Efficient generation of simple temporal graphs (up to "isomorphism")

Arnaud Casteigts

LaBRI, Université de Bordeaux

ESTATE-DUCAT Workshop 2022

Related to joint works with:

Jason Schoeters (Le Havre)

Joseph Peters (Vancouver)

Michael Raskin (Munich)

Malte Renken (Berlin)

iktor Zamaraev (Liverpool)

(Bordeaux)

 $\mathcal{G}=(V,E,\lambda)$, where $\lambda:E\to 2^{\mathbb{N}}$ assigns *presence times* to edges (here, discrete)

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges

Temporal paths

Non-strict, ex: $\langle (a,c,3),(c,d,4),(d,e,4) \rangle$

(non-decreasing)

▶ Strict, ex: $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

(increasing)

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges

Temporal paths

Non-strict, ex: $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$

(non-decreasing)

► Strict, ex: $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges

Temporal paths

Non-strict, ex: $\langle (a,c,3),(c,d,4),(d,e,4) \rangle$

(non-decreasing)

► Strict, ex: $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges

Temporal paths

► Non-strict, ex: $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$

(non-decreasing)

► Strict, ex: $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

Input: a graph $\mathcal G$ that is temporally connected ($\mathcal G \in \mathit{TC}$)

Output: a graph $\mathcal{G}'\subseteq\mathcal{G}$ that preserves temporal connectivity $(\mathcal{G}'\in TC)$

Cost measure: size of the spanner (in number of time labels)

Input: a graph $\mathcal G$ that is temporally connected ($\mathcal G \in TC$)

Output: a graph $\mathcal{G}'\subseteq\mathcal{G}$ that preserves temporal connectivity $(\mathcal{G}'\in TC)$

Cost measure: size of the spanner (in number of time labels)

Input: a graph G that is temporally connected ($G \in TC$)

Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity $(\mathcal{G}' \in TC)$

Cost measure: size of the spanner (in number of time labels)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$)

Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity $(\mathcal{G}' \in TC)$

Cost measure: size of the spanner (in number of time labels)

Can we do better?

ightharpoonup 2n-4 labels needed, even if you choose the values!

(Bumby'79, gossip theory)

Input: a graph G that is temporally connected ($G \in TC$)

Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity $(\mathcal{G}' \in TC)$

Cost measure: size of the spanner (in number of time labels)

Can we do better?

ightharpoonup 2n-4 labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size 2n-4 always exist?

Input: a graph $\mathcal G$ that is temporally connected ($\mathcal G \in TC$)

Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity $(\mathcal{G}' \in TC)$

Cost measure: size of the spanner (in number of time labels)

Can we do better?

ightharpoonup 2n-4 labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size 2n-4 always exist?

ightharpoonup \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels (Kleinberg, Kempe, Kumar, 2000)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$)

Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$)

Cost measure: size of the spanner (in number of time labels)

Can we do better?

ightharpoonup 2n-4 labels needed, even if you choose the values!

(Bumby'79, gossip theory)

Do spanners of size 2n-4 always exist?

ightharpoonup \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels

(Kleinberg, Kempe, Kumar, 2000)

(Axiotis, Fotakis, 2016)

In fact, \exists some with $\Omega(n^2)$ labels

Input: a graph G that is temporally connected ($G \in TC$)

Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity $(\mathcal{G}' \in TC)$

Cost measure: size of the spanner (in number of time labels)

Can we do better?

ightharpoonup 2n-4 labels needed, even if you choose the values!

(Bumby'79, gossip theory)

Do spanners of size 2n-4 always exist?

ightharpoonup \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels

(Kleinberg, Kempe, Kumar, 2000)

In fact, \exists some with $\Omega(n^2)$ labels (Axiotis, Fotakis, 2016)

How about complexity?

