We revisit the associahedral subdivision of the Pitman-Stanley polytope to provide geometric realizations of the v-Tamari lattice of Préville-Ratelle and Viennot as the dual of a triangulation of a polytope, as the dual of a mixed subdivision, and as the edge-graph of a polyhedral complex induced by a tropical hyperplane arrangement. The method generalizes to type B. This is joint work with Cesar Ceballos and Camilo Sarmiento.