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Abstract

We introduce Timed Counter Systems, a new class of systexiagrilocks and counters. Such systems have an infinite
state space, and their reachability problems are genaraflgcidable. By abstracting clock values with a Region Grap
we show the Counter Reachability Problem to be decidabl¢hfele subclasses : Timed VASS, Bounded Timed Counter
Systems, and Reversal-Bounded Timed Counter Systems.
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1 Introduction

Context. Formal verification of systems featuring temporal constgior counting
abilities has been largely studied. Indeed, clocks seera tadomost natural way to model
time, and counters appear as the most used dataype in cdisstusually, such systems
are finite automata endowed with clocks or counters, wholsesaare determined by
operations associated to automata transitions. In thisrpape follow this widespread
approach and define Timed Counter Systems, based on twkmeiln models. Indeed,
we express the same temporal requirements as timed autgBhatand we use counter
systems extending Minsky machine24] (more precisely, a combination of relational
counter automatalfl] and functional Presburger counter systerii§])l Timed Counter
Systems have thus two different datatypes at the same tiroetinaous (i.e. real-valued,
or dense) clocks, and discrete (i.e. integer-valued) evant

Related work. A few classes of systems mixing clocks and counters havadirbeen
studied. Hybrid automatal], a well-known extention of timed automata, is a class able
to encode Timed Counter Systems by simulating counters thiighclocks’ differential
trajectories ; however, it is so general that the reachghplioblem remains undecidable
even for very restricted subclasses. Several timed vessibiPetri Nets are well-known

1 Work supported by the Agence Nationale de la Recherchet gidR-06-SETIN-001.
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(e.g. time intervals 43] or aging tokens 10]), but neither of them is able to easily
simulate our clocks ; even when they do, our counters are mxamessive. Dense Counter
Machines p5] are Minsky machines augmented with non-deterministictional value
changes ; they are not comparable to Timed Counter Systemabe their dense datatype
has a different behaviour than our clocks. The same authsosdefined Real-counter
Automata [L4], but it is not clear that they may encode our clocks and asnt They
also investigated variations of Pushdown Timed Automag}, [in which the stack could
be viewed as a counter ; but their clocks are integer-valaed,thus can be simulated by
our clocks. Finally, Parametric Timed Counter Systems agallin the TRX tool [3,4],
but their expressivity is not comparable to the one of Timedit@er Systems (sed ]

for a study thereof) ; indeed, their clocks are more expvegsian ours, but their counters
are less expressive than ours (excepted some arithmegicak tusing multiplication,
which is not possible with our counters). Nevertheless,stfstems of TRX are highly
undecidable for reachability matters, and have no decidsithclass which seems natural,
to the best of our knowledge.

Our contributions. A major interest in verification is reachability ; in this papwe ad-
dress the Counter Reachability Problem for Timed Countete®ys, in which the exact
clock values are left apart (as usually done with timed aatain We prove it to be decid-
able for subclasses of such systems, in which the Regiorh@&lpngs to a class of counter
systems for which this problem is decidable. We also idgtitifee of these subclasses.

2 Timed Counter Systems

2.1 Preliminary definitions

In order to use a homogeneous maodel for systems mixing claciiscounters, let us first
define the basis we will be using. The next two paragraphsaxplur way to handle clocks
and counters, so that they can be handled at the same level.

Clocks

Let X be a set ofn real-valued variables, calledocks A clock valuationover X is
a vectorx € R’"'. Given a clock valuatiorx and a duration € R, x + 7 is the clock
valuation defined byx + 7); = x; + 7 for everyi € [1,m].
Let Rx = Gx x {0,1}™ be the set of operations on clocks, where :

¢ (G x denotes clock constraints (Quard9, defined by the following grammar :
gu=z—yxblrzxb|lgAgl| g withxe {<,<,=> >}, z,ye X,beN.

e {0,1}™ intuitively denotes the clocks to be reset.

For a guardg € Gx and a clock valuatiox € R'", we denote by |= ¢ the fact that
the clock valuatiorx satisfies the guarg. By convention, wherX = (), thenRx = {0}.
Letx,x" € R and(g,\) € Rx. Then(x,x) |= (g, ) is defined by x |= g andVi €
1,m],\; =0 = x|, =0and\; =1 = x| = x; (or, more simplyx, = \;x;).

