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Abstract. We study complexity issues related to the model-checking problem
for LTL with registers (a.k.a. freeze LTL) over one-counter automata. We con-
sider several classes of one-counter automata (mainly deterministic vs. nondeter-
ministic) and several syntactic fragments (restriction on the number of registers
and on the use of propositional variables for control locations). The logic has the
ability to store a counter value and to test it later against the current counter value.
By introducing a non-trivial abstraction on counter values, we show that model
checking LTL with registers over deterministic one-counter automata is PSPACE-
complete with infinite accepting runs. By constrast, we prove that model checking
LTL with registers over nondeterministic one-counter automata is Σ1

1 -complete
[resp. Σ0

1 -complete] in the infinitary [resp. finitary] case even if only one register
is used and with no propositional variable. This makes a difference with the facts
that several verification problems for one-counter automata are known to be de-
cidable with relatively low complexity, and that finitary satisfiability for LTL with
a unique register is decidable. Our results pave the way for model-checking LTL
with registers over other classes of operational models, such as reversal-bounded
counter machines and deterministic pushdown systems.

1 Introduction

Logics for data words and trees. Data words are sequences in which each position
is labelled by a letter from a finite alphabet and by another letter from an infinite al-
phabet (the datum). This fundamental and simple model captures the timed words ac-
cepted by timed automata [AD94], and its extension to trees is useful to model XML
documents with values, see e.g. [BDM+06,JL07]. In order to really speak about data,
known logical formalisms for data words/trees contain a mechanism that stores a value
and tests it later against other values, see e.g. [BMS+06,DL06]. This is a powerful
feature shared by other memoryful temporal logics [LMS02,KV06]. However, the sat-
isfiability problem for these logics becomes easily undecidable even when stored data
can be tested only for equality. For instance, first-order logic for data words restricted to
three individual variables is undecidable [BMS+06], whereas LTL with registers (also
known as freeze LTL) restricted to a single register is undecidable over infinite data
words [DL06]. By contrast, decidable fragments of the satisfiability problems have been
! Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001. Long
version for [DLS08].



found in [BMS+06,DLN07,Laz06] either by imposing syntactic restrictions (bound the
number of registers, constrain the polarity of temporal formulae, etc.) or by considering
subclasses of data words (finiteness for example). Similar phenomena occur with met-
ric temporal logics and timed words [OW06,OW07]. A key point for all these logical
formalisms is the ability to store a value from an infinite alphabet, which is a feature
also present in models of register automata, see e.g [BPT03,NSV04,Seg06]. However,
the storing mechanism has a long tradition (apart from its ubiquity in programming
languages) since it appeared for instance in real-time logics [AH89] (the data are time
values) and in so-called hybrid logics (the data are node addresses), see an early unde-
cidability result with reference pointers in [Gor96]. Meaningful restrictions for hybrid
logics can also lead to decidable fragments, see e.g. [SW07].

Our motivations. In this paper, our main motivation is to analyze the effects of adding
a binding mechanism with registers to specify runs of operational models such as push-
down systems and counter automata. The registers are simple means to compare data
values at different points of the execution. Indeed, runs can be naturally viewed as data
words: for example, the finite alphabet is the set of locations and the infinite alphabet is
the set of data values (natural numbers, stacks, etc.). To do so, we enrich an ubiquitous
logical formalism for model-checking techniques, namely linear-time temporal logic
LTL, with registers. Even though this was the initial motivation to introduce LTL with
registers in [DLN07], most decision problems considered in [DLN07,Laz06,DL06] are
essentially oriented towards satisfiability. In this paper, we focus on the following type
of model-checking problem: given a set of runs generated by an operational model,
more precisely by a one-counter automaton, and a formula from LTL with registers, is
there a run satisfying the given formula? In our context, it will become clear that the
extension with two counters is undecidable. It is not difficult to show that this model-
checking problem differs from those considered in [Laz06,DLN07] and are of a differ-
ent nature from those for hybrid logics investigated in [FdRS03,FdR06,tCF05]. How-
ever, since two consecutive counter values in a run are ruled by the set of transitions,
constraints on data that are helpful to get fine-tuned undecidability proofs for satisfia-
bility problems in [DLN07,DL06] may not be allowed on runs. This is precisely what
we want to understand in this work. Like in [BJS07], LTL with registers makes sense to
specify and reason about configurations of operational models, precisely counter sys-
tems.

Our contribution. We study complexity issues related to the model-checking problem
for LTL with registers over one-counter automata that are simple operational models
but our undecidability results can be obviously lifted to pushdown systems when regis-
ters store the stack value. Moreover, in order to determine borderlines for decidability,
we also present results for deterministic one-counter models that are less powerful but
remain interesting when they are viewed as a means to specify an infinite path on which
model checking is performed, see analogous issues in [MS03].

We consider several classes of one-counter automata (deterministic, weakly deter-
ministic and nondeterministic) and several fragments by restricting the use of registers
or the use of letters from the finite alphabet. Moreover, we distinguish finite accepting
runs from infinite ones as data words. Unlike results from [OW06,OW07,DL06,Laz06],
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the decidability status of the model checking does not depend on the fact that we con-
sider finite data words instead of infinite ones. In this paper, we present the following
results.

– Model checking LTL with registers over deterministic one-counter automata is
PSPACE-complete (see Sect. 3.3). PSPACE-hardness is established by reducing
QBF and it also holds when no letters from the finite alphabet are used in formulae.
When the number of registers is bounded, the problem can be solved in polynomial
time. In order to get these complexity upper bounds, we introduce an abstraction on
counter values even though the counter valuesmay not be bounded along the unique
run of the deterministic automata. This makes a substantial difference with [MS03]
in which no data values are considered, but still our problem amounts to model
checking a path specified by a deterministic one-counter automaton.

– Model checking LTL with registers over nondeterministic one-counter automata
restricted to a unique register and without alphabet isΣ1

1 -complete in the infinitary
case by reducing the recurrence problem for Minsky machines (see Sect. 4). In the
finitary case, the problem is shown Σ0

1 -complete by reducing the halting problem
for Minsky machines. These results are quite surprising since several verification
problems for one-counter automata are known to be decidable with relatively low
complexity [JKMS04,Ser06,DG07]. Moreover, finitary satisfiability for LTL with
one register is decidable [DL06] even though with nonprimitive complexity.

Plan of the paper. In Sect. 2, we introduce the model-checking problem for LTL with
registers over one-counter automata. In Sect. 3, we consider decidability and complex-
ity issues for model checking deterministic one-counter automata. In Sect. 4, several
model-checking problems over nondeterministic one-counter automata are undecidable.

2 Preliminaries

2.1 One-counter automaton

Let us recall standard definitions and notations about our operational models. A one-
counter automaton is a tupleA = 〈Q, qI , δ, F 〉 where :

– Q is a finite set of locations,
– qI ∈ Q is the initial location,
– F ⊆ Q is the set of accepting locations,
– δ ⊆ Q×L×Q is the transition relation over the instruction setL = {inc, dec, ifzero}.

A counter valuation v is an element ofN and a configuration ofA is a pair inQ×N. The
initial configuration is the pair 〈qI , 0〉. As usual, a one-counter automatonA induces a
(possibly infinite) transition system 〈Q × N,−→〉 such that 〈q, n〉 −→ 〈q′, n′〉 iff one of
the conditions below holds true:

1. 〈q, inc, q′〉 ∈ δ and n′ = n + 1,
2. 〈q, dec, q′〉 ∈ δ and n′ = n− 1 (and n′ ∈ N),
3. 〈q, ifzero, q′〉 ∈ δ and n = n′ = 0.
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A finite [resp. infinite] run ρ is a finite [resp. infinite] sequence ρ = 〈q0, n0〉 −→
〈q1, n1〉 −→ · · · where 〈q0, n0〉 is the initial configuration. A finite run is accepting
iff it ends with an accepting location. An infinite run ρ is accepting iff it contains an ac-
cepting location infinitely often (Büchi acceptance condition). All these notations can
be naturally adapted to multicounter automata.

