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Abstract

We introduce Timed Counter Systems, a new class of systems mixing clocks and counters. Such systems have an infinite
state space, and their reachability problems are generallyundecidable. By abstracting clock values with a Region Graph,
we show the Counter Reachability Problem to be decidable forthree subclasses : Timed VASS, Bounded Timed Counter
Systems, and Reversal-Bounded Timed Counter Systems.
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1 Introduction

Context. Formal verification of systems featuring temporal constraints or counting
abilities has been largely studied. Indeed, clocks seem to be the most natural way to model
time, and counters appear as the most used dataype in case studies. Usually, such systems
are finite automata endowed with clocks or counters, whose values are determined by
operations associated to automata transitions. In this paper, we follow this widespread
approach and define Timed Counter Systems, based on two well-known models. Indeed,
we express the same temporal requirements as timed automata[2], and we use counter
systems extending Minsky machines [24] (more precisely, a combination of relational
counter automata [11] and functional Presburger counter systems [16]). Timed Counter
Systems have thus two different datatypes at the same time : continuous (i.e. real-valued,
or dense) clocks, and discrete (i.e. integer-valued) counters.

Related work. A few classes of systems mixing clocks and counters have already been
studied. Hybrid automata [1], a well-known extention of timed automata, is a class able
to encode Timed Counter Systems by simulating counters withthe clocks’ differential
trajectories ; however, it is so general that the reachability problem remains undecidable
even for very restricted subclasses. Several timed versions of Petri Nets are well-known
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(e.g. time intervals [23] or aging tokens [10]), but neither of them is able to easily
simulate our clocks ; even when they do, our counters are moreexpressive. Dense Counter
Machines [25] are Minsky machines augmented with non-deterministic fractional value
changes ; they are not comparable to Timed Counter Systems, because their dense datatype
has a different behaviour than our clocks. The same authors also defined Real-counter
Automata [14], but it is not clear that they may encode our clocks and counters. They
also investigated variations of Pushdown Timed Automata [13], in which the stack could
be viewed as a counter ; but their clocks are integer-valued,and thus can be simulated by
our clocks. Finally, Parametric Timed Counter Systems are used in the TREX tool [3,4],
but their expressivity is not comparable to the one of Timed Counter Systems (see [15]
for a study thereof) ; indeed, their clocks are more expressive than ours, but their counters
are less expressive than ours (excepted some arithmetical terms using multiplication,
which is not possible with our counters). Nevertheless, thesystems of TREX are highly
undecidable for reachability matters, and have no decidable subclass which seems natural,
to the best of our knowledge.

Our contributions. A major interest in verification is reachability ; in this paper, we ad-
dress the Counter Reachability Problem for Timed Counter Systems, in which the exact
clock values are left apart (as usually done with timed automata). We prove it to be decid-
able for subclasses of such systems, in which the Region Graph belongs to a class of counter
systems for which this problem is decidable. We also identify three of these subclasses.

2 Timed Counter Systems

2.1 Preliminary definitions

In order to use a homogeneous model for systems mixing clocksand counters, let us first
define the basis we will be using. The next two paragraphs explain our way to handle clocks
and counters, so that they can be handled at the same level.

Clocks
Let X be a set ofm real-valued variables, calledclocks. A clock valuationoverX is

a vectorx ∈ R
m
+ . Given a clock valuationx and a durationτ ∈ R+, x + τ is the clock

valuation defined by(x + τ)i = xi + τ for everyi ∈ [1,m].
Let RX = GX × {0, 1}m be the set of operations on clocks, where :

• GX denotes clock constraints (orguards), defined by the following grammar :
g ::= x − y ⊲⊳ b | x ⊲⊳ b | g ∧ g | ¬g, with ⊲⊳∈ {<,≤,=,≥, >}, x, y ∈ X, b ∈ N.

• {0, 1}m intuitively denotes the clocks to be reset.