From now on, for the sake of readability, we suppose thatkctncards do not use
atomic diagonal guards (i.e. guards of the farm y > b), and this, w.l.o.g. : indeed9]
introduces a translation of timed automata into diagores-fimed automata.

2



F.BoucHy, A.FINKEL, A.SANGNIER

Counters

Let C be a set ofy integer-valued variables, calledunters A counter valuatiorover
Cisavectorc € Z". Let Rc C Z™ x 7" be the set of relations which can be defined with
a Presburger formula. Intuitively, such binary relatiorsatibe the effect of a transition
on the counters ; that is, for some= R, (¢, c¢’) € » means that the valuation on counters
is ¢ before a transition labelled by, and isc’ after this transition. In fact, we encode the
guards and operations on counters in a single formplahose solutions arée, ¢’). By
convention, wher = (), thenR¢c = {0}.

2.2 Syntax

Definition 2.1 A Timed Counter Syste(CSfor short) is a tupl€@, X, C, E) where :

e () is afinite set of control states (also calledationg
e FC @ x Rx x Rc x @ is afinite set of transitions (edges)

Notice that a TCSis in fact a combination of two well-knowndets : Timed Automata
and Counter Systems. Let us define both of them with our oisti

Definition 2.2 A Timed AutomatoifTA for short) is a TCSS whereC' = (). Similarly, a
Counter SystertCSfor short) is a TCSS whereX = .

2.3 Semantics

In order to study the behaviour of a TCS, one can look in 3 tvas, according to which

kind of variables are interpreted. Indeed, a TCS can be dafbhlong its clocks only,

or along its counters only, or along both at the same time. #yetlsat a TCS whose
interpretation considers only clocks (resp. countersilied a Timed (resp. Counting)
Transition System ; if both clocks and counters are integgkethen the full semantics of a
TCS is given by a Transition System.

2.3.1 Timed Semantics
The timed behaviour of a TCS is described by a Timed Trams&igstem (TTS) :

Definition 2.3 The timed semantics of a TCS = (Q,X,C, E) is given by a tuple
TTS(S) = (St,—7), where :

* St = @ x R is the set of configurations

e —pC Sy x (EUR,) x Sy is the transition relation composed of delays and steps :

(delay, noted -5 )

q = ¢ and3r € R, such that’ = x + 7
(¢,x) =1 (¢, X) —
(step, noted-57)

Je = (q,(g,\),r,¢') € E such thatx,x) |= (g, \)

Notice that ifS is a TA, thenI'T'S(S) gives the usual timed semantics of TA.
3
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2.3.2 Counting Semantics

The counting behaviour of a TCS is described by a Countingsitian System (CTS) :

Definition 2.4 The counting semantics of a TGS = (Q, X, C, E) is given by a tuple

CTS(S) = (Se¢,—¢), where :

e S = Q x Z™is the set of configurations

« »cC Sc x E x Sc is the transition relation defined by, c) ¢ (¢,c) <=
3(q, (g, A),r,q") € E such thaic,c’) € r

Notice that ifS is a CS, therCT'S(S) gives the usual semantics of CS.

2.3.3 Full Semantics

We give the complete (i.e. timed and counting) behaviour ®C& by combining a TTS
and a CTS as follows :

Definition 2.5 The full semantics ofa TCS = (Q, X, C, E) is given by a tupld’S(S) =
(S,—), where :

* §=Q xR} x Z" is the set of configurations

e —»C S x (EUR,) x Sis the transition relation composed of delays and steps :

(delay, noted5 )

q¢ = ¢ andc = ¢’ and3r € R, such that :
X' =x+7

(¢,x,¢) = (¢, ¥',c) <=
(step, noted-> )

Je = (q,(g,\), 7, ¢') € E such that :
(e,c') e rand(x,x’) = (g, \)

Using the previous definitions, the next proposition givesrielation between the dif-
ferent semantics :

Proposition 2.6 LetS = (@, X, C, E) be a TCS. Then, we have :
() Ve € E, (¢,x,¢) = (¢,x',c)iff (¢,x) 7 (¢,%') and(q,c) >¢ (¢, ).
(i) V7 € Ry, (¢,x,¢) 5 (q,%',¢) iff (¢,x) D (¢,X).