A one-counter automatonA is deterministicwhenever it corresponds to a determin-
istic one-counter Minsky machine: for every location q,

– either A has a unique transition from q incrementing the counter,
– or A has exactly two transitions from q, one with instruction ifzero and the other
one with instruction dec,

– or A has no transition from q (no present in original deterministic Minsky ma-
chines).

In the transition system induced by any deterministic one-counter automaton, each con-
figuration has at most one successor. One-counter automata in full generality are under-
stood as nondeterministic one-counter automata.

2.2 LTL over data words

Formulae of the logic LTL↓,Σ whereΣ is a finite alphabet are defined as follows:

φ ::= a | ↑r | ¬φ | φ ∧ φ | φUφ | Xφ | ↓r φ

where a ∈ Σ and r ranges over N \ {0}. We write LTL↓ to denote LTL with registers
for some unspecified finite alphabet. An occurrence of ↑r within the scope of some
freeze quantifier ↓r is bound by it; otherwise it is free. A sentence is a formula with no
free occurrence of any ↑r. Given a natural number n > 0, we write LTL↓,Σ

n to denote
the restriction of LTL↓,Σ to registers in {1, . . . , n}. Models of LTL↓,Σ are data words.
A data word σ over a finite alphabet Σ is a non-empty word in Σ<ω or Σω, together
with an equivalence relation∼σ on word indices. We write |σ| for the length of the data
word, σ(i) for its letters where 0 ≤ i < |σ|. LetΣ<ω(∼) [resp.Σω(∼)] denote the sets
of all such finite [resp. infinite] data words.

A register valuation v for a data word σ is a finite partial map from N \ {0} to the
indices of σ. Whenever v(r) is undefined, the formula ↑r is interpreted as false. The
satisfaction relation |= is defined as follows (Boolean clauses are omitted).

σ, i |=v a
def
⇔ σ(i) = a

σ, i |=v ↑r
def
⇔ r ∈ dom(v) and v(r) ∼σ i

σ, i |=v Xφ
def
⇔ i + 1 < |σ| and σ, i + 1 |=v φ

σ, i |=v φ1Uφ2
def
⇔ for some j ≥ i, σ, j |=v φ2 and for all i ≤ j′ < j, σ, j′ |=v φ2

σ, i |=v ↓r φ
def
⇔ σ, i |=v[r #→i] φ

v[r /→ i] denotes the register valuation equal to v except that the register r is mapped
to the position i. In the sequel, we omit the subscript “v” in |=v when sentences are
involved. We use the standard abbreviations for the temporal operators (G, F, . . . ) and
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for the Boolean operators and constants (∨,⇒,2,⊥, . . . ). The infinitary [resp. finitary]
satisfiability problem for LTL with registers, noted ω-SAT-LTL↓ [resp. f -SAT-LTL↓],
is defined as follows:

input: a finite alphabetΣ and a formula φ in LTL↓,Σ ;
question: Is there an infinite [resp. a finite] data word σ such that σ, 0 |= φ?

Theorem 1. [DL06] ω-SAT-LTL↓ restricted to one register isΠ0
1 -complete and f -SAT-

LTL↓ restricted to one register is decidable with non-primitive recursive complexity.

Given a one-counter automaton A = 〈Q, qI , δ, F 〉, finite [resp. infinite] accepting
runs ofA can be viewed as finite [resp. infinite] data words over the alphabetQ. Indeed,
given a run ρ, the equivalence relation ∼ρ is defined as follows: i ∼ρ j iff the counter
value at the ith position of ρ is equal to the counter value at the jth position of ρ. In
order to ease the presentation, in the sequel we store in registers counter values, which
is an equivalent way to proceed by slightly adapting the semantics for ↑r and ↓r, and
the values stored in registers (data).

The finitary [resp. infinitary] (existential) model-checkingproblem over one-counter
automata for LTL with registers, notedMC<ω [resp.MCω] is defined as follows:

input: one-counter automatonA = 〈Q, qI , δ, F 〉 and sentence φ in LTL↓,Q;
question: Is there a finite [resp. infinite] accepting run ρ of A such that ρ, 0 |= φ? If

the answer is “yes”, we writeA |=<ω φ [resp.A |=ω φ ].

In this existential version of model checking, this problem can be viewed as a variant of
satisfiability in which satisfaction of a formula can be only witnessed within a specific
class of data words, namely the accepting runs of the automata. Results for the universal
version of model checking will follow easily from those for the existential version.

We write MCα
n to denote the restriction of MCα to formulae with at most n regis-

ters. Very often, it makes sense that only counter values are known but not the current
location of a configuration, which can be understood as an internal information about
the system. We write PureMCα

n to denote the restriction of MCα
n (its “pure” version)

to formulae with atomic formulae only of the form ↑r.

Example 1. Here are properties that can be stated in LTL↓,Q
2 along a run.

– “There is a suffix such that all the counter values are different”: FG(↓1 XG¬ ↑1).
– “Whenever location q is reached with current counter value n and next current
counter value m, if there is a next occurrence of q, the two consecutive counter
values are also n andm”: G(q ⇒↓1 X ↓2 XG(q ⇒↑1 ∧X ↑2)).

Observe also that we have choosen as alphabet the set of locations of the automata.
Alternatively, it would have been possible to add finite alphabets to automata, to la-
bel each transition by a letter and then consider as data words obtained from automata
the recognized words augmented with the counter values. This does not make any es-
sential difference with the choice we made here that simplifies a little some technical
developements.
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2.3 Purification of the model-checking problem

We show how to get rid of propositional variables by reducing the model-checking
problem over one-counter automata to its pure version.

Lemma 2 (Purification).Given a one-counter automatonA and a sentenceφ inLTL↓,Q
n ,

one can compute in logarithmic space in |A| + |φ| a one-counter automaton AP and
φP in LTL↓,∅

max(n,1) such that A |=<ω φ [resp. A |=ω φ ] iff AP |=<ω φP [resp.
AP |=ω φP ]. Moreover,A is deterministic iffAP is deterministic.

The idea of the proof is simply to identify locations with patterns about the changes
of the unique counter that can be expressed in LTL↓,∅.

Proof. LetA = 〈Q, qI , δ, F 〉withQ = {q1, ..., qn} and φ in LTL↓,Q. In order to define
AP , we identify locations with patterns about the changes of the unique counter. For
each location qi in Q we associate the new sequence of transitions described in Fig. 1
and qi

a
−→ qj ∈ δ iff qF

i
a
−→ qj ∈ δ′. In the sequence of picks numbered from 0 to n + 1,

the only pick of height 2 is one numbered i. In order to identify the beginning of the
first pick of height 3 we introduce formulae in LTL↓,∅

1 : ϕ¬ 3
7
expresses that “among the

7 next counter values (including the current counter value), there are no 3 equal values”
and ϕ0∼6 expresses that “the current counter value is equal to the counter value at the
6th next position”. We write LOC to denote the formula ϕ¬ 3

7
∧ϕ0∼6. By a simple case

analysis, one can check that in the run of AP , LOC holds true iff the current location
is in Q. We pose φi = X

6+2(i−1) ↓1 X
2¬ ↑1 for 1 ≤ i ≤ n. One can check that in the

run of AP LOC ∧ φi holds true iff the current location is qi. φP is equal to T(φ) with
the map T that is homomorphic for Boolean operators and ↓r, and its restriction to ↑r

is identity. The rest of the inductive definition is as follows.

T(qi) = φi; T(Xφ) = X
10+2(n+1)+1T(φ); T(φUφ′) =

`

LOC ⇒ T(φ)
´

U
`

LOC ∧ T(φ′)
´

We remark that φ and φP have the same amount of registers unless φ has no register.
45

qi

0

1 2

i

i + 1 n + 1

qF
i

inc

dec

. . . . . . . . . . . . . . . . . .