For a guardg ∈ GX and a clock valuationx ∈ R
m
+ , we denote byx |= g the fact that

the clock valuationx satisfies the guardg. By convention, whenX = ∅, thenRX = {∅}.
Let x,x′ ∈ R

m
+ and(g, λ) ∈ RX . Then(x,x′) |= (g, λ) is defined by :x |= g and∀i ∈

[1,m], λi = 0 =⇒ x
′
i = 0 andλi = 1 =⇒ x

′
i = xi (or, more simply,x′

i = λixi).
From now on, for the sake of readability, we suppose that clock guards do not use

atomic diagonal guards (i.e. guards of the formx − y ⊲⊳ b), and this, w.l.o.g. : indeed, [9]
introduces a translation of timed automata into diagonal-free timed automata.
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Counters
Let C be a set ofn integer-valued variables, calledcounters. A counter valuationover

C is a vectorc ∈ Z
n. Let RC ⊆ Z

n ×Z
n be the set of relations which can be defined with

a Presburger formula. Intuitively, such binary relations describe the effect of a transition
on the counters ; that is, for somer ∈ RC , (c, c′) ∈ r means that the valuation on counters
is c before a transition labelled byr, and isc′ after this transition. In fact, we encode the
guards and operations on counters in a single formular, whose solutions are(c, c′). By
convention, whenC = ∅, thenRC = {∅}.

2.2 Syntax

Definition 2.1 A Timed Counter System(TCSfor short) is a tuple〈Q,X,C,E〉 where :

• Q is a finite set of control states (also calledlocations)

• E ⊆ Q × RX × RC × Q is a finite set of transitions (edges)

Notice that a TCS is in fact a combination of two well-known models : Timed Automata
and Counter Systems. Let us define both of them with our notations :

Definition 2.2 A Timed Automaton(TA for short) is a TCSS whereC = ∅. Similarly, a
Counter System(CSfor short) is a TCSS whereX = ∅.

2.3 Semantics

In order to study the behaviour of a TCS, one can look in 3 directions, according to which
kind of variables are interpreted. Indeed, a TCS can be unfolded along its clocks only,
or along its counters only, or along both at the same time. We say that a TCS whose
interpretation considers only clocks (resp. counters) is called a Timed (resp. Counting)
Transition System ; if both clocks and counters are interpreted, then the full semantics of a
TCS is given by a Transition System.

2.3.1 Timed Semantics
The timed behaviour of a TCS is described by a Timed Transition System (TTS) :

Definition 2.3 The timed semantics of a TCSS = 〈Q,X,C,E〉 is given by a tuple
TTS(S) = 〈ST ,→T 〉, where :

• ST = Q × R
m
+ is the set of configurations

• →T⊆ ST × (E ∪ R+) × ST is the transition relation composed of delays and steps :

(q,x) →T (q′,x′) ⇐⇒































(delay, noted
τ
→T )

q = q′ and∃τ ∈ R+ such thatx′ = x + τ

(step, noted
e
→T )

∃e = (q, (g, λ), r, q′) ∈ E such that(x,x′) |= (g, λ)

Notice that ifS is a TA, thenTTS(S) gives the usual timed semantics of TA.
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2.3.2 Counting Semantics
The counting behaviour of a TCS is described by a Counting Transition System (CTS) :

Definition 2.4 The counting semantics of a TCSS = 〈Q,X,C,E〉 is given by a tuple
CTS(S) = 〈SC ,→C〉, where :

• SC = Q × Z
n is the set of configurations

• →C⊆ SC × E × SC is the transition relation defined by(q, c)
e
→C (q′, c′) ⇐⇒

∃(q, (g, λ), r, q′) ∈ E such that(c, c′) ∈ r

Notice that ifS is a CS, thenCTS(S) gives the usual semantics of CS.

2.3.3 Full Semantics
We give the complete (i.e. timed and counting) behaviour of aTCS by combining a TTS
and a CTS as follows :

Definition 2.5 The full semantics of a TCSS = 〈Q,X,C,E〉 is given by a tupleTS(S) =

〈S,→〉, where :

• S = Q × R
m
+ × Z

n is the set of configurations

• →⊆ S × (E ∪ R+) × S is the transition relation composed of delays and steps :

(q,x, c) → (q′,x′, c′) ⇐⇒



















































(delay, noted
τ
→ )

q = q′ andc = c
′ and∃τ ∈ R+ such that :

x
′ = x + τ

(step, noted
e
→ )

∃e = (q, (g, λ), r, q′) ∈ E such that :

(c, c′) ∈ r and(x,x′) |= (g, λ)

Using the previous definitions, the next proposition gives the relation between the dif-
ferent semantics :

Proposition 2.6 LetS = 〈Q,X,C,E〉 be a TCS. Then, we have :

(i) ∀e ∈ E, (q,x, c)
e
→ (q′,x′, c′) iff (q,x)

e
→T (q′,x′) and(q, c)

e
→C (q′, c′).

(ii) ∀τ ∈ R+, (q,x, c)
τ
→ (q,x′, c) iff (q,x)

τ
→T (q,x′).