An example of TCS

Figure 1 depicts an example of Timed Counter System, with two corlbohtions
q1,q2, tWO counterscy, co, and two clocksxy, xo. We consider the initial configuration
in ¢; with ¢; = co = x7 = x5 = 0. Notice thatx, does not appear on transitions, but only
stands as a universal clock.

This TCS represents a service offered on most digital t&il@vs : the feature modelled
here deals with the movies that the client can rent diredtlycene. This model mainly
gives the following information : the total number of movige client has rented so far
(co), the number of movies having been rented during the cudawt(c,), how long the
client has been using this service], and how much time has elapsed since the first daily

4
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movie (x1). The typical property this model aims at representing iscli&nt can rent a
maximum of 5 movies in a 24-hour period”. One could also mdakds, and by using.
andx,, offer a free movie every 30 rentals after a one-month meshijer Other statistics
can easily be derived from this model, such as the averagéewuoi movies a client uses
to rent per hour.

¢l :=1Ach:=cy+1

@ c1<6/\c’1::c1+1/\c’2::c2+1
x1 < 24

Fig. 1. An example of TCS

3 Reachability

A typical interesting problem in the field of verification isetreachability problem, which
can roughly be defined as follows : "Given two configuratiens' of a system, is there an
execution of the system going frogto s’ ?”. In our case, we refine this problem : instead
of checking if a full configuration is reachable, we will ckeata pair (¢, c), whereqg is a
control state and a counter valuation, is reachable from an initial given aunfation. We
now formalize this notion.

LetSbeaTCS and'S(S) = (S, —) its associated full semantics. We denote byhe
reflexive and transitive closure ef. Similarly we define= for the counting semantics.
We then define theeachability setof S as follows :

» ReaclfS,sg) = {s € S | so — s}, foranysy € S
» Reach:(S,s0) = {s € Sc | so —¢ s}, foranysy € Sc

In this paper, we are interested in the Counter ReachaBilitplem, which we define
as follows :

Counter Reachability Problem :

Inputs : A TCS S, an initial configurationsy of 7'S(S), and a configuratiorq, c) of
CTS(95).

Question : Is there a clock valuatior such that ¢, x, c) € ReachiS, sy) ?

This problem considers only counter valuations, and notlihek valuations. We chose
to look at this problem, instead of the reachability problesth a whole configuration,
because we believe that the clocks are only used to intra@neporal requirements in the
behavior of the system, and consequently, that there is @@ toekeep track of their exact
values for verification matters.

Notice that this Counter Reachability Problem is an extamef the classical reachabil-
ity problem in CS : the only difference is that we existemyigjuantify on a clock valuation
so that the configuration matches a full TS configuration,rastdust a CTS configuration.

5
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Therefore, we will equivalently speak of the Counter Readla Problem for TCS and
for CS (as usually defined, ie. without quantifying on cloeluations).

The Counter Reachability Problem is obviously undeciddbteTCS, because it is
already undecidable in CS. In order to be able to analyze @8esestrictions leading to
decidability (e.g. flat12], reversal-boundedlP], VASS [20], ...) have been proposed. As
we will show in sectiorb, some of these restrictions can be lifted up to the level c§TC
The main idea we will develop in this paper uses the fact thetundecidability of TCS is
caused by the presence of counters. Therefore, we try tdib&oen known decidability
results on TA (detailed in sectigf) and on some subclasses of CS (detailed in se&lion

4 Analysis of TCS via clock abstraction

A typical analysis of a TCS would be to compute the set of ithable configurations,
in order to address e.g. verification problems. Unfortugatnce a TCS handles vari-
ables whose domains are unbounded, its set of configuratiagi# be infinite. A classical
method to analyse such infinite-state systems consistsdimfjra finite abstraction, using
for instance equivalence classes over configurations,remdensuring that the reachability
problem can be solved by reasoning on the abstracted sy$terapproach chosen in this
paper uses this idea ; however, instead of reasoning onaegnoe classes for the whole
set of configurations, we only abstract clock valuationsorfirer to do so, we use a Region
Graph, as usually done with TA.