Minimum-size spanner is APX-hard

(Akrida, Gasieniec, Mertzios, Spirakis, 2017)

An easier model

Simple Temporal Graphs (STGs):

- 1. A single presence time per edge $(\lambda: E \to \mathbb{N})$
- 2. Adjacent edges have different times (λ is locally injective)

An easier model

Simple Temporal Graphs (STGs):

- 1. A single presence time per edge ($\lambda: E \to \mathbb{N}$)
- 2. Adjacent edges have different times (λ is locally injective)

Generality:

- Many negative results apply
- Positive results extend
- ► No distinction between strict and non-strict temporal paths

An easier model

Simple Temporal Graphs (STGs):

- 1. A single presence time per edge $(\lambda: E \to \mathbb{N})$
- 2. Adjacent edges have different times (λ is locally injective)

Generality:

- Many negative results apply
- Positive results extend
- No distinction between strict and non-strict temporal paths

Further motivations:

- ► Population protocols and gossip models (without repetition)
- Edge-ordered graphs (Chvátal, Komlós, 1971)

Back to the bad news... and good news

Recall the bad news:

- $ightharpoonup \Omega(n \log n)$
- $ightharpoonup \Omega(n^2)$

Back to the bad news... and good news

Recall the bad news:

- $ightharpoonup \Omega(n \log n)$
- $ightharpoonup \Omega(n^2)$

Good news: (C., Raskin, Renken, Zamaraev, 2021):

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in **random** temporal graphs, as soon as the graph is temporally connected

Back to the bad news... and good news

Recall the bad news:

- $ightharpoonup \Omega(n \log n)$
- $ightharpoonup \Omega(n^2)$

Good news: (C., Raskin, Renken, Zamaraev, 2021):

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in **random** temporal graphs, as soon as the graph is temporally connected

Good news: (C., Peters, Schoeters, 2019):

Spanners of size $O(n \log n)$ always exist in **complete** temporal graphs

Pivotability

 \rightarrow spanners of size 2n-3

Pivotability

 \rightarrow spanners of size 2n-3

Dismountability

Pivotability

ightarrow spanners of size 2n-3

Dismountability

Unfortunately, only works in most instances

The best we known for general temporal cliques is $O(n \log n)$

Pivotability

ightarrow spanners of size 2n-3

Dismountability

Unfortunately, only works in most instances

The best we known for general temporal cliques is $O(n \log n)$

Do spanners of size 2n-3 always exist in temporal cliques?

(searching for counter-examples...)

Generation of simple temporal graphs (all of them, not just cliques)

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

How to capture this equivalence?

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

How to capture this equivalence?

► Option 1: Local ordering?

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

How to capture this equivalence?

► Option 1: Local ordering?

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

How to capture this equivalence?

► Option 1: Local ordering?

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

How to capture this equivalence?

- ► Option 1: Local ordering?
- ► Option 2: STG representative

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

How to capture this equivalence?

- ► Option 1: Local ordering?
- Option 2: STG representative

Different STGs are equivalent in terms of *reachability* (i.e. "Isomorphic")

How to capture this equivalence?

- ► Option 1: Local ordering?
- ▶ Option 2: STG representative √

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the automorphism group, are all feasible in *polynomial time*.

STG representatives

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

STG representatives

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

STG representatives

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Properties of the labeling

Time induces a *proper* coloring of the edges (by definition of STGs).

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Properties of the labeling

Time induces a *proper* coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t - 1.

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Properties of the labeling

Time induces a *proper* coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t - 1.

(If you know a name for such coloring, let me know.)

Input: Two STGs \mathcal{G}_1 and \mathcal{G}_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

Input: Two STGs \mathcal{G}_1 and \mathcal{G}_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex \emph{v}_1 of \emph{G}_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs \mathcal{G}_1 and \mathcal{G}_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs \mathcal{G}_1 and \mathcal{G}_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs \mathcal{G}_1 and \mathcal{G}_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs \mathcal{G}_1 and \mathcal{G}_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Key observation: when trying to send v_1 to v_2 , the mapping among neighbors unfolds recursively without choices (due to the *proper coloring* of the edges)

 \rightarrow passes or fails in polynomial time.

Input: Two STGs \mathcal{G}_1 and \mathcal{G}_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Key observation: when trying to send v_1 to v_2 , the mapping among neighbors unfolds recursively without choices (due to the *proper coloring* of the edges)

 \rightarrow passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

Case 1: The underlying graph is connected.

Case 1: The underlying graph is connected.

Case 1: The underlying graph is connected.

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

At most n automorphisms!

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Automorphisms of an STG

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Claim: $Aut(\mathcal{G}) = \langle \text{ isomorphisms } + \text{ automorphisms } \rangle$

Automorphisms of an STG

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- Search for isomorphisms between pairs of components (remember one for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Claim: $Aut(\mathcal{G}) = \langle \text{ isomorphisms } + \text{ automorphisms } \rangle$

 \rightarrow Generators for $Aut(\mathcal{G})$ can be computed in polynomial time!

