COMBINATOIRE II - FEUILLE D'EXERCICES 1

GUILLAUME CHAPUY, MATTHIEU JOSUAT-VERGÈS – M2 MATHS FONDAS PARIS 7 (2019).

Exercice 1 (Évaluations de fonctions symétriques)

- (i) Que valent $h_n(1,\ldots,1)$ et $e_n(1,\ldots,1)$ où le nombre de 1 est k?
- (ii) Que valent $h_n(1, 2, ..., k)$ et $e_n(1, 2, ..., k)$?
- (iii) Si les fonctions h_n s'évaluent à $\frac{1}{n!}$, que valent e_{λ} , p_{λ} , et m_{λ} ?

Exercice 2

Calculer les déterminants :

$$\det(h_{i-j+1})_{1 \le i,j \le n}$$
 et $\det(e_{i-j+1})_{1 \le i,j \le n}$.

(Les coefficients sont nuls quand l'indice est strictement négatif.)

Exercice 3 (Indicatrice de cycles)

Pour un sous-groupe G de \mathfrak{S}_n , on définit son indicateur de cycles :

$$I(G) = \frac{1}{|G|} \sum_{\sigma \in G} p_{z(\sigma)}$$

où $z(\sigma)$ est la partition obtenue en ordonnant les tailles des cycles de σ .

Calculer

$$I(\mathfrak{S}_n), \quad I(\mathfrak{A}_n), \quad I(\mathfrak{S}_{\lambda_1} \times \mathfrak{S}_{\lambda_2} \times \dots)$$

où \mathfrak{A}_n est le groupe alterné, et le produit de groupes symétriques se plongent de manière naturelle dans \mathfrak{S}_n .

Exercice 4 (Fonctions de Schur équerres)

Pour $i, j \ge 0$, l'équerre (i|j) est la partition de i + j + 1 définie par $(i + 1, 1, 1, 1, \dots)$.

- (i) Donner une expression de la fonction de Schur $s_{(i|j)}$ en termes des e_{λ} et h_{λ} .
- (ii) Montrer que $\omega(s_{(i|j)}) = s_{(j|i)}$.

Exercice 5 (Fonctions symétriques oubliées)

On définit une base (f_{λ}) de Λ par $f_{\lambda} = (-1)^{n-\ell(\lambda)}\omega(m_{\lambda})$ pour λ partition de n, et des coefficients $a_{\lambda\mu}$ par:

$$f_{\lambda} = \sum_{\mu} a_{\lambda\mu} m_{\mu}.$$

Une composition $I = (i_1, i_2, ...)$ est plus fine qu'une composition $J = (j_1, j_2, ...)$ si on peut obtenir J en rassemblant des termes consécutifs dans I, par exemple (3, 1, 1, 6, 2, 1, 5) est plus fine que (4, 1, 9, 5), en rassemblant 3, 1 d'une part et 6, 2, 1 d'autre part.

i) Montrer que $a_{\lambda\mu}$ est le nombre de compositions plus fines que μ et dont le tri décroissant est λ .

Indication: L'Exercice 2 et sa solution pourraient être utiles.

Exercice 5 (Théorème de Pólya)

Soit G un groupe agissant sur un ensemble X, on note $G\backslash X$ l'ensemble des orbites. Le lemme de Burnside s'énonce :

$$|G\backslash X| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

où $X^g = \{ x \in X \, | \, g \cdot x = x \}.$

Soit $\mathcal C$ un ensemble fini, G agit sur l'ensemble $\mathcal C^X$ des fonctions de X dans $\mathcal C$ par :

$$(g \cdot \gamma)(x) = \gamma(g^{-1} \cdot x), \quad \text{où } x \in X, g \in G, \gamma \in \mathcal{C}^X.$$

On appelle $\mathcal C$ l'ensemble des couleurs, et $\mathcal C^X$ l'ensemble des coloriages de X. Le type d'un coloriage γ est la famille d'entiers $(|\gamma^{-1}(c)|)_{c\in\mathcal C}$.

i) Vérifier que le type d'un coloriage est invariant par l'action de G, et que le nombre d'orbites de type τ ne dépend que de la partition λ obtenue par tri des éléments de τ . Vérifier aussi que pour calculer le nombre d'orbites de type τ dans \mathcal{C}^X , on peut se ramener au cas : $X = \mathcal{C} = \{1, \ldots, n\}$, G est un sous-groupe de \mathfrak{S}_n .

Le théorème de Pólya dit que nombre d'orbites de type τ dans \mathcal{C}^X est le coefficient de m_λ dans I(G), en utilisant la définition de l'Exercice 3.

- ii) Démontrer le théorème de Pólya, en utilisant le lemme de Burnside.
- iii) Démontrer le lemme de Burnside.

Indication : On pourra se ramener au cas où l'action est transitive.

iv) Combien y a-t-il de façons de coller des gommettes sur les 6 faces d'un cube, si on en a 3 vertes, 2 orange et 1 mauve? (On pourra vérifier le résultat prédit par le théorème de Pólya en utilisant un logiciel de calcul formel pour faire la conversion d'une base à une autre.)