Fig. 1. Encoding qi by a pattern made of n + 2 increasing picks of length 10 + 2(n + 1)

3 Model checking deterministic one-counter automata

In this section, we show that MCω restricted to deterministic one-counter automata is
PSPACE-complete and the same restriction forMC<ω is in EXPSPACE.
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3.1 PSPACE lower bound

We show below a PSPACE-hardness result by taking advantage of the alphabet of lo-
cations by means of a reduction from QBF (“Quantified Boolean Formula”) that is a
standard PSPACE-complete problem.

Proposition 3. PureMC<ω and PureMCω restricted to deterministic one-counter au-
tomata are PSPACE-hard problems.

Proof. Consider a QBF instance φ: φ = ∀p1 ∃p2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ...,p2N )
where p1,...,p2N are propositional variables and Ψ(p1, . . . ,p2N ) is a quantifier-free
propositional formula built over p1, . . . ,p2N . The fixed deterministic one-counter au-
tomatonA below generates the sequence of counter values (01)ω.

q0 q1

inc

dec

Let ψ be the formula in LTL↓,∅ defined from the family ψ1, . . . , ψ2N+1 of formulae
with ψ =↓2N+1 ψ1.

– ψ2N+1 = Ψ [pi ← (↑i⇔↑2N+1)],
– for i ∈ {1, ..., N}, ψ2i = F(↓2i ψ2i+1) and ψ2i−1 = G(↓2i−1 ψ2i).

One can show that φ is satisfiable iffAφ |=ω ψ.
To do so, we proceed as follows. For i ∈ {0, 2, 4, 6, . . . , 2N}, let φi be

φi = ∀pi+1 ∃pi+2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ...,p2N ).

So φ0 is precisely φ. Similarly, for i ∈ {1, 3, 5, . . . , 2N − 1}, let φi be

φi = ∃pi+1 ∀pi+2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ...,p2N ).

Observe that the free propositional variables in φi are precisely p1, . . . ,pi and φi is
obtained from φ by removing the ith first quantifications. Given a propositional valu-
ation v : {p1, . . . ,pi} → {2,⊥} for some i ∈ {1, . . . , 2N}, we write v to denote a
register valuation such that its restriction to {1, . . . , i, 2N + 1} satisfies: v(pj) = 2
iff v(j) = 0 for j ∈ {1, . . . , i} and v(2N + 1) = 0. One can show by induction that
for k ≥ 0, v |= φi−1 (in QBF) iff ρωA, k |=v ψi. Consequently, if v |= φ for some
propositional valuation, then ρωA, 0 |=v ψ. Similarly, if ρωA, 0 |=v ψ, then there is a
propositional valuation v′ such that v′ = v and v′ |= φ.

For PureMC<ω, one can enforce the sequence of counter values from the accepting
run to be (01)2N0 and then use X to define the ψis.

45
Observe that in the reduction, we use an unbounded number of registers (see Theo-

rem 13) but a fixed deterministic one-counter automaton.
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3.2 Properties on runs for deterministic automata

Any deterministic one-counter automatonA has at most one infinite run, possibly with
an infinite amount of counter values. If this run is not accepting, i.e. no accepting loca-
tion is repeated infinitely, then for no formula φ, we haveA |=ω φ. We show below that
we can decide in polynomial-time whetherA has accepting runs either finite or infinite.
Moreover, we shall show that the infinite unique run has some regularity.

Let ρωA be the unique run (if it exists) of the deterministic one-counter automatonA
represented by the following sequence of configurations 〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . .

Lemma 4. LetA be a deterministic one-counter automaton with an infinite run. There
are K1, K2, K3 such that K1 + K2 ≤ |Q|3, K3 ≤ |Q| and for every i ≥ K1,
〈qi+K2

, ni+K2
〉 = 〈qi, ni + K3〉.

Hence, the run ρωA can be encoded by its firstK1 + K2 configurations.

Proof. We write ZERO(A) to denote the set of positions of ρωA where a zero-test has
been successful. By convention, 0 belongs to ZERO(A) since in a run we require that
the first configuration is the initial configuration of A with counter value 0. Hence,
ZERO(A)

def
= {0} ∪ {i > 0 : ni = ni+1 = 0}.

Lemma 5. Let i < j be in ZERO(A) for which there is no i < k < j with k ∈
ZERO(A). Then, (j − i) ≤ |Q|2.

The proof essentially establishes that the counter cannot go beyond |Q| between
two positions with successful zero-tests.

Proof. First observe that there are no i < k < k′ < j such that qk = qk′ and nk ≤ nk′ .
Indeed, if it is the case since there is no successful zero-tests in 〈qi+1, ni+1〉 · · · 〈qk, nk〉
· · · 〈qk′ , nk′〉 and A is deterministic we would obtain from 〈qk′ , nk′〉 an infinite path
with no zero-test, a contradiction with the existence of 〈qj , nj〉. Hence, if there are
i < k < k′ < j such that qk = qk′ , then nk′ < nk. Now suppose that there is
i < k < j such that nk ≥ |Q|. We can extract a subsequence 〈qi0 , ni0〉 · · · 〈qis

, nis
〉

from 〈qi, ni〉 · · · 〈qnk
, nk〉 such that i0 = i, is = k and for 0 ≤ l < s, nil+1

= nil
+ 1.

Consequently, there are l, l′ such that qil
= qil′

and nil
< nil′

, which leads to a
contradiction from the above point. Hence, for k ∈ {i, . . . , j}, nk ≤ |Q| − 1. Since A
is deterministic, this implies that (j − i) ≤ |Q| × (|Q| − 1). 45

Let us come back to the rest of the proof.
First, suppose that ZERO(A) is infinite. Let i0 < i1 < i2 < . . . be the infinite

sequence composed of elements from ZERO(A) (i0 = 0). There are l, l′ ≤ |Q| such
that 〈qil

, nil
〉 = 〈qi

l′
, ni

l′
〉. By Lemma 5, il′ ≤ |Q| × |Q|2 . Take K1 = il and K2 =

il′ − il.
Second, suppose that ZERO(A) is finite, say equal to {0, i1, . . . , il} for some l ≤

|Q| − 1 (if l ≥ |Q| we are in the first case). By Lemma 5, il ≤ (|Q| − 1)× |Q|2. For all
il ≤ k < k′, if qk = qk′ , then nk ≤ nk′ (it is was not the case, there would eventually
be another zero-test in the path starting with 〈qil

, nil
〉). Now there are il ≤ k < k′ ≤

il + |Q| such that qk = qk′ and consequently nk ≤ nk′ . Take K1 = k, K2 = k′ − k
andK3 = nk′ − nk. K3 ≤ |Q| because k′ − k ≤ |Q|. 45
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ρωA has a simple structure: it is composed of a polynomial-size prefix

〈q0, n0〉 · · · 〈qK1−1, nK1−1〉

followed by the polynomial-size loop 〈qK1
, nK1

〉 · · · 〈qK1+K2−1, nK1+K2−1〉 repeated
infinitely often. The effect of applying the loop consists in addingK3 to every counter
value. Testing whether A has an infinite run or ρωA is accepting amounts to check
whether there is an accepting location in the loop, which can be done in cubic time
in |Q|. In the rest of this section, we assume that ρωA is accepting. Similarly, testing
whether A has a finite accepting run amounts to check whether an accepting location
occurs in the prefix or in the loop.

WhenK3 = 0 and A has an infinite run, ρωA is precisely

〈q0, n0〉 · · · 〈qK1−1, nK1−1〉(〈qK1
, nK1

〉 · · · 〈qK1+K2−1, nK1+K2−1〉)
ω .

