The talk will be based on my habilitation defense talk from Nov. 27 2018, which was dedicated to the algorithmic complexity of well-quasi-orders. The latter find applications in verification, where they allow to tackle systems featuring an infinite state-space, representing for instance integer counters, the number of active threads in concurrent settings, real-time clocks, call stacks, cryptographic nonces, or the contents of communication channels.

The talk gives an overview of the complexity questions arising from the use of well-quasi-orders, including the definition of complexity classes suitable for problems with non-elementary complexity and proof techniques for upper bounds. I will mostly focus on the ideas behind the first known complexity upper bound for reachability in vector addition systems and Petri nets.