An example of TCS
Figure 1 depicts an example of Timed Counter System, with two controllocations

q1, q2, two countersc1, c2, and two clocksx1,x2. We consider the initial configuration
in q1 with c1 = c2 = x1 = x2 = 0. Notice thatx2 does not appear on transitions, but only
stands as a universal clock.

This TCS represents a service offered on most digital televisions : the feature modelled
here deals with the movies that the client can rent directly at home. This model mainly
gives the following information : the total number of moviesthe client has rented so far
(c2), the number of movies having been rented during the currentday (c1), how long the
client has been using this service (x2), and how much time has elapsed since the first daily
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movie (x1). The typical property this model aims at representing is ”Aclient can rent a
maximum of 5 movies in a 24-hour period”. One could also modelfares, and by usingc2

andx2, offer a free movie every 30 rentals after a one-month membership. Other statistics
can easily be derived from this model, such as the average number of movies a client uses
to rent per hour.

q1 q2

c
′
1 := 1 ∧ c

′
2 := c2 + 1

x
′
1 := 0

x1 ≥ 24

c1 < 6 ∧ c
′
1 := c1 + 1 ∧ c

′
2 := c2 + 1

x1 < 24

Fig. 1. An example of TCS

3 Reachability

A typical interesting problem in the field of verification is the reachability problem, which
can roughly be defined as follows : ”Given two configurationss, s′ of a system, is there an
execution of the system going froms to s′ ?”. In our case, we refine this problem : instead
of checking if a full configuration is reachable, we will check if a pair (q, c), whereq is a
control state andc a counter valuation, is reachable from an initial given configuration. We
now formalize this notion.

LetS be a TCS andTS(S) = 〈S,→〉 its associated full semantics. We denote by
∗
→ the

reflexive and transitive closure of→. Similarly we define
∗
→C for the counting semantics.

We then define thereachability setsof S as follows :

• Reach(S, s0) = {s ∈ S | s0
∗
→ s}, for anys0 ∈ S

• ReachC(S, s0) = {s ∈ SC | s0
∗
→C s}, for anys0 ∈ SC

In this paper, we are interested in the Counter ReachabilityProblem, which we define
as follows :

Counter Reachability Problem :
Inputs : A TCSS, an initial configurations0 of TS(S), and a configuration(q, c) of

CTS(S).
Question : Is there a clock valuationx such that(q,x, c) ∈ Reach(S, s0) ?

This problem considers only counter valuations, and not theclock valuations. We chose
to look at this problem, instead of the reachability problemwith a whole configuration,
because we believe that the clocks are only used to introducetemporal requirements in the
behavior of the system, and consequently, that there is no need to keep track of their exact
values for verification matters.

Notice that this Counter Reachability Problem is an extension of the classical reachabil-
ity problem in CS : the only difference is that we existentially quantify on a clock valuation
so that the configuration matches a full TS configuration, andnot just a CTS configuration.
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Therefore, we will equivalently speak of the Counter Reachability Problem for TCS and
for CS (as usually defined, ie. without quantifying on clock valuations).

The Counter Reachability Problem is obviously undecidablefor TCS, because it is
already undecidable in CS. In order to be able to analyze CS, some restrictions leading to
decidability (e.g. flat [12], reversal-bounded [19], VASS [20], ...) have been proposed. As
we will show in section5, some of these restrictions can be lifted up to the level of TCS.
The main idea we will develop in this paper uses the fact that the undecidability of TCS is
caused by the presence of counters. Therefore, we try to benefit from known decidability
results on TA (detailed in section4) and on some subclasses of CS (detailed in section5).

4 Analysis of TCS via clock abstraction

A typical analysis of a TCS would be to compute the set of its reachable configurations,
in order to address e.g. verification problems. Unfortunately, since a TCS handles vari-
ables whose domains are unbounded, its set of configurationsmight be infinite. A classical
method to analyse such infinite-state systems consists in finding a finite abstraction, using
for instance equivalence classes over configurations, and then ensuring that the reachability
problem can be solved by reasoning on the abstracted system.The approach chosen in this
paper uses this idea ; however, instead of reasoning on equivalence classes for the whole
set of configurations, we only abstract clock valuations. Inorder to do so, we use a Region
Graph, as usually done with TA.

There might be a possible dual approach : to abstract counters first, instead of clocks.
The two main reasons why we chose not to use counter abstraction are (1) because counters
evolve discretely through formulas on transitions, and notconstantly in a dense space when
staying in a control location, and (2) because the region graph has been studied for a long
time and proved efficient in several tools.

