, let Dn
A(P ) =

∑d−1
k=0 zkWk and recall that ΨAD

n
A(P ) = (z0, . . . , zd−1). By (5.2),

(5.5) and the fact that XWd−1 + a0 = 0, we obtain that

XDA

( d−1∑
k=0

zkWk

)
=

d−2∑
k=0

zk+1(Wk+1 − ad−k−1) +

⌊
z0ad + · · ·+ zd−1a1

a0

⌋
a0,

therefore

bn = Dn
A(P )−XDn+1

A (P )

= z0W0 +

d−2∑
k=0

zk+1ad−k−1 −
⌊
z0ad + · · ·+ zd−1a1

a0

⌋
a0 =

{
z0ad + · · ·+ zd−1a1

a0

}
a0

=
{
r ΨAD

n
A(P )

}
a0 =

{
r τnr ΨA(P )

}
a0. �

If the (A,N )-representation (bn)n∈N has only finitely many non-zero elements, then P can be
written as a finite sum of the shape

P =

m−1∑
n=0

bnX
n (bn ∈ N ).

We recover the following well-known notion of canonical number systems.

Definition 5.6 (Canonical number system). Let A = adx
d+ · · ·+a1x+a0 ∈ Z[x], a0 ≥ 2, ad 6= 0,

Q = Z[x]/AZ[x], and N = {0, . . . , a0 − 1}. If for each P ∈ Q, the (A,N )-representation (bn)n∈N,
bn ∈ N , has only finitely many non-zero elements, then we call (A,N ) a canonical number system
(CNS, for short).

It is shown in [37] that it is sufficient to check the finiteness of the (A,N )-representations for
all P ∈ ΛA in order to check whether (A,N ) is a CNS. Thus the conjugacy between DA and τr is
sufficient to reformulate the CNS property in terms of SRS with finiteness property.

Proposition 5.7. Let A = adx
d + ad−1x

d−1 + · · · + a1x + a0 ∈ Z[x], a0 ≥ 2, ad 6= 0, and
N = {0, . . . , a0 − 1}. Then the following assertions hold.

• The polynomial A is expanding if and only if r =
(
ad
a0
, ad−1

a0
, . . . , a1a0

)
is contained in int(Dd).

• The pair (A,N ) is a CNS if and only if r =
(
ad
a0
, ad−1

a0
, . . . , a1a0

)
∈ D(0)

d .

Proof. The first assertion follows from Lemma 2.3. The second assertion follows from the conjugacy
given in Proposition 5.4 together with the fact that it is sufficient to check the finiteness of the
(A,N )-representations for all P ∈ ΛA (see also [37]). �

5.2. Tiles associated with an expanding polynomial. We define two classes of tiles for
expanding polynomials. The first definition goes back to Kátai and Kőrnyei [26] (see also [38]) for
monic polynomials which give rise to a CNS. We first extend this definition to arbitrary expanding
polynomials.

Definition 5.8 (Self-affine tile associated with an expanding polynomial). Let A = adx
d +

ad−1x
d−1 + · · · + a1x + a0 ∈ Z[x] be an expanding polynomial with a0 ≥ 2, ad 6= 0, and

N = {0, . . . , a0 − 1}. The self-affine tile associated with A is defined as

(5.6) FA :=
{

t ∈ Rd
∣∣∣ t =

∞∑
i=1

B−i(ci, 0, . . . , 0)t, ci ∈ N
}
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where B := VM−1
r V −1 with r =

(
ad
a0
, ad−1

a0
, . . . , a1a0

)
, and V is given by (5.3).

Remark 5.9. Easy calculations show that the matrix B in Definition 5.8 is given by

B =



0 · · · · · · 0 − a0
ad

1
. . .

... − a1
ad

0
. . .

. . .
...

...
...

. . .
. . . 0 −ad−2

ad

0 · · · 0 1 −ad−1

ad


.

We use it instead of M−1
r in order to be consistent with the existing literature on CNS tiles.

Since A is expanding, it is easy to see that the series in (5.6) always converges. The tile FA
has the following properties.

• The tile FA is compact.
• The tile FA is a self-affine set (hence the terminology) as it obeys the set equation BFA =⋃

c∈N
(
FA + (c, 0 . . . , 0)t

)
. Indeed, it is the unique non-empty compact set satisfying this

equation (cf. e.g. [15, 19, 23]). Self-affine tiles have been studied extensively in a very
general context in the literature. We refer the reader to the surveys by Vince [42] and
Wang [43].