It is then possible to apply a polynomial-space labelling algorithm à la CTL for model
checking LTL↓,Q formulae on A. However, one needs to take care of register valua-
tions, which explains why unlike the polynomial-time algorithm for model checking
ultimately periodic models on LTL formulae (see e.g., [MS03]), model checking re-
stricted to deterministic automata withK3 = 0 is still PSPACE-hard.

3.3 A PSPACE symbolic model-checking algorithm

In this section, we provide decision procedures for solvingMC<ω andMCω restricted
to deterministic one-counter automata. Let us introduce some notations. Let ρωA =
〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . . be the unique run of the deterministic one-counter automa-
ton A and φ be a sentence with N ≥ 1 registers. Let i ≥ 0 be a position in ρωA and m
be a register value inN. We write posA(i, m) to denote the following (possibly infinite)
set of offsets: posA(i, m) = {j ∈ N : m = ni+j}. The valuesm should be understood
as register values when evaluation of subformulae is done at position i. In general, the
set {posA(i, m) ⊆ N : i, m ∈ N} can be infinite but if we restrict ourselves to m in
{n0, . . . , ni} then it is not anymore the case. After all, this is a reasonable assumption
when m is intended to be a value stored in a register. Before showing this property,
we establish that whenever K3 > 0, two positions with identical counter values are
separated by a distance that is bounded by a polynomial in |Q|.

Lemma 6. SupposeK3 > 0. For all i ≤ j,

(I) ni = nj and i < K1 imply (j − i) ≤ K1 + K1K2,
(II) ni = nj and i ≥ K1 imply (j − i) ≤ K2

2 .

Proof. (I) Ad absurdum, suppose that j−i > K1+K1K2. First, observe that ni < K1.
Let m be the minimal value in {nK1

, . . . , nK1+K2−1}. For all l ≥ K1 + K1K2, we
have nl ≥ m + K1K3 ≥ K1K3 > K1. Since j ≥ K1 + K1K2, we deduce that
nj > K1, which is in contradiction with ni = nj .

(II) Ad absurdum, suppose that (j− i) > K2
2 . Remark that from a position l ≥ K1,

we have for all l′ > l, nl′ ≥ nl − K2/2, in fact performing K2 transitions after a
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position greater than K1 amounts to add K3 to every counter value. Consequently we
can deduce that nj ≥ ni+K2

2
−K2/2. Since ni+K2

2
= ni + K2K3, we conclude that

nj ≥ ni + K2K3 −K2/2 ≥ ni + K2 − K2/2 > ni, which leads to a contradiction.
45

Lemma 7. The set below is finite and its cardinality is polynomial in |Q|:

{posA(i, m) : i ∈ N, m ∈ {n0, . . . , ni}}

We write REGVALUESA to denote the above finite set with polynomial cardinal-
ity. Observe that even though the set of counter values occurring in ρωA may be infinite
(exactly when K3 > 0) we can represent symbolically each register value v(r) at a
position i by a concise representation for posA(i, v(r)).

Proof. First, suppose thatK3 = 0. The run ρωA is of the form

〈q0, n0〉 · · · 〈qK1−1, nK1−1〉(〈qK1
, nK1

〉 · · · 〈qK1+K2−1, nK1+K2−1〉)
ω.

It is easy to see that for all i ∈ N and m :∈ {n0, . . . , nK1+K2−1}, posA(i, m) = ∅.
Moreover,

– for all i, i′ ≥ K1 such that i ≡K2
i′ and register valuesm ∈ N, we have posA(i, m) =

posA(i′, m)„
– for every i ≤ K1 + K2 − 1,

{posA(i, m) ⊆ N : m ∈ {n0, . . . , ni}}

has cardinality at most i + 1.

Consequently, from the first point, we have REGVALUESA = {posA(i, m) : i ∈
{0, . . . , K1 + K2 − 1}, m ∈ {n0, . . . , ni}} ∪ {∅} whereas from the second point, we
get that its cardinality is at most (K1 + K2)2 + 1.

Second, suppose that K3 > 0 (and thereforeK2 ≤ |Q|). The run ρωA is of the form
below

〈q0, n0〉 · · · 〈qK1
, nK1

〉 · · · 〈qK1+K2
, nK1

+ K3〉 · · · 〈qK1+2K2
, nK1

+ 2K3〉 · · ·

The set {nj : j ≥ 0} is therefore infinite and qK1 = qK1+K2
= qK1+2K2

= . . .. From
lemma 6, we deduce the following observations that will allow us to get the polynomial
cardinality for REGVALUESA.

1. The set {posA(i, m) : 0 ≤ i ≤ K1 + K2
2 , m ∈ {n0, . . . , ni}} has at most

(1 + K1 + K2
2)2 elements, which is polynomial in |Q|.

2. For every i ≥ K1 + K2
2 , if m :∈ {0, . . . , K1 − 1} ∪ {n(i−K2

2)+1, . . . , ni}, then
posA(i, m) is the empty set. Hence, {posA(i, m) : m ∈ {n0, . . . , ni}} has cardi-
nality at mostK2

2 + K1 + 1.
3. For all i ≥ K1 + K2

2 and m ∈ {n(i−K2
2)+1, . . . , ni}, posA(i + K2, m + K3) =

posA(i, m). Hence, for all i, i′ ≥ K1 + K2
2 such that i ≡K2

i′,

{posA(i, m) : m ∈ {n0, . . . , ni}} = {posA(i′, m) : m ∈ {n0, . . . , ni′}}.

10



45

One consequence of the proof of Lemma 7 is that |REGVALUESA| is bounded by
(1 + K1 + K2

2)2 + K2 × (1 + K1 + K2
2 ).

We define below the equivalence relation ≡ between positions of ρωA: i ≡ i′ iff
qi = q′i, and for all α, β ≥ 0, (ni+α = ni+β iff ni′+α = ni′+β) and (qi+α = qi+β

iff qi′+α = qi′+β). Typically, i and i′ are equivalent whenever the path starting at
position i is isomorphic to the path starting at position i′. It is easy to see that ≡ has
at most K1 + K2 equivalence classes since i ≡K2

i′ and i, i′ ≥ K1 imply i ≡ i′

(here ≡K2
is the congruence relation). We extend ≡ to pairs composed of positions

and register valuations. Given positions i, i′ ∈ N and register valuations v, v′ such that
ran(v) ⊆ {n0, . . . , ni} and ran(v′) ⊆ {n0, . . . , ni′}, 〈i, v〉 ≡ 〈i′, v′〉 iff (1) i ≡ i′ and
(2) for all α ≥ 0 and registers r ∈ {1, . . . , N}, ni+α = v(r) iff ni′+α = v′(r). Again,
≡ is an equivalence relation. A pair 〈i, v〉 is called a context.

Condition (2) on the definition of≡ is equivalent to: for every register r ∈ {1, . . . , N},
posA(i, v(r)) = posA(i′, v′(r)). Consequently,

Lemma 8. There are polynomials P1 and P2 such that the number of equivalence
classes for ≡ on contexts 〈i, v〉 is bounded by P1(|Q|) × [P2(|Q|)]N (N is the num-
ber of registers).

The bound is exactly (K1 + K2) × [(1 + K1 + K2
2)2 + K2 × (K2

2 + K1 + 1)]N ,
where (1 + K1 +K2

2 )2 +K2× (K2
2 + K1 + 1) is the cardinal of REGVALUESA and

K1 + K2 is the number of equivalent positions w.r.t. to ≡.

Lemma 9. If 〈i, v〉 ≡ 〈i′, v′〉, then

(I) for all j > 0,〈i + j, v〉 ≡ 〈i′ + j, v′〉,
(II) for every formula ψ ∈ LTL↓,Q

N , ρωA, i |=v ψ iff ρωA, i′ |=v′ ψ.

Proof. (I) The proof is done by recurrence on j. First suppose that j = 1. The only
point to check is that qi+1 = qi′+1, which is a simple consequence of the determinism
of A. Indeed, if there is only an incrementing transition from qi, then we get straight-
forwardly qi+1 = qi′+1. Otherwise, if there are two transitions from qi, then one is a
decrementation and the other one is a zero-test. The induction step is shown in a similar
fashion.

