In the usual deterministic lambda-calculus the confluence of the unique computation rule, the beta-reduction, makes it easy to turn the reduction into an equality, the beta-equivalence. This idea to consider not computation but equalities on terms gives rise to the notion of lambda-theory. On the other hand the probabilistic lambda-calculus is usually treated only in terms of computation. In particular we know that we must impose a reduction strategy for the probabilistic choice if we want the calculus to make sense.

In this talk we will recover this notion of presentation through equalities in the probabilistic lambda-calculus. We will show how some usual notions can be translated in the probabilistic world. In particular we will define a notion of probabilistic Böhm tree, and show a separability result. This will implies that just like in the deterministic setting the Böhm tree equality is the same as the observational equivalence.