There might be a possible dual approach : to abstract caufitst, instead of clocks.
The two main reasons why we chose not to use counter abetrast (1) because counters
evolve discretely through formulas on transitions, andoooistantly in a dense space when
staying in a control location, and (2) because the regioplgteas been studied for a long
time and proved efficient in several tools.

4.1 Region Graph Construction

Let S be a TCS defined over a setof clocks. LetM; be the largest constant to which
each clockx; is ever compared in guards, for alE [1,m]. As defined in 2], we consider
an equivalence relation on clock valuations. Two clock atitnsx andx’ in R’ are said
region-equivalent(written x ~ x’) whenever all of the three following conditions hold
(where|y| (resp.Ly.) denotes the integer (resp. fractional) part of gny R) :

() |xi] = [x}] orx;,x; > M;foralli e [1,m].

(i) Lx;0=0iff Lx;s = 0foralli € [1,m] such thatx; < M;.

(i) Lx;o < oxjoiff LX< \_XQ»_:, forall,j € [1,m] such thatx;, x; < M;.
This equivalence relation can be extended to statégwf(S), saying thafq, x) ~ (¢, x’)
iff ¢ = ¢’ andx ~ x’. We use[x]| to denote the equivalence class to whichelongs. A
region p is an equivalence class of clock valuations ; the set of gibres is denoted by
R, and is finite. We equivalently write € p and[z] = p. A nice known property of the

equivalence relatior: is that it is compatible with clock constraints (denoted(&y)) and
time elapsing (denoted Kye)) :
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X% (cc) VgelGx,xEg < x' Eg
(te) VreR,ITeR stx+7rx+7

This second pointte) enables us to define a successor functiofRoror a regiorp € R,
we denote by Sudp) the set of itdime-successorslefined as follows p’ € Sucgp) <
Ix € pdr € Ry s.t.x+ 7 € p/. Then, we are able to define the region grapls of

Definition 4.1 Let S = (Q, X, C, E) be a TCS ; itgegion graphis the tupleRG(S) =
S/~ = (I', —Rg) such that :

e I'=Q x R is the set of states ; we sometimes writeto denote the statgy, [x])

e —rcC T x E x T'is the transition relation such thae = (¢, (g,)\),7,¢') € E,
(q,p) g (¢, p) iff 3p” € Sucdp) s.t. Vx”" € p", x" |= gandx’ € o andVi €
[1,m], X}, = \ix;.

Such a region graph is the same as the classical region gedipied for TA ; its par-
ticularity is that its transitions are labelled by relagoon counters, which have not been
taken into account so far. The next step is, of course, tohea in order to get closer to
the full semantics of a TCS.

4.2 The Region Graph as a Counter System

In this section, we first show that the region graph of a TCSheaanalyzed as a CS. Then,
we prove that the reachability problem can be lifted up tdékel of the region graph. The
Region Graph enjoys the following proper]

Proposition 4.2 LetS = (Q, X,C, E) be a TCSTTS(S) = (Sr,—7) its Timed Tran-
sition System, an®G(S) = (I', —re) its Region Graph. Then for any, x) € Sr, we
have for alle € E':

() If 37 € Ry and3(¢,x') s.t. (¢,x) 57 (¢, x +7) 57 (¢, %) thengx —ra ¢l

(i) If 3¢, st.gx —pre ¢ thendr € Ry and3Ix" € [x] s.t. (¢,x) 57 (¢,X +7) S
(q/7 X”)

Note that this property is about transitions, and can berabyuextended to sequences
of such transitions : then, we obtain the well-knotime-abstract bisimulatiorbetween
TTS(S) and RG(S), denoted by~. Informally, 77'S(S) ~ RG(S) means that both
TTS(S) and RG(S) can follow the exact same sequences of transitions ; thediffiéy-
ence with a regular bisimulation is thBG(S) does not keep track of clock valuations, but
only their equivalence class.

Now, notice that since the Region Graph has a finite numbedgatésand its transitions
are labeled by relations on counters, we can view it like asital counter system. Indeed,
we can sedRG(S) asa TCSS' = (Q', X', C", E'),whereQ' = Q xR, X' =0,C" = C
andE’ = E (with Ry, = {0}, sinceX’ = (). Thus, we will alternatively say, w.l.0.g., that
RG(S)isaRG,aTCS,oracCs.

