Institut de Recherche en Informatique Fondamentale


IRIF

L'IRIF est une unité mixe de recherche (UMR 8243) du CNRS et de l'Université Paris-Diderot, issue de la fusion des deux UMR LIAFA et PPS au 1er janvier 2016. Ses objectifs scientifiques se déclinent selon trois grandes thématiques au cœur de l'informatique : les fondements mathématiques de l’informatique ; les modèles de calcul et de preuves ; la modélisation, les algorithmes et la conception de systèmes. Voir plus ici.



Prochains séminaires


Jeudi 29 septembre 2016 · 10h30 · Salle 3052

Preuves, programmes et systèmes · Vincent Danos (ENS) · Bayesian inversion by ω-complete cone duality

The process of inverting Markov kernels relates to the important subject of Bayesian modelling and learning. In fact, Bayesian update is exactly kernel inversion. ​We investigate how and when Markov kernels (aka stochastic relations, or probabilistic mappings) can be inverted. We address the question both directly on the category of measurable spaces, and indirectly by interpreting kernels as Markov operators: For the direct option, we introduce a typed version of the category of Markov kernels and use the so-called ‘disintegration of measures’. Here, one has to specialise to measurable spaces borne from a simple class of topological spaces -e.g. Polish spaces (other choices are possible). Our method and result greatly simplify a recent development ​by Culbertson and Sturz. For the operator option, we use a cone version of the category of Markov operators (​aka ​kernels seen as predicate transformers). That is to say, our linear operators are not just continuous, but are required to satisfy the stronger condition of being ω-chain-continuous.​ ​Prior work shows that one obtains an adjunction in the form of a pair of contravariant and inverse functors between the categories of L1- and L∞-cones. Inversion, seen through the operator prism, is just adjunction.​ ​No topological assumption is needed. We​ ​show​ ​that​ ​both​ ​categories​ ​(Markov​ ​kernels​ ​and​ ​ω-chain-continuous Markov operators) are related by a family of contravariant functors Tp for 1 ≤ p ≤ ∞. The Tp’s are Kleisli extensions of (duals of) conditional expectation functors introduced ​before. We​ prove​ ​that​ ​both​ ​notions​ ​of​ ​inversion agree when both defined: if f is a kernel, and f† its direct inverse, then T∞(f)† = T1(f†). This is a joint work with Fredrik Dahlqvist UCL, Ohad Kammar Oxford, Ilias Garnier ENS

Vendredi 30 septembre 2016 · 14h30 · TBA

Automates · Équipe automate · Journée de rentrée

Sylvain Lombardy (LaBRI)– Démonstration du logiciel Vaucuson-R

Lundi 03 octobre 2016 · 11h00 · Salle 1007

Vérification · Giovanni Bernardi (IRIF) · Robustness against Consistency Models with Atomic Visibility

To achieve scalability, modern Internet services often rely on distributed databases with consistency models for transactions weaker than serializability. At present, application programmers often lack techniques to ensure that the weakness of these consistency models does not violate application correctness. In this talk I will present criteria to check whether applications that rely on a database providing only weak consistency are robust, i.e., behave as if they used a database providing serializability, and I will focus on a consistency model called Parallel Snapshot Isolation. The results I will outline handle systematically and uniformly several recently proposed weak consistency models, as well as a mechanism for strengthening consistency in parts of an application.

Mercredi 05 octobre 2016 · 11h00 · Salle 1007

Combinatoire énumérative et analytique · Yann Chiffaudel (LPMA) · Approche macroscopique de la diffusion dans le modèle des miroirs

Dans la littérature mathématique, le mot diffusion fait référence à plusieurs définitions différentes. Je m'intéresse à la diffusion dite “macroscopique” caractérisée par l'existence d'une densité de particules évoluant selon la loi de Fick. Je porterai mon attention sur le modèle des miroirs en dimension 2 et sur sa généralisation en dimension quelconque. Ce modèle de gaz de Lorentz sur réseau permet un énoncé clair et rigoureux de la loi de Fick. Une approche analytique nous a permis de simplifier le problème et de réaliser une étude numérique qui permet de conjecturer la validité de la loi de Fick en dimension 3. Je présenterai l'étude complète de façon très visuelle et abordable.

Jeudi 06 octobre 2016 · 10h30 · Salle 3052

Preuves, programmes et systèmes · Giulio Manzonetto (LIPN) · New Results on Morris's Observational Theory — The Benefits of Separating the Inseparable

We study the theory of contextual equivalence in the untyped lambda-calculus, generated by taking the normal forms as observables. Introduced by Morris in 1968, this is the original extensional lambda theory H+ of observational equivalence. On the syntactic side, we show that this lambda-theory validates the omega-rule, thus settling a long-standing open problem. On the semantic side, we provide sufficient and necessary conditions for relational graph models to be fully abstract for H+. We show that a relational graph model captures Morris's observational pre-order exactly when it is extensional and lambda-König. Intuitively, a model is lambda-König when every lambda-definable tree has an infinite path which is witnessed by some element of the model.


Événements


Mercredi 7 – Vendredi 9 septembre 2016 · Institut Henri Poincaré (IHP)

Approx-Random 2016


Dimanche 15 - Vendredi 20 Janvier 2017 · Jussieu

POPL 2017



Organismes de tutelle


Université Paris-Diderot – Paris 7

CNRS


UFR de rattachement

Partenaires


Fédération de Recherche en Mathématiques de Paris Centre

Fondation Sciences Mathématiques de Paris

INRIA