Efficient generation of simple temporal graphs

 (up to "isomorphism")Arnaud Casteigts
LaBRI, Université de Bordeaux

ESTATE-DUCAT Workshop 2022

Related to joint works with:

Joseph Peters (Vancouver)

Michael Raskin (Munich)

Malte Renken
(Berlin)

Viktor Zamaraev
(Liverpool)

Timothée Corsini (Bordeaux)

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal paths

- Non-strict, ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Strict, ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$
(increasing)

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Example:

Temporal paths

- Non-strict, ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Example:

Temporal paths

- Non-strict, ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Strict, ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Example:

Temporal paths

- Non-strict, ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Strict, ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$

Temporal connectivity: all vertices can reach each other through temporal paths
Remark: reachability is non-transitive in general!

Temporal spanners (motivation)

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Temporal spanners (motivation)

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Temporal spanners (motivation)

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Temporal spanners（motivation）

Input：a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output：a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure：size of the spanner（in number of time labels）

Can we do better？
－ $2 n-4$ labels needed，even if you choose the values！

Temporal spanners (motivation)

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!

Do spanners of size $2 n-4$ always exist?

Temporal spanners (motivation)

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!
(Bumby'79, gossip theory)
Do spanners of size $2 n-4$ always exist?
$-\exists$ minimally connected temp. graphs with $\Omega(n \log n)$ labels \quad (Kleinberg, Kempe, Kumar, 2000)

Temporal spanners (motivation)

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!
(Bumby'79, gossip theory)
Do spanners of size $2 n-4$ always exist?
- \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels (Kleinberg, Kempe, Kumar, 2000)
- In fact, \exists some with $\Omega\left(n^{2}\right)$ labels

Temporal spanners (motivation)

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size $2 n-4$ always exist?
$-\exists$ minimally connected temp. graphs with $\Omega(n \log n)$ labels \quad (Kleinberg, Kempe, Kumar, 2000)

- In fact, \exists some with $\Omega\left(n^{2}\right)$ labels
(Axiotis, Fotakis, 2016)
How about complexity?
- Minimum-size spanner is APX-hard

An easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

An easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Generality:

- Many negative results apply
- Positive results extend
- No distinction between strict and non-strict temporal paths

An easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Generality:

- Many negative results apply
- Positive results extend
- No distinction between strict and non-strict temporal paths

Further motivations:

- Population protocols and gossip models (without repetition)
- Edge-ordered graphs (Chvátal, Komlós, 1971)

Back to the bad news... and good news

Recall the bad news:

- $\Omega(n \log n)$
- $\Omega\left(n^{2}\right)$

Back to the bad news... and good news

Recall the bad news:

- $\Omega(n \log n)$
- $\Omega\left(n^{2}\right)$

Good news: (C., Raskin, Renken, Zamaraev, 2021):

- Nearly optimal spanners (of size $2 n+o(n)$) almost surely exist in random temporal graphs, as soon as the graph is temporally connected

Back to the bad news... and good news

Recall the bad news:

- $\Omega(n \log n)$
- $\Omega\left(n^{2}\right)$

Good news: (C., Raskin, Renken, Zamaraev, 2021):

- Nearly optimal spanners (of size $2 n+o(n)$) almost surely exist in random temporal graphs, as soon as the graph is temporally connected

Good news: (C., Peters, Schoeters, 2019):

- Spanners of size $O(n \log n)$ always exist in complete temporal graphs

Two techniques for spanners in temporal cliques

Pivotability

\rightarrow spanners of size $2 n-3$

Two techniques for spanners in temporal cliques

Pivotability

\rightarrow spanners of size $2 n-3$

Dismountability

\rightarrow spanner of size $2 n-3$.

Two techniques for spanners in temporal cliques

Pivotability

\rightarrow spanners of size $2 n-3$
Dismountability

\rightarrow spanner of size $2 n-3$.
Unfortunately, only works in most instances
The best we known for general temporal cliques is $O(n \log n)$

Two techniques for spanners in temporal cliques

Pivotability

\rightarrow spanners of size $2 n-3$
Dismountability

\rightarrow spanner of size $2 n-3$.
Unfortunately, only works in most instances
The best we known for general temporal cliques is $O(n \log n)$

Do spanners of size $2 n-3$ always exist in temporal cliques?
(searching for counter-examples...)

Generation of simple temporal graphs
(all of them, not just cliques)

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

How to capture this equivalence?

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

How to capture this equivalence?

- Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

How to capture this equivalence?

- Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

How to capture this equivalence?

- Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. "Isomorphic")

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative \checkmark

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the automorphism group, are all feasible in polynomial time.

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

Properties of the labeling
Time induces a proper coloring of the edges (by definition of STGs).

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

Properties of the labeling
Time induces a proper coloring of the edges (by definition of STGs).
In addition,

Contiguity Lemma: If an edge is labeled $t>1$, an adjacent edge is labeled $t-1$.

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

Properties of the labeling
Time induces a proper coloring of the edges (by definition of STGs).
In addition,

Contiguity Lemma: If an edge is labeled $t>1$, an adjacent edge is labeled $t-1$.
(If you know a name for such coloring, let me know.)

How to test for equivalence?
 를

つac

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?
Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?
Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer no if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?
Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer no if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?
Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer no if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?
Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer no if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?
Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer no if none remain)

Key observation: when trying to send v_{1} to v_{2}, the mapping among neighbors unfolds recursively without choices (due to the proper coloring of the edges)
\rightarrow passes or fails in polynomial time.

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?
Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer no if none remain)

Key observation: when trying to send v_{1} to v_{2}, the mapping among neighbors unfolds recursively without choices (due to the proper coloring of the edges)
\rightarrow passes or fails in polynomial time.
Remark: Also feasible using Babai \& Luks machinery (1983)

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

At most n automorphisms!

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Claim: $\operatorname{Aut}(\mathcal{G})=\langle$ isomorphisms + automorphisms \rangle

Automorphisms of an STG

Case 1: The underlying graph is connected.

\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Claim: $\operatorname{Aut}(\mathcal{G})=\langle$ isomorphisms + automorphisms \rangle
\rightarrow Generators for $\operatorname{Aut}(\mathcal{G})$ can be computed in polynomial time!

Enumeration up to "isomorphism"
(motivated by the conjecture on spanners)

Generation tree

Principle: One level = one time unit
\rightarrow children of a graph $=$ all the possible ways to add the next time

Generation tree

Principle: One level = one time unit
\rightarrow children of a graph $=$ all the possible ways to add the next time

Key properties

1. Rigidity is inherited

Generation tree

Principle: One level = one time unit
\rightarrow children of a graph $=$ all the possible ways to add the next time

Key properties

1. Rigidity is inherited
2. Dissimilarity is inherited

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

\mathcal{G} has symmetries

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

Two cases
\mathcal{G} has symmetries

\rightarrow Enumerate all matchings of eligible non-edges. Each one defines a successor.

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

Two cases
\mathcal{G} has symmetries

\rightarrow Enumerate all matchings of eligible non-edges. Each one defines a successor.
\equiv Independent sets in the line graph of
eligible non-edges (standard algorithm)

Generating successors in the tree?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

\rightarrow Enumerate all matchings of eligible non-edges. Each one defines a successor.
\equiv Independent sets in the line graph of eligible non-edges (standard algorithm)

```
Two cases
```


\rightarrow Enumerate matchings of eligible non-edges whose multisets of orbits are distinct

Done using the generators for $\operatorname{Aut}(\mathcal{G})$

Using the generator

https://github.com/acasteigts/STGen

How to use
Implemented in Julia (other versions in Python, Java, and Rust)

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```


Using the generator

How to use

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```

Pruning is possible using TGraphs(n, selection_predicate)

Using the generator

How to use
Implemented in Julia

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```

Pruning is possible using TGraphs(n, selection_predicate)
Back to the spanner question
Do simple temporal cliques admit spanners of size $2 n-3$?

Using the generator

How to use
Implemented in Julia (other versions in Python, Java, and Rust)

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```

Pruning is possible using TGraphs(n, selection_predicate)
Back to the spanner question
Do simple temporal cliques admit spanners of size $2 n-3$?
\rightarrow True for $n \leq 7$ (and for all non-rigid graphs at $n=8$). Otherwise still open! :-)

Some numbers

\# Vertices	\# STGs	\# Temporally connected STGs	\# Simple Temporal cliques
1	1	1	1
2	2	1	1
3	4	1	1
4	62	32	20
5	15378	10207	4524
6	89769096	70557834	23218501
7	13828417028594	$?$	3129434545680
8	$?$	$?$	

Some numbers

\# Vertices	\# STGs	\# Temporally connected STGs	\# Simple Temporal cliques
1	1	1	1
2	2	1	1
3	4	1	1
4	62	32	20
5	15378	10207	4524
6	89769096	70557834	23218501
7	13828417028594	$?$	3129434545680
8	$?$	$?$	$?$

Thanks!