(II) Suppose 〈i, v〉 ≡ 〈i′, v′〉. The proof is by structural induction on ψ.

– Case ψ = q: Since by definition i ≡ i′, we have that qi = qi′ and consequently
qi = q iff qi′ = q.

– Case ψ =↑r: Since ni = v(r) iff ni′ = v′(r), we have that ρωA, i |=v↑r iff
ρωA, i′ |=v′↑r.

– Case ψ = Xφ: Since 〈i, v〉 ≡ 〈i′, v′〉, from Lemma 9(I), we deduce that 〈i+1, v〉 ≡
〈i + 1′, v′〉 and by (IH) we obtain ρωA, i + 1 |=v ψ iff ρωA, i′ + 1 |=v′ ψ.

– Case ψ = φ1Uφ2: Suppose that there exists j ≥ 0 such that ρωA, i + j |=v φ2 and
for all 0 ≤ j′ < j, ρωA, i + j′ |=v φ1. Using Lemma 9(I) and (IH), we deduce that
ρωA, i′ + j |=v φ2 and for all 0 ≤ j′ < j, ρωA, i′ + j′ |=v φ1.

11



– Case ψ =↓r φ: We observe that if 〈i, v〉 ≡ 〈i′, v′〉 then 〈i, v[r /→ ni]〉 ≡ 〈i′, v′[r /→
ni]〉. This is due to the fact that for α ≥ 0, if ni+a = ni, then n′

i = ni′+α (since
i ≡ i′). By (IH), we get the desired result.

45

3.4 Abstraction and complexity issues

We have seen that the equivalence relation ≡ on contexts has finite index. We present
below a means to represent symbolically an equivalence class. In the case K3 = 0, a
symbolic context is a pair 〈i, pos〉where i ∈ {0, . . . , K1+K2−1} and pos is a symbolic
register valuation of the form {1, . . . , N} → {n0, . . . , nK1+K2−1}. A context 〈i, v〉 is
represented by the symbolic context 〈i′, pos〉 where

– i < K1 implies i′ = i otherwise i′ is the unique element of {K1, . . . , K1+K2−1}
such that i ≡K2

i′,
– for r ∈ {1, . . . , N}, pos(r) = v(r). Observe that v(r) ∈ {n0, . . . , nK1+K2−1}
and pos(r) can be encoded with O(log(|Q|)) bits.

When K3 > 0, the definition of a symbolic context is modified for the second compo-
nent only since the set of counter values along the run is infinite. A symbolic context re-
mains a pair 〈i, pos〉 but i ∈ {0, . . . , K1+K2−1} and pos is a symbolic register valua-
tion of the form {1, . . . , N} → P({0, . . . , K1+K1K2})∪P({0, . . . , K2

2}). Moreover,
when i < K1, pos(r) ⊆ {0, . . . , K1 + K1K2}, otherwise pos(r) ⊆ {0, . . . , K2

2}. In-
deed, fromLemma 6, wheneverK3 > 0, for all i ∈ N andm ∈ {n0, . . . , ni}, if i < K1,
then posA(i, m) ⊆ {0, . . . , K1+K1K2} otherwise posA(i, m) ⊆ {0, . . . , K2

2}. A con-
text 〈i, v〉 is represented by the symbolic context 〈i′, pos〉 where i′ is defined as above
and for r ∈ {1, . . . , N}, pos(r) = posA(i, v(r)).

Each value pos(r) can be encoded with a polynomial amount of bits in |Q|. One
can compute in polynomial time in |Q| the range of any symbolic register valuation
(whetherK3 = 0 or not) thanks to Lemma 7. When the number of registers is bounded,
the number of symbolic contexts occurring in ρωA is polynomial in |Q| and they can be
computed in polynomial time.

Given a context 〈i, v〉, we write [〈i, v〉] to denote its corresponding symbolic context
(w.r.t.A). Symbolic contexts correspond to the equivalence classes of ≡:

Lemma 10. Let 〈i, v〉 and 〈i′, v′〉 be contexts. Then [〈i, v〉] = [〈i′, v′〉] iff 〈i, v〉 ≡
〈i′, v′〉.

Let us define a map next that takes as an argument a symbolic context 〈i, pos〉 and
returns the symbolic context obtained at the next step. This is a well-defined function
because taking two contexts that are ≡-equivalent, moving one step forward leads to
two new contexts that are also ≡-equivalent (see Lemma 11 below). The map next is
defined as follows : next(〈i, pos〉) = 〈i′, pos′〉 where

– if i < K1 + K2 − 1 then i′ = i + 1, otherwise i′ = K1.
– if K3 > 0, then for r ∈ {1, . . . , N}, pos′(r) = {α− 1 : α ∈ pos(r), α > 0},
– if K3 = 0, then pos′ = pos.
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Lemma 11. Let 〈i, v〉 be a context with ran(v) ⊆ {n0, . . . , ni}. Then next([〈i, v〉]) =
[〈i + 1, v〉].

Proof. Let 〈i′, posi〉 = [〈i, v〉], 〈j′, posj〉 = [〈j, v〉] and 〈i′′, pos′〉 = mv([〈i, v〉], (j −
i)).

First, we will show that pos′ = posj . Suppose K3 = 0, then we have that pos′ =
posi. Since for all r ∈ {1, . . . , N}, posi(r) = v(r) = posj(r), we deduce that pos′ =
posj . Now consider the caseK3 > 0. Then for r ∈ {1, . . . , N}, pos′(r) = {α−(j−i) :
α ∈ posi(r), α ≥ (j − i)}. Furthermore posi(r) = posA(i, v(r)) = {l ∈ N : ni+l =
v(r)}. Let l ∈ posi(r) such that l ≥ (j − i). Then nj+l−(j−i) = ni+l = v(r) and
we can deduce that l − (j − i) ∈ posA(j, v(r)) = posj(r). Now we suppose that
l ∈ posj(r). Hence, nj+l = v(r) and ni+(i−j)+l = v(r). If we denote l +(j − i) by l′,
then l′ ∈ posi(r) and since l = l′ − (j − i), we obtain that l ∈ pos′(r).

We will now show that i′′ = j′. First, we suppose that i+(j−i) ≤ K1+K2−1 then
i′′ = i + (j − i) = j. Since j ≤ K1 + K2 − 1, we deduce j′ = j. Second, we suppose
that i + (j − i) > K1 + K2 − 1. So we have that i′′ ≡K2

i + (j − i) ≡K2
j ≡K2

j′

and since we have that i′′, j′ ∈ {K1, . . . K1 + K2 − 1}, we deduce that i′′ = j′.
45

Below, we solve the model-checking problem by following an automata-based ap-
proach [VW86]. We consider alternating word automata with Büchi acceptance con-
dition on ω-words, see e.g. [Var97]: every infinite branch of accepting runs has an ac-
cepting state repeated infinitely often. Given an alternating word Büchi automaton A,
we write Lω(A) [resp. L<ω(A)] to denote the set of infinite [resp. finite] words ac-
cepted by A. As usual, for runs accepting infinite runs, along each infinite branch there
is an accepting state occurring infinitely often. Let φ be a formula in NNF built over
disjunction ∨ and the release operator R (dual of U). Observe that X and ↓r are self-
dual. We build an alternating automatonAφ that can be viewed as the product between
the run of A and the automaton for φ. The synchronization mode between these two
components takes into account the presence of registers. When K3 > 0 and A has an
accepting run (which can be checked in PTIME), let Aφ = 〈Σ, S, s0, δ, F 〉 be defined
as follows:

– Σ = {a} and S is the set of states of the form 〈〈i, pos〉, ψ〉 where 〈i, pos〉 is a
symbolic context and ψ is a subformula of φ.