We are now ready to prove that we can analyze the TCS throwgbainting seman-
tics of its region graph, yielding a system which is an exact.{. Counter Reachability)
abstraction of its full semantics. Indeed, from Proposii@.6 and 4.2, we deduce the
following property :
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Proposition 4.3 LetS be a TCS. Then, we have :
() If(¢,x,c) e Reach(S, (¢, %, c)) , then(¢..,, ¢') € Reachc (RG(S), (gx, c))
(i) If (¢f,c') € Reachc (RG(S),(qx,c)), then there existx” € R’ such that
(¢, x",c) e Reach(S, (q,x, c)) andx” € [x].

The picture on Figur@ exhibits the different ways to interpret a TCS, and the i@hat
existing between them. It also illustrates ProposidaB

TCS:S

Timed
Semantics

Full

RG(S) ~ TTS(S) )
Semantics

Counting Semantid

[

CTS(RG(S)) =~ TS(S)
Fig. 2. The links between different semantics of TCS

Let ¢ be a class of TCS such that there is an algorithm solving thet@o Reachability
Problem forRG(S), for anyS € €. From Propositiort.3and the fact that there is a finite
number of regions, we deduce our main theorem :

Theorem 4.4 The Counter Reachability Problem is decidable dor

Proof. Let (¢,x,c) be an initial configuration of’'S(S) and (¢, c) a configuration of
CTS(S). Then, from Propositio.3, we deduce that there exists a clock valuatidn
such that(q,x’,c¢’) € Reach(S, (¢,x,c)) if and only if there exists a regiop such that
((g,p),c") € Reachc(RG(S), (¢x,¢)) andx’ € p. Since a given TCS yields a finite num-
ber of regions, if we suppose that the Counter ReachabilibplEem is decidable for the
counter systenRG(S), then the Counter Reachability Problem is decidableSfor O

In the next part, we will use this theorem to show that manyrict®ns which lead to
decidability when studying Counter Systems can be liftedougine level of TCS in order
to obtain the decidability of the counter reachability feob.

5 Subclasses of TCS

We can now address the Counting Reachability Problem for, Bg$naking hypotheses
on the class of CS to which the TCS'’s region graph belongsreftie, we introduce four
subclasses of TCS.

5.1 Timed Counter Machines and Timed VASS

We introduce here the class of Timed Counter Machines, ichwve restrict operations on
counters. First, we give the definition of the relations diercounters valuations we allow

8
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in the Timed Counter Machines, extending the Counter Mashad [L9] (which are a slight
extension of Minsky machine24]). We call aguarded translatior(shortly, a translation)
any functiont : N* — N” such that there exist € {=,<}", u € N, andé € Z" with
0 < p+danddom(t) = {c € N" | u#c} and for allc € N”, ¢(c) = ¢ + 4. Intuitively, u
is the guard and is the translation length. We will sometimes use the enap@if, 1, J)
to represent a translation.

Note that a translation can be seen as a relation @%ex Z™. Indeed, for a translation
t : N — N" and two counter valuationsandc’, we have(c, c’) € ¢ iff ¢ € dom(t) and
¢’ = t(c). Thus, using the original formalism of TCS, a translatioa relation of the form
/\ie[l..n] ui#ici VAN C; =c; + 52

Definition 5.1 A Timed Counter MachinéTCM for short) is a TCSS = (@, X,C, E)
such that for allq, (g, \),r,¢') € E, r is translation.

Note that even when considering TCM, the Counter ReachaBilioblem remains un-
decidable. Hence, if we want to obtain decidability, a ohuts to restrict the translations,
and in particular to forbid equality tests. This restrioticomes down to using a timed ver-
sion of Vector Addition Systems with States (VASY], or equivalently, Petri Nets. We
hence recall the definition of Timed VASS, which is a modelddticed in 18] 2 :

Definition 5.2 A Timed VAS$TVASSor short) isa TCMS = (@, X, C, E) such that for
all (¢,(g,\),r,q') € E, ris atranslation#, u, §) such thatt = (<, ..., <).