Enumeration up to "isomorphism" (motivated by the conjecture on spanners)

Generation tree

Principle: One level = one time unit

 \rightarrow children of a graph = all the possible ways to add the *next time*

Generation tree

Principle: One level = one time unit

 \rightarrow children of a graph = all the possible ways to add the *next time*

Generation tree

Principle: One level = one time unit

 \rightarrow children of a graph = all the possible ways to add the *next time*

↓ Isomorphism types separated (forever)

Input: An STG representative \mathcal{G} , whose maximum time is t

Output: All STG representatives that extend ${\cal G}$ with time t+1.

Input: An STG representative \mathcal{G} , whose maximum time is t Output: All STG representatives that extend \mathcal{G} with time t+1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

Input: An STG representative \mathcal{G} , whose maximum time is t

Output: All STG representatives that extend ${\cal G}$ with time t+1.

First, how to decide if a non-edge is eligible to receive a (t+1) time label? (E.g. here, time 3)

Input: An STG representative \mathcal{G} , whose maximum time is t

Output: All STG representatives that extend ${\cal G}$ with time t+1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

Coloring lemma: (t+1) must be adjacent to (t)

Input: An STG representative $\mathcal{G},$ whose maximum time is \boldsymbol{t}

Output: All STG representatives that extend ${\cal G}$ with time t+1.

First, how to decide if a non-edge is eligible to receive a (t+1) time label? (E.g. here, time 3)

Input: An STG representative $\mathcal G$, whose maximum time is t Output: All STG representatives that extend $\mathcal G$ with time t+1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

→ Enumerate all matchings of eligible non-edges. Each one defines a successor.

Input: An STG representative \mathcal{G} , whose maximum time is t Output: All STG representatives that extend \mathcal{G} with time t+1.

First, how to decide if a *non-edge* is eligible to receive a (t+1) time label? (E.g. here, time 3)

G has symmetries

Enumerate all matchings of eligible non-edges. Each one defines a successor.

≡ Independent sets in the *line graph* of eligible *non-edges* (standard algorithm)

Input: An STG representative \mathcal{G} , whose maximum time is tOutput: All STG representatives that extend \mathcal{G} with time t+1.

First, how to decide if a *non-edge* is eligible to receive a (t+1) time label? (E.g. here, time 3)

Coloring lemma: (t+1) must be adjacent to (t)

Two cases

 $\ensuremath{\mathcal{G}}$ has symmetries

- Enumerate all matchings of eligible non-edges. Each one defines a successor.
 - ≡ Independent sets in the *line graph* of eligible *non-edges* (standard algorithm)

→ Enumerate matchings of eligible non-edges whose multisets of orbits are distinct

Done using the generators for $Aut(\mathcal{G})$

Using the generator

https://github.com/acasteigts/STGen

How to use

```
include("generation.jl")
n = 5
for g in TGraphs(n)
...
end
```

Implemented in Julia (other versions in Python, Java, and Rust)

(other versions in Python, Java, and Rust)

Implemented in Julia

How to use

```
include("generation.jl")
n = 5
for g in TGraphs(n)
...
end
```

n = 5

end

Implemented in Julia

How to use

```
(other versions in Python, Java, and Rust)
```

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question

include ("generation.jl")

for q in TGraphs(n)

Do simple temporal cliques admit spanners of size 2n-3?

How to use

Implemented in Julia (other versions in Python, Java, and Rust)

```
include("generation.jl")
n = 5
for g in TGraphs(n)
...
end
```

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question

Do simple temporal cliques admit spanners of size 2n-3?

```
ightarrow True for n \leq 7 (and for all non-rigid graphs at n=8). Otherwise still open! :-)
```

Some numbers

# Vertices	# STGs	# Temporally connected STGs	# Simple Temporal cliques
1	1	1	1
2	2	1	1
3	4	1	1
4	62	32	20
5	15378	10207	4524
6	89769096	70557834	23218501
7	13828417028594	?	3129434545680
8	?	?	?

Some numbers

# Vertices	# STGs	# Temporally connected STGs	# Simple Temporal cliques
1	1	1	1
2	2	1	1
3	4	1	1
4	62	32	20
5	15378	10207	4524
6	89769096	70557834	23218501
7	13828417028594	?	3129434545680
8	?	?	?

Thanks!