• If A is monic, then {z+FA | z ∈ Zd} forms a tiling of Rd if A is an irreducible polynomial
(this is an immediate consequence of [31, Corollary 6.2]). Moreover, there exist algorithms
in order to decide whether {z + FA | z ∈ Zd} forms a tiling for any given polynomial A
(see e.g. [42]).

For non-monic polynomials A, the above definition turns out to be not well-suited. The tiles
have strong overlaps. The submodule ΛA is a good tool to define a new class of tiles which forms
a (multiple) tiling also for non-monic polynomials.

Definition 5.10 (Brunotte tile associated with an expanding polynomial). Let A = adx
d +

ad−1x
d−1 + · · · + a1x + a0 ∈ Z[x] be an expanding polynomial with a0 ≥ 2, ad 6= 0, and N =

{0, . . . , a0 − 1}. For each P ∈ ΛA, the Brunotte tile associated with A is defined as

GA(P ) := Li
n→∞

B−nVΨA

(
D−nA (P ) ∩ ΛA

)
,

where Li denotes the lower Hausdorff limit. The set GA(0) is called the central Brunotte tile
associated with the expanding polynomial A.

Lemma 5.11. We have

FA = Lim
n→∞

B−nVΨA

(
D−nA (0)

)
and thus GA(P ) ⊆ VΨA(P ) + FA.

Proof. By the proof of Lemma 5.2, we have P ∈ D−nA (0) if and only if P =
∑n
i=1 ciX

n−i for

some ci ∈ N . Since VΨA(P ) = (p0, . . . , pd−1)t if P =
∑d−1
i=0 piX

i, we obtain recursively that
VΨA(Xi) = Bi(1, 0, . . . , 0)t for all i ≥ 0, hence B−nVΨA(

∑n
i=1 ciX

i) =
∑n
i=1B

−i(ci, 0, . . . , 0)t,
which yields the lemma. �

If A is monic, then we will show that the inclusion in Lemma 5.11 becomes the equality GA(P ) =
VΨA(P ) + FA for every P ∈ Q.

5.3. From tiles associated with expanding polynomials to SRS tiles. Next we show that
the Brunotte tiles are obtained from the SRS tiles by a linear transformation.

Theorem 5.12. Let A = adx
d+ad−1x

d−1 + · · ·+a1x+a0 ∈ Z[x], a0 ≥ 2, ad 6= 0, be an expanding
polynomial, and r =

(
ad
a0
, ad−1

a0
, . . . , a1a0

)
. Then

GA
(
Ψ−1
A (z)

)
= V Tr(z) for all z ∈ Zd.
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Proof. Set P = Ψ−1
A (z). We have

(5.7) B−nVΨA(D−nA (P ) ∩ ΛA) = B−nV τ−nr (z) = VMn
r τ
−n
r (z).

Taking Li for n→∞ proves the result. �

The following corollary shows that the lower Hausdorff limit in the definition of the Brunotte
tiles is indeed a Hausdorff limit, as for the SRS tiles. Furthermore, we show how (5.6) has to be
adapted to give the Brunotte tiles.

Corollary 5.13. The Brunotte tiles can be written as

GA(P ) = Lim
n→∞

B−nVΨA

(
D−nA (P ) ∩ ΛA

)
,

where Lim denotes the Hausdorff limit. Moreover, if P =
∑d−1
k=0 pkX

k, then

GA(P ) = (p0, . . . , pd−1)t +
{

t ∈ Rd
∣∣∣ t =

∞∑
i=1

B−i(ci, 0, . . . , 0)t, ci ∈ N ,

n∑
i=1

ciX
n−i +XnP ∈ ΛA for all n ∈ N

}
.

Proof. The first assertion follows from (5.7) and Theorem 3.5. The second assertion follows from
Proposition 3.6 and the fact that

D−nA (P ) ∩ ΛA =

{ n∑
i=1

ciX
n−i +XnP ∈ ΛA

∣∣∣∣ ci ∈ N}. �

For the monic case, we derive the following corollary.

Corollary 5.14. Suppose that the polynomial A in Theorem 5.12 is monic. Then

GA(P ) = VΨA(P ) + FA for all P ∈ Q.

Now we can state the main result of the present section. It establishes tiling properties for
Brunotte tiles which are even valid in the non-monic case.

Theorem 5.15. Let A = adx
d+ad−1x

d−1 + · · ·+a1x+a0 ∈ Z[x], a0 ≥ 2, ad 6= 0, be an expanding
polynomial, and N = {0, . . . , a0 − 1}. Then the following assertions hold.