5.2 Properties of a TCS and its Region Graph

Different restrictions can be done on Counter Machines tminbdecidability for the
Counter Reachability Problem. First, remark that the ie&ins we just introduced are
obviously still true when considering the related regioapir :

Proposition 5.3 LetS be a TCS. IfS is a TCM (resp. a TVASS), then the counter system
RG(S) is a counter machine (resp. a VASS).

Since the counter reachability problem is decidable whersidering VASS 21,22],
from Theoremd4.4, we deduce that :

Theorem 5.4 The Counter Reachability Problem is decidable for TVASS.

The two definitions.1and5.2are syntactical restrictions ; nonetheless, it is poss$ible
restrict the behaviour of a TCS. We say that a pdirsy) is anintialized TCSresp.intial-
ized C$, in whichS is a TCS (resp. CS) ang is an initial configuration of'S(S) (resp.
CTS(S)). Among the possible restrictions on its behaviour, we aarsitler bounded ini-
tialized TCS (resp. CS), for which there is a bound under whitthe counter values stay,
in all the possible executions. Then, from Theoréd we deduce that :

Proposition 5.5 If an initialized TCSS, sg) is bounded, then the intialized counter system
(RG(S), s;) is bounded, witlsy = (¢, x, ¢) ands), = (¢x, ¢).

The Counter Reachability Problem is obviously decidablebfunded initialized CS,
since there is a finite number of reachable configurationgs, twe deduce that :

2 Actually, the emptiness problem of the language of a TVASSHeen proved decidable ihg] and [8]

9
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Theorem 5.6 The Counter Reachability Problem is decidable for boundéidlized TCS.

Finally, we consider another restriction on the behavibut,this time, only for TCM.
In [19], the class ofeversal-boundedounter machines has been introduced, and has been
extended in 17]. This extension mentions that an intialized Counter MaeliS, s) is
k-reversalb-boundedfor k,b € N, if in all the executions ofS starting fromsg, each
counter valuation alternates at mastimes between non-increasing and non-decreasing
modes over a bounid We naturally extend this notion to TCM ; remark that an alifed
TCM is reversal-bounded if it i&-reversalb-bounded for somé, b € N. Then, thanks to
Propositior4.3, we deduce that :

Proposition 5.7 If an initialized TCM (S, sp) is reversal-bounded, then the initialized
counter maching RG(S), s(,) is reversal-bounded, witky = (¢, x, c) and s, = (¢, ¢).

Since the Counter Reachability Problem is decidable foensal-bounded counter ma-
chines [L7], we have :

Theorem 5.8 The Counter Reachability Problem is decidable for revelsainded initial-
ized TCM.

The following table summarizes the decidability resultsol&ined here :

Model H Region Graph Counter Reachabilit*
TCS CS Undecidable
TVASS VASS Decidable

Reversal-bounded TCN| Reversal-bounded CM Decidable

Bounded TCS Bounded CS Decidable

Notice that TVASS is a recursive class, which is very inteéngsfor implementation
perspectives : hence, we propose an algorithm solving thent€o Reachability Prob-
lem for this class. However, it is impossible to decide if ateyn is reversal-bounded or
bounded, in the general case.

Algorithm 1 : Solves the Counter Reachability Problem for TVASS.
Input: a TVASSS, a configuration(q, c¢), and an initial state
Output : the answer to "Is therea such thaf ¢, x, c) € Reach(S, sg) ?”
build RG(S) = (', —gre)
forall ¢, € I'do
if ¢ = qthen
if (¢gx,c) € Reachc(RG(S), so) then
returnTrue
end if
end if
end for
returnFalse

10
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6 Conclusion and Future work

We introduced a new model for systems mixing clocks and ewantand proved the
Counter Reachability Problem to be decidable for threesofiioclasses. Other subclasses
might be interesting to study in order to broaden these t®sslich as flat TCS, following
the approaches ofLlP] or [7]. Our ultimate goal is to extend the tool for counter systems
FAST [5,6] so that it also handles clocks. Moreover, our main resslstated in Theorem
4.4, can be extended to other dataypes than counters (e.g.quslsthcks, lossy channels,
etc...).
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