Depuis une décennie maintenant, de nombreux progrès ont été réalisés quant à l'énumération des marches confinées dans un quart de plan. De ces travaux on observe différents comportements asymptotiques, variant selon le modèle étudié. La question est donc de savoir à quel moment un comportement spécifique cesse pour laisser place à un autre ; autrement dit, comment apparaissent les transitions de phase. Dans cet exposé, nous proposons un cadre d'étude qui permet d'avoir une vision globale de ces transitions de phase, à savoir les pondérations centrales. Cela revient à assigner un poids à chaque pas de notre modèle, selon une contrainte raisonnable qui permet de couvrir l'intégralité des drifts possibles (i.e. direction générale de la marche - grossièrement). Nous donnerons ainsi plusieurs propriétés de ces pondérations centrales, à la fois élémentaires et porteuses de sens. Nous étudierons en particulier un modèle spécifique, celui de Gouyou-Beauchamps, avec des estimées asymptotiques précises, qui nous sont fournies par la theorie de l'analyse combinatoire à plusieurs variables. Travail en commun avec S. Melzcer, M. Mishna, K. Raschel.