• The collection {GA(P ) | P ∈ ΛA} forms a weak m-tiling of Rd for some m ≥ 1.
• If (A,N ) is a CNS, then {GA(P ) | P ∈ ΛA} forms a weak tiling of Rd.

Proof. By Theorem 5.12, it is equivalent to consider the collection {Tr(z) | z ∈ Zd} for r =(
ad
a0
, ad−1

a0
, . . . , a1a0

)
. In view of Proposition 5.7, the first assertion follows from Theorem 4.6, while

the second assertion is a consequence of Corollary 4.7. �

Example 5.16. Consider the monic CNS polynomial A = x2−x+2. The associated SRS parameter
is r = ( 1

2 ,−
1
2 ). The central SRS tile Tr(0) as well as its neighbors are shown in Figure 4 on the

left hand side. To obtain GA
(
Ψ−1(z)

)
= V z+FA, we have to multiply the SRS tiles by the matrix

V =

(
1 −1
0 1

)
. The Brunotte tiles are shown on the right hand side of Figure 4.

An example of SRS tiles associated with the parameter r = (3/4, 1) is discussed in Example 3.13.
The tiles corresponding to this parameter are depicted in Figure 3. It is related to a non-monic
CNS. Also the parameter r = ( 9

10 ,−
11
20 ), which yields tiles that are single points, corresponds to a

non-monic CNS (see Example 3.12).
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Figure 4. The SRS tiles Tr(z) for r =
(

1
2 ,−

1
2

)
, ‖z‖∞ ≤ 1, (left) and the Brunotte

tiles GA
(
Ψ−1(z)

)
= V z + FA associated with A = x2 − x+ 2 (right).

5.4. Rational base number systems. Akiyama et al. [9] considered expansions of integers in
rational bases p/q, with coprime integers p > q ≥ 1, of the form

N =
1

q

∞∑
n=0

bn

(p
q

)n
(bn ∈ N = {0, . . . , p− 1}).

In our setting, the sequence (bn)n∈N is the (A,N )-representation of qN , where A = −qx+ p. The
Brunotte basis modulo A is given by {−q}. By Lemma 5.5, the corresponding SRS τ−q/p(N) =

−
⌊
−N q

p

⌋
yields bn =

{
− q

pτ
n
−q/p(−N)

}
p. (Here we write one-dimensional vectors as scalars.) In

view of Theorem 4.9, we obtain that the collection of tiles associated with these number systems
forms a tiling for each choice p/q with p > q ≥ 1.

For the case p/q = 3/2, we show that the collection {T−2/3(N) | N ∈ Z} consists of (possibly
degenerate) intervals with infinitely many different lengths.

Lemma 5.17. Let I be a finite set of consecutive integers. Then τ−n−2/3(I) is a finite set of

consecutive integers for all n ∈ N, and we have

(#I − 1)
(3

2

)n
+ 1 ≤ #τ−n−2/3(I) ≤ (#I + 1)

(3

2

)n
− 1.

Proof. By the definition of τ−2/3, the preimage of every finite set of consecutive integers is a finite

set of consecutive integers (see also the proof of Theorem 4.9). We have #τ−1
−2/3(N) = 2 if and

only if N is even and #τ−1
−2/3(N) = 1 if N is odd. Therefore the inequalities hold for n = 1, and

by induction for all n ∈ N. �

Lemma 5.18. For every k ≥ 1, there exists some Nk ∈ Z such that #τ−k−2/3(Nk) = 2.

Proof. It follows from [9, Proposition 10] that there exists some Lk ∈ Z such that the (−2x +
3, {0, 1, 2})-representation of 2Lk satisfies b0 = 0, bn = 1 for 1 ≤ n < k. The SRS representation
of −Lk with respect to −2/3 is thus given by (b0/3, b1/3, . . .) = (0, 1/3, . . . , 1/3, bk/3, bk+1/3, . . .).
Let Nk = τk−2/3(−Lk). For 1 ≤ n < k, the set τ−n−2/3(Nk) consists only of the number with SRS

representation (1/3, . . . , 1/3, bk/3, bk+1/3, . . .) because
(
1/3 + (−2/3)Z

)
∩ [0, 1) = {1/3}. Thus

τ−k−2/3(Nk) consists exactly of the two numbers −Lk and −Lk− 1, which have the SRS representa-

tions (0, 1/3, . . . , 1/3, bk/3, bk+1/3, . . .) and (2/3, 1/3, . . . , 1/3, bk/3, bk+1/3, . . .), respectively. �

Proposition 5.19. For every k ≥ 1, there exists some Nk ∈ Z such that(3

2

)−k
≤ λ1(T−2/3(Nk)) ≤ 3

(3

2

)−k
,

where λ1 denotes the one-dimensional Lebesgue measure.
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Proof. We have

λ1(T−2/3(Nk)) = lim
n→∞

(2

3

)n
#τ−n−2/3(Nk) = lim

n→∞

(2

3

)n
#τk−n−2/3(τ−k−2/3(Nk))

for all Nk ∈ Z. For the Nk given by Lemma 5.18, we have #τ−k−2/3(Nk) = 2. Using Lemma 5.17,

the inequalities are proved. �

Summing up we get the following result.

Corollary 5.20. The tiling {T−2/3(N) | N ∈ Z} consists of (possibly degenerate) intervals with
infinitely many different lengths.

6. SRS and beta-expansion

We prove now that there is a tight relation with beta-tiles when r is related to a unit Pisot
number, and that SRS tiles are new objects in the non-unit case (similarly as shown in Section 5
in the non-monic CNS case).

6.1. Beta-expansions and SRS representations. We start with beta-expansions, which were
first studied by Rényi [36] and Parry [33]. For a real number β > 1, the β-transformation Tβ :
[0, 1)→ [0, 1) is defined by Tβ(x) = {βx} = βx− bβxc. The β-expansion of x ∈ [0, 1) is

x =

∞∑
n=1

bnβ
−n with bn =

⌊
βTn−1

β (x)
⌋

for all n ≥ 1.

The following relation between Tβ and τr was shown in [5], see also [21].

Proposition 6.1. Let β > 1 be an algebraic integer with minimal polynomial

(6.1) xd+1 + adx
d + · · ·+ a1x+ a0 = (x− β)(xd + rd−1x

d−1 + · · ·+ r1x+ r0)

and r = (r0, . . . , rd−1). Then we have

(6.2) {rτnr (z)} = Tnβ ({rz}) for all z ∈ Zd, n ∈ N.
In particular, the restriction of Tβ to Z[β] ∩ [0, 1) is conjugate to τr.

Proof. Let z = (z0, . . . , zd−1)t ∈ Zd. If we set zd = −brzc, then we have

(6.3) {rz} = (r0, . . . , rd−1, 1)(z0, . . . , zd−1, zd)
t.

Furthermore, (r0, . . . , rd−1, 1) is a left eigenvector of the companion matrixM(a0,...,ad), in particular

(6.4) (r0, . . . , rd−1, 1)M(a0,...,ad) = β(r0, . . . , rd−1, 1).

Using (6.3), (6.4) and the fact that M(a0,...,ad)(z0, . . . , zd)
t = (z1, . . . , zd,m)t with m ∈ Z, we gain

{rτr(z)} = {r(z1, . . . , zd)
t} = {(r0, . . . , rd−1, 1)M(a0,...,ad)(z0, . . . , zd)

t} = {β{rz}} = Tβ({rz}),
Inductively, we obtain (6.2). Since the polynomial in (6.1) is irreducible, {r0, . . . , rd−1, 1} is a
basis of Z[β]. Therefore the map f : Zd → Z[β] ∩ [0, 1), z 7→ {rz} is bijective, and we have
f ◦ τr = Tβ ◦ f . �

Corollary 6.2. Let β and r be defined as in Proposition 6.1, (v1, v2, v3, . . .) be the SRS represen-
tation of z ∈ Zd and {rz} =

∑∞
n=1 bnβ

−n be the β-expansion of v1 = {rz}. Then we have

vn = Tn−1
β ({rz}) and bn = βvn − vn+1 for all n ≥ 1.

Proof. By Definition 2.4 and (6.2), we have vn = {rτn−1
r (z)} = Tn−1

β ({rz}), which yields the first
assertion. Using this equation and the definition of the β-expansion, we obtain

bn =
⌊
βTn−1

β ({rz})
⌋

= βTn−1
β ({rz})−

{
βTn−1

β ({rz})
}

= βvn − Tnβ ({rz}) = βvn − vn+1. �

The eigenvalues of Mr are exactly the Galois conjugates of β. It follows by Lemma 2.3 that
r ∈ int(Dd) if β is a Pisot number.

