We present randomized algorithms with a total update time of O(m \sqrt{n} log n) for the problems of decremental single-source reachability and decremental strongly connected components on directed graphs. This improves sharply recent breakthrough results of Henzinger, Krinninger and Nanongkai [STOC 14, ICALP 15]. In addition, our algorithms are arguably simpler. In this talk, we first review the Las Vegas algorithm by Roditty and Zwick [SICOMP 08] and the deterministic algorithm by Łącki [TALG 13], both with a total update time O(mn) (expected time in the case of the algorithm by Roditty and Zwick). Our algorithms carefully combine these two results, along with new structural properties, including a separation lemma in the case of graphs with a large diameter.
Joint work with Shiri Chechik, Thomas Dueholm Hansen, Jakub Łącki and Nikos Parotsidis.