– the initial state is s0 = 〈〈0, pos0〉, φ〉 where pos0 is the symbolic register valuation
representing the zero register valuation and F is the set of accepting states whose
outermost connective of the second component is not until.

– Here is the transition function δ (obvious dual clauses are omitted):
• δ(〈〈i, pos〉, q〉, a) = 2 if q = qi, otherwise δ(〈〈i, pos〉, q〉, a) =⊥,
• δ(〈〈i, pos〉,¬ ↑r〉, a) =⊥ if 0 ∈ pos(r), otherwise δ(〈〈i, pos〉,¬ ↑r〉, a) = 2,
• δ(〈〈i, pos〉, ψ ∧ ψ′〉, a) = δ(〈〈i, pos〉, ψ〉, a) ∧ δ(〈〈i, pos〉, ψ′〉, a),
• δ(〈〈i, pos〉, ψ ∨ ψ′〉, a) = δ(〈〈i, pos〉, ψ〉, a) ∨ δ(〈〈i, pos〉, ψ′〉, a),
• δ(〈〈i, pos〉, Xψ〉, a) = 〈next(〈i, pos〉), ψ〉,
• δ(〈〈i, pos〉, ↓r ψ〉, a) = δ(〈〈i, pos[r ← posA(i, ni)]〉, ψ〉, a),
• δ(〈〈i, pos〉, ψUψ′〉, a) =

δ(〈〈i, pos〉, ψ′〉, a) ∨ (δ(〈〈i, pos〉, ψ〉, a) ∧ 〈next(〈i, pos〉), ψUψ′〉).
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• δ(〈〈i, pos〉, ψRψ′〉, a) = δ(〈〈i, pos〉, ψ′〉, a)∧(δ(〈〈i, pos〉, ψ〉, a)∨〈mv(〈i, pos〉, 1), ψRψ′〉.

WhenK3 = 0, the clauses for ↓r and ↑r are the following:

– δ(〈〈i, pos〉, ↑r〉, a) = 2 if ni = pos(r), otherwise δ(〈〈i, pos〉, ↑r〉, a) =⊥,
– δ(〈〈i, pos〉, ↓r ψ〉, a) = δ(〈〈i, pos[r ← ni]〉, ψ〉, a).

We write A〈〈i,pos〉,ψ〉
φ to denote the automaton defined from Aφ with initial location

〈〈i, pos〉, ψ〉.

Lemma 12. Let i ∈ N and v be a register valuation with range {n0, . . . , ni}. For every
subformula ψ of φ, ρωA, i |=v ψ iff A〈[〈i,v〉],ψ〉

φ accepts an infinite run.

The proof (by structural induction) is a variant of the one for LTL and uses Lemma 9
and 11.

Proof. We treat below only the caseK3 > 0. Let [〈i, v〉] = 〈i′, pos〉.
Base cases
Base case 1: ψ = q.
The statements below are equivalent:

– ρωA, i |=v q,
– qi = q (by definition of |= and ρωA),
– A〈〈i′,pos〉,q〉

φ accepts an infinite run (since δ(〈〈i′, pos〉, q〉, a) = 2 - qi′ = qi = q -
and there is no contraint for the next transitions).

Base case 2: ψ =↑r.
The statements below are equivalent:

– ρωA, i |=v↑r,
– v(r) = ni (by definition of |= and ρωA),
– 0 ∈ pos(r) (by definition of [·])
– A〈〈i′,pos〉,↑r〉

φ accepts an infinite run (since δ(〈〈i′, pos〉, ↑r〉, a) = 2 and there is no
contraint for the next transitions).

Induction step.We omit the cases for subformulae with outermost connectives∧ and ∨.
Case 1. ψ = Xψ′.
There are equivalence between the statements below:

– ρωA, i |=v Xψ′,
– ρωA, i + 1 |=v ψ′ (by definition of |=),
– A〈[〈i+1,v〉],ψ′〉

φ accepts an infinite run (by induction hypothesis),
– A〈[〈i,v〉],ψ〉

φ accepts an infinite run (by Lemma 11 next([〈i, v〉]) = [〈i + 1, v〉] and
δ(〈[〈i, v〉], Xψ′〉, a) = 〈next([〈i, v〉]), ψ′〉.

Case 2. ψ = ψ1Uψ2.
First suppose, ρωA, i |=v ψ. There is n ≥ i such that ρωA, n |=v ψ2 and for i ≤ j < n,
ρωA, j |=v ψ1. Let us show by induction on (n− i) that A〈〈i′,pos〉,ψ〉

φ accepts an infinite
run.
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– n = i: Then ρωA, i |=v ψ2. By (the first) induction hypothesis,A
〈〈i′,pos〉,ψ2〉
φ accepts

an infinite run ρ2. Since δ(〈〈i′, pos〉, ψ1Uψ2〉, a) =
δ(〈〈i′, pos〉, ψ2〉, a)∨ (δ(〈〈i′, pos〉, ψ1〉, a)∧ 〈next(〈i′, pos〉), ψ1Uψ2〉), by chang-
ing the label of the root in ρ2, we get an accepting infinite forA〈〈i′,pos〉,ψ〉

φ .
– n − i > 0: By definition of |=, ρωA, i |=v ψ1 and ρωA, i + 1 |=v ψ. By (the first)
induction hypothesis, A〈〈i′,pos〉,ψ1〉

φ accepts an infinite run ρ1. By (the second) in-
duction hypothesis,A〈next(〈i′,pos〉),ψ〉

φ accepts an infinite run ρ2. By definition of δ,
we obtain an infinite accepting run by combining ρ1 and ρ2.

Second suppose thatA〈〈i′,pos〉,ψ〉
φ accepts an infinite run ρ. By definition of final states,

ρ has no infinite path labelled by ψ only. Let n be the maximal length of a position
labelled by ψ. Let us show on induction on n that ρωA, i |=v ψ.

– n = 0: By definition of δ, by replacing 〈〈i′, pos〉, φ〉 by 〈〈i′, pos〉, φ2〉 at the root
of ρ, we get an accepting infinite run for A〈〈i′,pos〉,ψ2〉

φ . By (the first) induction
hypothesis, we get ρωA, i |=v ψ2, whence ρωA, i |=v ψ.

– n > 0: Suppose that the infinite accepting run ρ is of the form:
• ρ(ε) = 〈〈i′, pos〉, ψ〉 and the root has k > 0 children,
• ρ(1) = 〈next(〈i′, pos〉), ψ1Uψ2〉,
• {ρ(2), . . . , ρ(k)} |= δ(〈〈i′, pos〉, ψ1〉, a).
Let ρ1 be the infinite accepting run for A〈next(〈i′,pos〉),ψ〉

φ obtained from ρ by con-
sidering the positions below 1. By (the second) induction hypothesis and Lemma 11,
ρωA, i+1 |=v ψ. Let ρ2 be the infinite accepting run forA〈〈i′,pos〉,ψ1〉

φ obtained from
ρ by replacing the root by 〈〈i′, pos〉, ψ1〉 and deleting the positions of the form 1 ·u.
By (the first) induction hypothesis, ρωA, i |=v ψ1. Consequently, ρωA, i |=v ψ.

The case for ψ = ψ1Rψ2 is analogous. 45

An hesitant alternating automaton (HAA) is a structure 〈Σ, S, s0, δ, 〈G, B〉〉 defined
as an alternating automaton such that G, B ⊆ S and there is a partition S1, . . . , Sm

equipped with a partial order≤ such that

– S1 =S2 = · · · =Sm = S and if s′ ∈ ρ(s, a) with s ∈ Si and s′ ∈ Sj , then Sj ≤ Si,
– Each Sj is either existential, universal or transient with the definitions below:

• Sj is transient whenever s′ ∈ δ(s, a) with s ∈ Sj and s′ ∈ Sj′ , then Sj′ < Sj ,
• Sj is existentialwhenever δ(s, a)with s ∈ Sj is rewritten in disjunctive normal
form, there is at most an element in Sj in each disjunct,

• Sj is universalwhenever δ(s, a)with s ∈ Sj is rewritten in conjunctive normal
form, there is at most an element in Sj in each conjunct,

The acceptance condition 〈G, B〉 is the following: the run of a HAA is accepting iff for
every infinite path along a run that is trapped into a set Si,

– if Si is existential then a location in G is repeated infinitely often,
– if Si is universal then no location in B is repeated infinitely often.
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HAA form a subclass of weak alternating automata introduced in [MSS86]. HAA have
been introduced in [BVW94].