Definition 6.3 (Finiteness property (F)). A number β > 1 is said to have the finiteness property
(F) if the β-expansion of every x ∈ Z[β−1] ∩ [0, 1) is finite, i.e., Tnβ (x) = 0 for some n ∈ N.
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Frougny and Solomyak [20] proved that (F) implies that β is a Pisot number. By [3, Lemma 3],
it is sufficient to consider x ∈ Z[β] ∩ [0, 1) in Definition 6.3 (note that in the present section
Z[β] ∩ [0, 1) plays the same role as ΛA plays in Section 5). Therefore Proposition 6.1 implies the
following result (see also [5, Theorem 2.1]).

Proposition 6.4. Let β > 1 be an algebraic integer and let r be as in Proposition 6.1. Then the
following assertions hold.

• r ∈ int(Dd) if and only if β is a Pisot number.

• r ∈ D(0)
d if and only if β satisfies (F).

6.2. Beta-tiles. For any Pisot number β of degree d + 1, Akiyama [3] defined a family of tiles
covering Rd which is conjectured to be always a tiling if β is a unit Pisot number, i.e., if |a0| = 1 in
(6.1). If β is not a unit, then this family cannot be a tiling. In analogy with the previous section,
we modify the definition of the tiles so that we obtain tilings also for non-unit Pisot numbers.

Let β1, . . . , βd be the d = r + 2s Galois conjugates of β, such that β1, . . . , βr ∈ R and
βr+1, . . . , βr+2s ∈ C \ R with βr+1 = βr+s+1, . . . , βr+s = βr+2s. For x ∈ Q(β), 1 ≤ j ≤ d,
denote by x(j) ∈ Q(βj) the corresponding conjugate of x, and let

Φβ : Q(β)→ Rd, x 7→
(
x(1), . . . , x(r),<

(
x(r+1)

)
,=
(
x(r+1)

)
, . . . ,<

(
x(r+s)

)
,=
(
x(r+s)

))t
.

Definition 6.5 (Beta-tile; see [3]). Let β be a Pisot number. For x ∈ Z[β−1] ∩ [0, 1), the set

Rβ(x) := Lim
n→∞

Φβ
(
βnT−nβ (x)

)
,

where the limit is taken with respect to the Hausdorff metric, is called a β-tile. The tile Rβ(0) is
called central β-tile.

Note that the limit in Definition 6.5 exists since Φβ
(
βnT−nβ (x)

)
⊆ Φβ

(
βn+1T−n−1

β (x)
)
. Indeed,

if y ∈ [0, 1), then Tβ(yβ−1) = y, which implies y ∈ βT−1(y).
For unit Pisot numbers, beta-tiles have been studied extensively (mostly under the name “cen-

tral tile”) (see e.g. [2, 3, 41]) and are strongly related to Rauzy fractals associated with unit Pisot
substitutions. For a recent survey on these relations and on properties of Rauzy fractals and
beta-tiles we refer to [17].

Beta-tiles are known to satisfy a graph-directed IFS equation to be compared with the set
equation of Theorem 3.5 (see e.g. the survey [17]). Nonetheless the pieces obtained in the decom-
position of the central tile might not be measurably disjoint. When β is a unit Pisot number, it is
proved that these pieces are disjoint, but when β is not a unit, the pieces do overlap (cf. [39]). To
make the pieces disjoint in the non-unit case, one can use two different strategies: enlarging the
representation space or making the tiles smaller. The first strategy can be found in the literature
(see [4, 39]). It consists in adding p-adic fields for the prime divisors p of the norm of β to the
representation space. In the present work, we want to carry out the second strategy, leading to
tiles that form a tiling of Rd. To this matter, in the p-adic extension obtained with the first
strategy, we have to choose among all points with the same Euclidean part, a single specific point
having p-adic components with certain properties. Using Proposition 6.1, we will see that SRS
tiles actually perform this choice by arithmetical means, that is, by picking points in beta-tiles
that come from Z[β]. (We mention here also Barnsley’s study on fractal tops, which provide a
method to get rid of overlaps in IFS attractors, see [16, Chapter 4].)

Note that beta-tiles can be described as

Rβ(x) = Lim
n→∞

{
Φβ(βny)

∣∣ y ∈ Z[β−1] ∩ [0, 1), Tnβ (y) = x
}
.

Proposition 6.1 shows that we have to consider Z[β] instead of Z[β−1] in this formula to get a
correspondence with SRS tiles (observe again that in the present section Z[β] ∩ [0, 1) plays the
same role as ΛA plays in Section 5).