4.1 Region Graph Construction

Let S be a TCS defined over a set ofm clocks. LetMi be the largest constant to which
each clockxi is ever compared in guards, for alli ∈ [1,m]. As defined in [2], we consider
an equivalence relation on clock valuations. Two clock valuationsx andx

′ in R
m
+ are said

region-equivalent(written x ≈ x
′) whenever all of the three following conditions hold

(where⌊y⌋ (resp.xyy) denotes the integer (resp. fractional) part of anyy ∈ R) :

(i) ⌊xi⌋ = ⌊x′
i⌋ or xi,x

′
i > Mi for all i ∈ [1,m].

(ii) xxiy = 0 iff xx
′
iy = 0 for all i ∈ [1,m] such thatxi ≤ Mi.

(iii) xxiy ≤ xxjy iff xx
′
iy ≤ xx

′
jy, for all i, j ∈ [1,m] such thatxi,xj ≤ Mi.

This equivalence relation can be extended to states ofTTS(S), saying that(q,x) ≈ (q′,x′)

iff q = q′ andx ≈ x
′. We use[x] to denote the equivalence class to whichx belongs. A

region ρ is an equivalence class of clock valuations ; the set of all regions is denoted by
R, and is finite. We equivalently writex ∈ ρ and[x] = ρ. A nice known property of the
equivalence relation≈ is that it is compatible with clock constraints (denoted by(cc)) and
time elapsing (denoted by(te)) :
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x ≈ x
′ =⇒

{

(cc) ∀g ∈ GX , x |= g ⇐⇒ x
′ |= g

(te) ∀τ ∈ R+,∃τ ′ ∈ R+ s.t.x + τ ≈ x
′ + τ ′

This second point(te) enables us to define a successor function onR. For a regionρ ∈ R,
we denote by Succ(ρ) the set of itstime-successors, defined as follows :ρ′ ∈ Succ(ρ) ⇐⇒
∃x ∈ ρ ∃τ ∈ R+ s.t.x + τ ∈ ρ′. Then, we are able to define the region graph ofS :

Definition 4.1 Let S = 〈Q,X,C,E〉 be a TCS ; itsregion graphis the tupleRG(S) =

S/≈ = 〈Γ,→RG〉 such that :

• Γ = Q ×R is the set of states ; we sometimes writeqx to denote the state(q, [x])

• →RG⊆ Γ × E × Γ is the transition relation such that∀e = (q, (g, λ), r, q′) ∈ E,
(q, ρ)

e
→RG (q′, ρ′) iff ∃ρ′′ ∈ Succ(ρ) s.t. ∀x′′ ∈ ρ′′, x

′′ |= g andx
′ ∈ ρ′ and∀i ∈

[1,m], x′
i = λixi.

Such a region graph is the same as the classical region graph defined for TA ; its par-
ticularity is that its transitions are labelled by relations on counters, which have not been
taken into account so far. The next step is, of course, to use them in order to get closer to
the full semantics of a TCS.

4.2 The Region Graph as a Counter System

In this section, we first show that the region graph of a TCS canbe analyzed as a CS. Then,
we prove that the reachability problem can be lifted up to thelevel of the region graph. The
Region Graph enjoys the following property [2] :

Proposition 4.2 Let S = 〈Q,X,C,E〉 be a TCS,TTS(S) = 〈ST ,→T 〉 its Timed Tran-
sition System, andRG(S) = 〈Γ,→RG〉 its Region Graph. Then for any(q,x) ∈ ST , we
have for alle ∈ E :

(i) If ∃τ ∈ R+ and∃(q′,x′) s.t. (q,x)
τ
→T (q,x + τ)

e
→T (q′,x′) thenqx

e
→RG q′

x
′

(ii) If ∃q′
x
′ s.t. qx

e
→RG q′

x
′ then∃τ ∈ R+ and∃x′′ ∈ [x′] s.t. (q,x)

τ
→T (q,x + τ)

e
→T

(q′,x′′)

Note that this property is about transitions, and can be naturally extended to sequences
of such transitions : then, we obtain the well-knowntime-abstract bisimulationbetween
TTS(S) and RG(S), denoted by≃. Informally, TTS(S) ≃ RG(S) means that both
TTS(S) andRG(S) can follow the exact same sequences of transitions ; the onlydiffer-
ence with a regular bisimulation is thatRG(S) does not keep track of clock valuations, but
only their equivalence class.