The automatonAφ can be viewed as an HAA where:

– each Sj contains the control states with the same formula,
– Sj is transient whenever the outermost connective of the underlying formula is
neither U nor R,

– Sj is existential [resp. universal] whenever the outermost connective of the under-
lying formula is U [resp. R],

– G = B = ∅.

The nonemptiness problem for hesitant alternating word automata over a 1-letter
alphabet can be solved in spaceO(m log2|S|) [BVW94] wherem is the number of sets
in the partition S1, . . . , Sm. This will allow us to characterize precisely the complexity
of model checking.

Theorem 13. MCω restricted to deterministic one-counter automata is PSPACE-com-
plete and its restriction to n ≥ 1 registers is in PTIME.

Proof. Aφ is an hesitant alternating word automata over a 1-letter alphabet with each
set Sj of the partition being a set of states with identical subformulae. By [KVW00,
Theorem 5.6], the nonemptiness problem for hesitant alternating word automata over a
1-letter alphabet can be solved in space O(m log2n) where n is the number of states
and m is the number of elements in the partition of the set of states. In order to obtain
the PSPACE upper bound, it is sufficient to check that the on-the-fly version of the
algorithm given in the proof of [KVW00, Theorem 5.6] can be performed (computation
of the transition function on demand). This is possible partly because inAφ,m is linear
in |φ|, n is exponential in |φ|, for each state s, δ(s, a) can be built in polynomial-time
in |φ| and testing if a state is accepting can be done in linear time in |φ|. Moreover, each
state in Aφ can be encoded in polynomial space in |A| + |φ|.

When the number of registers is fixed, Aφ has a polynomial number of states and
since the nonemptiness problem for weak alternating word automata over a 1-letter
alphabet can be solved in linear time [BVW94], we get the PTIME upper bound. 45

For the finitary case, we cannot invoke the result in [BVW94] because the length of
the word is a distinguishing factor.

Corollary 14. MC<ω restricted to deterministic one-counter automata is in EXPSPACE.

The proof consists in designing an alternating word automata on ω-words with a
two-letter alphabet on the lines of the previous construction. However, the second letter
marks the end of the word so that all the branches detect the end of the word in a
synchronous way. The recognized ω-words are among a∗ · b · aω. Then, we invoke
the quadratic space upper bound for the nonemptiness of alternating automata [Var96],
which provides the EXPSPACE upper bound since Aφ is of exponential size in |φ| and
Aφ can be built in polynomial space in |φ|.
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4 Model checking nondeterministic one-counter automata

In this section, we show that several model-checking problems over nondeterministic
one-counter automata are undecidable by reducing decision problems for Minsky ma-
chines. Undecidability is preserved even in presence of a unique register. This is quite
surprising since f -SAT-LTL↓ restricted to one register is decidable [DL06].

In order to illustrate the significance of the following results, it is worth recalling
that the halting problem for Minsky machines with incrementing errors is reducible
to finitary satisfiability for LTL with one register [DL06]. We show below that, if we
have existential model checking of one-counter automata instead of satisfiability, then
we can use one-counter automata to refine the reduction in [DL06] so that runs with
incrementing errors are excluded. More precisely, in the reduction in [DL06], we were
not able to exclude incrementing errors because the logic is too weak to express that,
for every decrement, the datum labelling it was seen before (remember that we have
no past operators). Now, the one-counter automata are used to ensure that such faulty
decrements cannot occur.

Theorem 15. MC<ω
1 is Σ0

1 -complete.

Proof. The Σ0
1 upper bound is by an easy verification since the existence of a finite

run (encoded in N) verifying an LTL↓,Q
1 formula (encoded in first-order arithmetic) can

be encoded by a Σ0
1 formula. So, let us reduce the halting problem for two-counter

automata to MC<ω
1 . Let A = 〈Q, qI , δ, F 〉 be a two-counter automaton: the set of

instructions L is {inc, dec, ifzero}× {1, 2}. We build a one-counter automaton B =

〈Q′, q′I , δ′, F ′〉 and a sentence φ in LTL↓,Q′

1 such that A reaches an accepting location
iff B |=<ω φ.

For each run in A





qI

c0
1 = 0

c0
2 = 0





inst
0

−−→





q1

c1
1

c1
2





inst
1

−−→ . . .





qN

cN
1

cN
2



 where instis are

instructions, we associate the run in B below
(

qI

0

)

)
−→

(

〈qI , inst0, q1〉
n1

)

)
−→

(

〈q1, inst1, q2〉
n2

)

. . .

(

〈qN−1, instN−1, qN 〉
nN

)

where )
−→ hides steps for updating the counter according to the constraints described

below. During these steps, auxiliary locations are used and there are of two types: loca-
tions that increment or decrement the counter in order to reach an adequate data value
(busyupt,t′ and busydownt,t′ where t, t′ are transitions) and intermediate locations to
perform ε-transitions. The data values in the run of B are governed by the rules below:

(ii) after any configuration labelled by 〈q, inc, c, q′〉 (incrementation of the counter c),
there is no configuration labelled by some 〈q1, inc, c′, q′1〉 with the same counter
value,

(iii) after any configuration labelled by 〈q, inc, c, q′〉, there is at most one configura-
tion labelled by some 〈q1, dec, c, q′1〉 with the same counter value (there are more
incrementations than decrementations),
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(iv) after any configuration labelled by 〈q, inc, c, q′〉, there is no configuration labelled
by some 〈q1, dec, c′, q′1〉 with the same counter value and c := c′,

(v) after any configuration labelled by 〈q, inc, c, q′〉, there is no configuration labelled
by 〈q1, ifzero, c, q′1〉 followed by a configuration labelled by some 〈q1, dec, c, q′1〉
with the same counter value as 〈q, inc, c, q′〉,

(vi) after any configuration labelled by 〈q, inc, c, q′〉 for which there is no subsequent
configuration labelled by 〈q1, dec, c, q′1〉 with the same counter value, there is also
no 〈q2, ifzero, c, q′2〉,

Now, let us define B. We shall partly encode in its control graph the satisfaction of
these conditions. For instance, two successive incrementation transitions in A, leads to
an incrementation in B since we enforce that the counter value is fresh in B iff its letter
is some 〈−, inc,−,−〉 (incrementation instructions). When we write q

,
−→ q′ we mean

q
inc
−→ auxiq,q′

dec
−→ q′ for an auxiliary location auxiq,q′ .