Definition 6.6 (Integral beta-tile). Let β be a Pisot number. For x ∈ Z[β] ∩ [0, 1), the set

Sβ(x) := Li
n→∞

Φβ
(
βn
(
T−nβ (x) ∩ Z[β]

))
,
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where Li is the lower Hausdorff limit defined in Section 3.1, is called integral β-tile. The tile Sβ(0)
is called central integral β-tile.

The difference between this definition and Definition 6.5 is that any approximation of a tile is
given just by points y ∈ Z[β] ∩ [0, 1) with Tnβ (y) = x, instead of considering all points in T−nβ (x).

The limitation to Z[β] is the core of the selection process. However this implies that in general
Sβ(x) is not a graph directed self-affine set. It is obvious that

Rβ(x) ⊇ Sβ(x),

where equality holds if and only if β is a unit Pisot number.

6.3. From integral beta-tiles to SRS tiles. In the sequel, we will see how SRS-tiles are related
to integral beta-tiles by a linear transformation. We will show that SRS tiles provide a decomposi-
tion of beta-tiles into disjoint pieces: the process can be seen as selecting an integral representation
in each p-adic leaf of the central tile, for each prime divisor of the norm of β. The main feature
here is that this selection of an integral representant can be performed in a dynamical way.

Theorem 6.7. Let β be a Pisot number with minimal polynomial (x−β)(xd+rd−1x
d−1 + · · ·+r0)

and d = r + 2s Galois conjugates β1, . . . , βr ∈ R, βr+1, . . . , βr+2s ∈ C \ R, ordered such that
βr+1 = βr+s+1, . . . , βr+s = βr+2s. Let

xd + rd−1x
d−1 + · · ·+ r0 = (x− βj)(xd−1 + q

(j)
d−2x

d−2 + · · ·+ q
(j)
0 )

for 1 ≤ j ≤ d and

U =



q
(1)
0 q

(1)
1 · · · q

(1)
d−2 1

...
...

...
...

q
(r)
0 q

(r)
1 · · · q

(r)
d−2 1

<(q
(r+1)
0 ) <(q

(r+1)
1 ) · · · <(q

(r+1)
d−2 ) 1

=(q
(r+1)
0 ) =(q

(r+1)
1 ) · · · =(q

(r+1)
d−2 ) 0

...
...

...
...

<(q
(r+s)
0 ) <(q

(r+s)
1 ) · · · <(q

(r+s)
d−2 ) 1

=(q
(r+s)
0 ) =(q

(r+s)
1 ) · · · =(q

(r+s)
d−2 ) 0


∈ Rd×d.

Then we have

Sβ({rx}) = U(Mr − βId)Tr(x)

for every x ∈ Zd, where r = (r0, . . . , rd−1) and Id is the d-dimensional identity matrix.

Proof. Let t ∈ Tr(x) and z−n, v−n, n ∈ N, as in Proposition 3.6, i.e.,

t = x−
∞∑
n=0

Mn
r (0, . . . , 0, v−n)t and v−n+1 = {rz−n} for all n ∈ N.

Set b−n = βv−n − v−n+1 for n ∈ N. Then we obtain, by using τr(x) = Mrx + (0, . . . , 0, {rx}) and
v1 = {rx},

(6.5) (Mr − βId)t = τr(x)− βx +

∞∑
n=0

Mn
r (0, . . . , 0, b−n)t.

Similarly to (6.4), we see that (q
(j)
0 , . . . , q

(j)
d−2, 1) is a left eigenvector of Mr, in particular,

(q
(j)
0 , . . . , q

(j)
d−2, 1)Mr = βj(q

(j)
0 , . . . , q

(j)
d−2, 1) for 1 ≤ j ≤ d.

By using (6.5), we obtain

(6.6) (q
(j)
0 , . . . , q

(j)
d−2, 1)(Mr − βId)t = (q

(j)
0 , . . . , q

(j)
d−2, 1)

(
τr(x)− βx +

∞∑
n=0

βnj (0, . . . , 0, b−n)t
)
.
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Since the minimal polynomial of β can be decomposed as

(x− βj)(xd + r
(j)
d−1x

d−1 + · · ·+ r
(j)
0 ) = (x− β)(x− βj)(xd−1 + q

(j)
d−2x

d−2 + · · ·+ q
(j)
0 ),

we have

r
(j)
0 = −βq(j)

0 , r
(j)
k = q

(j)
k−1 − βq

(j)
k for 1 ≤ k ≤ d− 2, r

(j)
d−1 = q

(j)
d−2 − β,

and obtain

(6.7) (q
(j)
0 , . . . , q

(j)
d−2, 1)(τr(x)− βx) = (r

(j)
0 , . . . , r

(j)
d−1)x− brxc = {rx}(j).