Now, notice that since the Region Graph has a finite number of states and its transitions
are labeled by relations on counters, we can view it like a classical counter system. Indeed,
we can seeRG(S) as a TCSS ′ = 〈Q′,X ′, C ′, E′〉, whereQ′ = Q ×R, X ′ = ∅, C ′ = C

andE′ = E (with RX′ = {∅}, sinceX ′ = ∅). Thus, we will alternatively say, w.l.o.g., that
RG(S) is a RG, a TCS, or a CS.

We are now ready to prove that we can analyze the TCS through the counting seman-
tics of its region graph, yielding a system which is an exact (w.r.t. Counter Reachability)
abstraction of its full semantics. Indeed, from Propositions 2.6 and 4.2, we deduce the
following property :
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Proposition 4.3 LetS be a TCS. Then, we have :

(i) If (q′,x′, c′) ∈ Reach
(

S, (q,x, c)
)

, then(q′
x
′ , c′) ∈ ReachC

(

RG(S), (qx, c)
)

(ii) If (q′
x
′ , c

′) ∈ ReachC

(

RG(S), (qx, c)
)

, then there existsx′′ ∈ R
m
+ such that

(q′,x′′, c′) ∈ Reach
(

S, (q,x, c)
)

andx
′′ ∈ [x′].

The picture on Figure2 exhibits the different ways to interpret a TCS, and the relations
existing between them. It also illustrates Proposition4.3.

TCS :S

TTS(S)

Timed

Semantics

TS(S)

Counting Semantics

RG(S)

Region
Graph

Construction

CTS(RG(S))

≃

≃

Full

Semantics

Fig. 2. The links between different semantics of TCS

LetC be a class of TCS such that there is an algorithm solving the Counter Reachability
Problem forRG(S), for anyS ∈ C. From Proposition4.3and the fact that there is a finite
number of regions, we deduce our main theorem :

Theorem 4.4 The Counter Reachability Problem is decidable forC.

Proof. Let (q,x, c) be an initial configuration ofTS(S) and (q, c) a configuration of
CTS(S). Then, from Proposition4.3, we deduce that there exists a clock valuationx

′

such that(q,x′, c′) ∈ Reach(S, (q,x, c)) if and only if there exists a regionρ such that
((q, ρ), c′) ∈ ReachC(RG(S), (qx, c)) andx

′ ∈ ρ. Since a given TCS yields a finite num-
ber of regions, if we suppose that the Counter Reachability Problem is decidable for the
counter systemRG(S), then the Counter Reachability Problem is decidable forS. 2

In the next part, we will use this theorem to show that many restrictions which lead to
decidability when studying Counter Systems can be lifted upto the level of TCS in order
to obtain the decidability of the counter reachability problem.

5 Subclasses of TCS

We can now address the Counting Reachability Problem for TCS, by making hypotheses
on the class of CS to which the TCS’s region graph belongs. Therefore, we introduce four
subclasses of TCS.

5.1 Timed Counter Machines and Timed VASS

We introduce here the class of Timed Counter Machines, in which we restrict operations on
counters. First, we give the definition of the relations overthe counters valuations we allow
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in the Timed Counter Machines, extending the Counter Machines of [19] (which are a slight
extension of Minsky machines [24]). We call aguarded translation(shortly, a translation)
any functiont : N

n → N
n such that there exist# ∈ {=,≤}n, µ ∈ N

n, andδ ∈ Z
n with

0 ≤ µ + δ anddom(t) = {c ∈ N
n | µ#c} and for allc ∈ N

n, t(c) = c + δ. Intuitively, µ

is the guard andδ is the translation length. We will sometimes use the encoding (#, µ, δ)

to represent a translation.
Note that a translation can be seen as a relation overZ

n × Z
n. Indeed, for a translation

t : N
n → N

n and two counter valuationsc andc
′, we have(c, c′) ∈ t iff c ∈ dom(t) and

c
′ = t(c). Thus, using the original formalism of TCS, a translation isa relation of the form

∧

i∈[1..n] µi#ici ∧ c
′
i = ci + δi.

Definition 5.1 A Timed Counter Machine(TCM for short) is a TCSS = 〈Q,X,C,E〉
such that for all(q, (g, λ), r, q′) ∈ E, r is translation.