– Q′ is equal to δ = ({qI} ∪ {busydownt,t′ , busyupt,t′ : t, t′ ∈ δ}) plus some
unspecified auxiliary locations,

– F ′ = {〈q, l, c, q′〉 ∈ δ : q ∈ F} ∪ ({qI} ∩ F ) and q′I = qI ,
– The relation δ′ contains the following transitions:

• For 〈qI , inc, c, q〉 ∈ δ, add q′I
inc
−→ 〈qI , inc, c, q〉 to δ′;

• For t = 〈qI , ifzero, c, q〉 ∈ δ, add q′I
,
−→ t to δ′;

• For every transition t = 〈q, inc, c, q′〉 ∈ δ,
1. if t′ = 〈q′, inc, c′, q′′〉 ∈ δ, then add t

inc
−→ t′ to δ′,

2. if t′ = 〈q′, ifzero, c′, q′′〉 ∈ δ with c′ := c or t′ = 〈q′, dec, c, q′′〉 ∈ δ,
then add t

,
−→ t′ to δ′,

3. if t′ = 〈q′, dec, c′, q′′〉 ∈ δ with c′ := c, then add t
,
−→ busydownt,t′ ,

busydownt,t′
dec
−→ busydownt,t′ , and busydownt,t′

dec
−→ t′ to δ′ (decrement

the counter until it reaches a value for a previous incrementation),
• For every transition t = 〈q, l, c, q′〉 ∈ δ with l ∈ {dec, ifzero},

1. if t′ = 〈q′, inc, c′, q′′〉 ∈ δ, then add t
,
−→ busyupt,t′ , busyupt,t′

inc
−→

busyupt,t′ , and busyupt,t′
inc
−→ t′ to δ′ (increment the counter until it

reaches a new value),
2. if t′ = 〈q′, ifzero, c′, q′′〉 ∈ δ then add t

,
−→ t′ to δ′,

3. if t′ = 〈q′, dec, c′, q”〉 ∈ δ, then add to δ′ the transitions from Figure 2.
Observe that this is the only case for which we do not know whether the
counter increases or not.

In runs of B, we are only interested in positions with letters in δ. The control graph of B
guarantees that the succession of transitions in A is valid assuming that we ignore the
intermediate (auxiliary or busy) configurations

The formula φ is the conjunction of the following requirements: (ii)-(vi) plus

(i) some configuration in F ′ is visited,
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t

busydownt,t′

busyupt,t′

t′

#

#

dec

inc

dec

inc

Fig. 2. Transitions in δ′

(vii) after any configuration labelled by t = 〈q, inc, c, q′〉, there is no configuration
labelled by some busyupt,t′ with the same counter value and such that the next
configuration has the same label unless there is some configuration labelled by
some 〈q1, inc, c, q′1〉 in between,

G(t ⇒↓1 ¬(¬(
_

〈−,inc,−,−〉

〈−, inc,−,−〉)U
_

t′

(busyupt,t′∧ ↑1 ∧X busyupt,t′)))

(viii) after any configuration labelled by t = 〈q, inc, c, q′〉, there is no configuration
labelled by some 〈q1, dec, c, q′1〉 with a different counter value unless there is some
configuration labelled by some 〈q2, inc, c, q′2〉 in between,

G(t ⇒↓1 ¬(¬(
_

〈−,inc,−,−〉

〈−, inc,−,−〉)U(
_

〈−,dec,c,−〉

(〈−,dec, c,−〉 ∧ ¬ ↑1))))

It is easy to check that each condition in (i)-(viii) can be expressed in LTL↓,Q′

1
(some examples are indeed provided above). Now consider any run of B which satisfies
(ii)-(viii). The key achievement of the definitions of B and φ is that, for every position
in the run, the counter value is fresh iff either its letter is some 〈q, inc, c, q′〉 or the
letter is not in δ ∪ {qI}. For any counter c ∈ {1, 2}, we can define its value as the
number of 〈q, inc, c, q′〉 letters for which a latter letter 〈q1, dec, c, q′1〉 with the same
value of the counter B has not yet occurred. Observe that the conditions (vii), (viii) and
the control graph of B induce a stack discipline for the counter values of configurations
with labels of the form either 〈−, inc, c,−〉 and 〈−, dec, c,−〉. This guarantees that no
configuration labelled by 〈−, dec, c,−〉 has a new counter value.

For any run of B which satisfies (ii)-(viii), we can thus extract a valid run of A.
Conversely, any valid run of A can be encoded in the same way as a run of B which
satisfies (ii)-(viii). The latter is done by inserting auxiliary letters as required to reach
appropriate values of the counter of B. 45

Theorem 16. MCω
1 is Σ1

1 -complete.

The proof is similar to the proof of Theorem 15 except that instead of reducing the
halting problem for Minsky machines, we reduce the recurrence problem for nondeter-
ministic Minsky machines that is known to be Σ1

1 -hard [AH89]. The Σ1
1 upper bound
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is by an easy verification since an accepting run can be viewed as a function f : N → N

and then checking that it satisfies an LTL↓,Q
1 formula can be expressed in first-order

arithmetic. Another consequence of the Purification Lemma is the result below.

Theorem 17. PureMC<ω
1 is Σ0

1 -complete and PureMCω
1 is Σ1

1-complete.

The above-mentioned undecidability holds true even if we restrict ourselves to one-
counter automata for which there are no transitions with identical instructions going
from the same location. A one-counter automatonA is weakly deterministic whenever
for every location q, if 〈q, l, q′〉, 〈q, l′, q′′〉 ∈ δ, we have l = l′ implies q′ = q′′. The
transition systems induced by these automata are not necessarily deterministic.

Theorem 18. PureMC<ω
1 [resp. PureMCω

1 ] restricted to weakly deterministic one-
counter automata is Σ0

1 -complete [resp. Σ1
1-complete].

Proof. In the proof of the Purification Lemma, weak determinisn of the one-counter
automata is preserved. It is sufficient to show that given a one-counter automaton A
and a sentence φ in LTL↓,Q, one can compute in logarithmic space in |A| + |φ| a
weakly deterministic automaton A′ and φ′ in LTL↓,Q′

(Q ⊆ Q′) such that A |=<ω φ
[resp. A |=ω φ ] iff A′ |=<ω φ′ [resp. A′ |=ω φ′].

Figure 3 illustrates on examples how transitions from a location with identical in-
structions can be transformed so that to obtain a weakly deterministic automaton. In
the figure we have omitted the ifzero and dec transitions that are never fired. This
can be easily generalized to all the transitions of A. The formula φ′ is defined as T(φ)
with the map T that is homomorphic for Boolean operators and ↓r, and its restriction
to atomic formulae is identity. It remains to define the map for the temporal operators,
which corresponds to perform a relativization:

– T(φ1Uφ2) =
(

(
∨

q∈Q q) ⇒ T(φ1)
)

U
(
∨

q∈Q q ∧ T(φ2)
)

,
– T(Xψ) = X

(

(¬
∨

q∈Q q) U (
∨

q∈Q q ∧ T(ψ))
)

.

It can be easily proved that A′ and φ′ satisfy the desired properties. As a conse-
quence, we obtain the following result.

5 Conclusion

We have shown that model checking LTL↓ over one-counter automata is undecidable,
which contrasts with the decidability of many verification problems for one-counter
automata [JKMS04,Ser06,DG07]. For instance, we have shown that model checking
nondeterministic one-counter automata over LTL↓ restricted to a unique register and
without alphabet is alreadyΣ1

1-complete in the infinitary case. On the decidability side,
a suitable abstraction has been introduced to establish the PSPACE upper bound for
model checking LTL↓ over deterministic one-counter automata in the infinitary case.

Viewing runs as data words is an idea that can be pushed further. For instance, even
thought model checking LTL↓ over pushdown automata is already undecidable (an ob-
vious consequence of our results), it is open whether the problem is still undecidable
when restricted to deterministic pushdown automata. Similarly, the reachability relation
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Fig. 3.Weak determinization of one-counter automata
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is known to be Presburger-definable for reversal-bounded counter automata [Iba78] and
the decidability status of model checking LTL↓ over this class of counter automata
remains open. Hence, our results pave the way for model checking LTL↓ over other
classes of operational models that are known to admit powerful techniques for solv-
ing verification tasks. Finally, among the specific problems left open by this paper, we
wish to mention the complexity of model-checking deterministic one-counter automata
with LTL↓ in the finitary case (the complexity is however known in the infinitary case)
and we ignore whether model-checking deterministic one-counter automata with freeze
LTL in the infinitary case with a fixed number of registers can be PTIME-hard.

Acknowledgement: We would like to thank Philippe Schnoebelen for suggesting
simplifications in the proofs of Lemma 2 and Proposition 3.
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