Inserting (6.7) in (6.6) yields

(6.8)

(q
(j)
0 , . . . , q

(j)
d−2, 1)(Mr − βId)t = {rx}(j) +

∞∑
n=0

b−nβ
n
j

= lim
n→∞

(
{rx}+

n−1∑
k=0

b−kβ
k
)(j)

= lim
n→∞

(
βn{rz−n}

)(j)
;

here we used that b−k = βv−k − v−k+1, v−n+1 = {rz−n} and v1 = {rx}. By Proposition 6.1, we
have {rz−n} ∈ T−nβ ({rx}) and {rz−n} ∈ Z[β], thus

U(Mr − βId)t = lim
n→∞

Φβ
(
βn{rz−n}

)
∈ Sβ({rx}).

Now, let u ∈ Sβ({rx}). Then there exists a sequence (z−n)n∈N such that {rz−n} ∈ T−nβ ({rx})∩
Z[β] and limn→∞Φβ(βn{rz−n}) = u. Similarly to Proposition 3.6, we can choose the sequence
(z−n)n∈N such that Tβ({rz−n}) = {rz−n+1} for all n ≥ 1. Set b−n = β{rz−n−1} − {rz−n}. Then
(6.8) implies that u ∈ U(Mr − βId)Tr(x). �

Remark 6.8. We would like to emphasize that U(Mr−βId)Tr(x) = Sβ({rx}) does not imply that
the “center” x of Tr(x) is mapped to the “center” Φβ({rx}) of Sβ({rx}). Indeed, by (6.7), we
have

Φβ({rx}) = U(τr(x)− βx) = U(Mr − βId)x + U(0, . . . , 0, {rx})t.
In particular, this means that, even though there is only a finite number of shapes in the unit
Pisot case, no SRS tile is obtained by a Zd-translation of another SRS tile.

Corollary 6.9. Integral beta-tiles can be written as

Sβ(x) = Lim
n→∞

Φβ
(
βn
(
T−nβ (x) ∩ Z[β]

))
,

where Lim denotes the Hausdorff limit.

We deduce the following reformulation of the set equation in Theorem 3.5.

Corollary 6.10. For a Pisot number β and x ∈ Z[β] ∩ [0, 1), we have

Sβ(x) =
⋃

y∈T−1
β (x)∩Z[β]

ΛβSβ(y),

where Λβ = diag
(
β1, . . . , βr,

( <(βr+1) =(βr+1)
−=(βr+1) <(βr+1)

)
, . . . ,

( <(βr+s) =(βr+s)
−=(βr+s) <(βr+s)

))
.

The main result of this section extends the results in [3, 24, 25] on tiling properties for unit
Pisot numbers to arbitrary Pisot numbers.

Theorem 6.11. Let β be a Pisot number. Then the following assertions hold.

• The collection {Sβ(x) | x ∈ Z[β]} forms a weak m-tiling of Rd for some m ≥ 1.
• If β satisfies the finiteness property (F), then {Sβ(x) | x ∈ Z[β]} forms a weak tiling of Rd.

Proof. By Theorem 6.7, it is equivalent to consider the collection {Tr(z) | z ∈ Zd} for r =
(r0, . . . , rd−1) such that (x−β)(xd + rd−1x

d−1 + · · ·+ r0) is the minimal polynomial of β. In view
of Proposition 6.4, the first assertion follows from Theorem 4.6, while the second assertion is a
consequence of Corollary 4.7. �
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Example 6.12. Consider the polynomial x3 − 3x2 + 1. Its largest root in modulus is β ≈ 2.879, a
unit Pisot number. Set r = (r0, r1) with r0 = −1/β, r1 = −1/β2. The 25 SRS-tiles Tr(x) ⊂ R2

with ‖x‖∞ ≤ 2 are shown in Figure 5 on the left.

Figure 5. SRS tiles Tr(x) associated with r = (−1/β,−1/β2), β3 = 3β2 − 1,
(left) and the corresponding β-tiles Rβ({rx}) = Sβ({rx}) (right).