Note that even when considering TCM, the Counter Reachability Problem remains un-
decidable. Hence, if we want to obtain decidability, a solution is to restrict the translations,
and in particular to forbid equality tests. This restriction comes down to using a timed ver-
sion of Vector Addition Systems with States (VASS) [20], or equivalently, Petri Nets. We
hence recall the definition of Timed VASS, which is a model introduced in [18] 2 :

Definition 5.2 A Timed VASS(TVASSfor short) is a TCMS = 〈Q,X,C,E〉 such that for
all (q, (g, λ), r, q′) ∈ E, r is a translation(#, µ, δ) such that# = (≤, . . . ,≤).

5.2 Properties of a TCS and its Region Graph

Different restrictions can be done on Counter Machines to obtain decidability for the
Counter Reachability Problem. First, remark that the restrictions we just introduced are
obviously still true when considering the related region graph :

Proposition 5.3 LetS be a TCS. IfS is a TCM (resp. a TVASS), then the counter system
RG(S) is a counter machine (resp. a VASS).

Since the counter reachability problem is decidable when considering VASS [21,22],
from Theorem4.4, we deduce that :

Theorem 5.4 The Counter Reachability Problem is decidable for TVASS.

The two definitions5.1and5.2are syntactical restrictions ; nonetheless, it is possibleto
restrict the behaviour of a TCS. We say that a pair(S, s0) is anintialized TCS(resp.intial-
ized CS), in whichS is a TCS (resp. CS) ands0 is an initial configuration ofTS(S) (resp.
CTS(S)). Among the possible restrictions on its behaviour, we can consider bounded ini-
tialized TCS (resp. CS), for which there is a bound under which all the counter values stay,
in all the possible executions. Then, from Theorem4.4, we deduce that :

Proposition 5.5 If an initialized TCS(S, s0) is bounded, then the intialized counter system
(RG(S), s′0) is bounded, withs0 = (q,x, c) ands′0 = (qx, c).

The Counter Reachability Problem is obviously decidable for bounded initialized CS,
since there is a finite number of reachable configurations ; thus, we deduce that :

2 Actually, the emptiness problem of the language of a TVASS has been proved decidable in [18] and [8]
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Theorem 5.6 The Counter Reachability Problem is decidable for bounded intialized TCS.

Finally, we consider another restriction on the behaviour,but this time, only for TCM.
In [19], the class ofreversal-boundedcounter machines has been introduced, and has been
extended in [17]. This extension mentions that an intialized Counter Machine (S, s0) is
k-reversal-b-boundedfor k, b ∈ N, if in all the executions ofS starting froms0, each
counter valuation alternates at mostk times between non-increasing and non-decreasing
modes over a boundb. We naturally extend this notion to TCM ; remark that an initialized
TCM is reversal-bounded if it isk-reversal-b-bounded for somek, b ∈ N. Then, thanks to
Proposition4.3, we deduce that :

Proposition 5.7 If an initialized TCM (S, s0) is reversal-bounded, then the initialized
counter machine(RG(S), s′0) is reversal-bounded, withs0 = (q,x, c) ands′0 = (qx, c).

Since the Counter Reachability Problem is decidable for reversal-bounded counter ma-
chines [17], we have :

Theorem 5.8 The Counter Reachability Problem is decidable for reversal-bounded initial-
ized TCM.

The following table summarizes the decidability results weobtained here :

Model Region Graph Counter Reachability

TCS CS Undecidable

TVASS VASS Decidable

Reversal-bounded TCM Reversal-bounded CM Decidable

Bounded TCS Bounded CS Decidable

Notice that TVASS is a recursive class, which is very interesting for implementation
perspectives : hence, we propose an algorithm solving the Counter Reachability Prob-
lem for this class. However, it is impossible to decide if a system is reversal-bounded or
bounded, in the general case.

Algorithm 1 : Solves the Counter Reachability Problem for TVASS.
Input : a TVASSS, a configuration(q, c), and an initial states0

Output : the answer to ”Is there ax such that(q,x, c) ∈ Reach(S, s0) ?”
build RG(S) = 〈Γ,→RG〉
for all q′

x
∈ Γ do

if q′ = q then
if (qx, c) ∈ ReachC(RG(S), s0) then

returnTrue
end if

end if
end for
returnFalse
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6 Conclusion and Future work

We introduced a new model for systems mixing clocks and counters, and proved the
Counter Reachability Problem to be decidable for three of its subclasses. Other subclasses
might be interesting to study in order to broaden these results, such as flat TCS, following
the approaches of [12] or [7]. Our ultimate goal is to extend the tool for counter systems
FAST [5,6] so that it also handles clocks. Moreover, our main result, as stated in Theorem
4.4, can be extended to other dataypes than counters (e.g. pushdown stacks, lossy channels,
etc...).
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