Let β1, β2 be the Galois conjugates of β. The numbers β1 and β2 are real numbers and thus
the (integral) β-tiles Rβ({rx}) = Sβ({rx}) are obtained by multiplying Tr(x) by the matrix

U(Mr − βI2) =

(
−β2 1
−β1 1

)((
0 1
−r0 −r1

)
−
(
β 0
0 β

))
.

They are shown on the right hand side of Figure 5. Note that β does not satisfy (F). Nevertheless,
we obtain a tiling in this case.

7. Conjectures and perspectives

We are convinced that there is some potential in the study of SRS tiles that will help to gain
new insights in the arithmetic as well as the geometric structure of generalized number systems.
In the present section we shall discuss some possible directions of future research and state some
conjectures related to SRS tiles.

In Siegel [39], tiles with p-adic factors related to non-unit Pisot substitutions have been studied.
It is a natural question whether one can associate SRS type tiles to this class of substitutions.
Moreover, it would be interesting to investigate the relation between Siegel’s tiles and SRS type
tiles. On the other hand, it should be possible to define self-similar tiles with p-adic factors
associated with CNS with non-monic polynomials.
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Another topic are geometric and topological properties of SRS tiles. As mentioned in Exam-
ple 3.12, there exist SRS tiles that consist of a single point. We conjecture that an SRS tile is
either a single point or it is the closure of its interior. Moreover, we expect that the boundary of
an SRS tile associated with a reduced parameter is not “too big”. More precisely, we formulate
the following conjecture.

Conjecture 7.1. Let r ∈ int(Dd) be a reduced parameter. Then the boundary ∂Tr(x) has zero
d-dimensional Lebesgue measure for each x ∈ Zd.

So far, this is only known for parameters associated with Pisot units and monic CNS because
in these cases the set equation (3.3) becomes a GIFS. This leads to the following problem.

Problem 7.2. Characterize all parameters r ∈ int(Dd) for which the set equation of Tr(x) is a
(finite) GIFS equation for each x ∈ Zd.

Solving this problem would yield a characterization of all “simple” number systems related to
SRS. If equation (3.3) does not give rise to a GIFS, then the structure of the SRS tiles (and the
associated number systems) becomes more complicated. In (5.20), we proved that for r = (−2/3)
there are infinitely many shapes of SRS tiles. A natural problem is the extension of this result
to higher dimensions. For instance, is it true that the SRS tiles corresponding to a non-monic
CNS have infinitely many different shapes? The ultimate goal here (which is closely related to
Problem 7.2) is a characterization of all parameters r ∈ int(Dd) whose related SRS tiles have only
finitely many different shapes.

By inspecting the pictures of SRS tiles provided throughout the paper one can see that the
central tile is sometimes connected and sometimes not. Therefore we can define a Mandelbrot set

Md := {r ∈ int(Dd) | Tr(0) is connected}.
So far, nothing is known about this set. It would be nice to find a fast algorithm to decide whether
a central tile is connected or not in order to produce an approximative picture ofMd. After that,
properties of this set can be studied.

A central feature of SRS tiles are their tiling properties. Although we could establish several
results in this direction, many things remain to be done. Firstly, we were not able to prove that
SRS tiles always give rise to a multiple tiling. More precisely, the following conjecture remains
open.

Conjecture 7.3. Let r = (r0, . . . , rd−1) ∈ int(Dd) with r0 6= 0. Then there is a positive integer m
such that {Tr(x) | x ∈ Zd} is a weak m-tiling.

Indeed, we conjecture that m can always chosen to be equal to one, which, more precisely, reads
as follows.

Conjecture 7.4. Let r = (r0, . . . , rd−1) ∈ int(Dd) with r0 6= 0. Then {Tr(x) | x ∈ Zd} is a weak
tiling.

Note that this implies that for all parameters associated with Pisot units the Pisot conjecture is
true for beta-numeration which means that each Pisot number β of degree d gives rise to a tiling
of the (d− 1)-dimensional real vector space (see [3]). Proving Conjecture 7.4 would be a big step
towards the proof of the Pisot conjecture for unit Pisot substitutions (see [13, 24]).
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[26] I. Kátai and I. Kőrnyei, On number systems in algebraic number fields, Publ. Math. Debrecen, 41 (1992),

pp. 289–294.
[27] D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, Addison Wesley, London,

3rd ed., 1998.
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LIRMM, CNRS UMR 5506, Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5,

FRANCE

E-mail address: berthe@lirmm.fr

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

E-mail address: Anne.Siegel@irisa.fr
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