Efficient generation of simple temporal graphs
(up to “isomorphism”)

Arnaud Casteigts

LaBRI, Université de Bordeaux
ESTATE-DUCAT Workshop 2022
Related to joint works with:

H AN L

Jason Schoeters Joseph Peters Michael Raskin Malte Renken Viktor Zamaraev Timothée Corsini
(Le Havre) (Vancouver) (Munich) (Berlin) (Liverpool) (Bordeaux)

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 45
Example: c 14 d
35 1,2,9
a b

57

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 '\4,5
Example: c 14 d
35 1,2,9
as—57 b
Temporal paths
» Non-strict, ex: {(a, ¢, 3), (¢,d,4), (d, e, 4)) (non-decreasing)

» Strict, ex: ((a, ¢, 3), (¢, d, 4), (d, e, b)) (increasing)

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e

2 '\4,5
Example: c 14 d

35 1,2,9
as—57 b
Temporal paths
» Non-strict, ex: {(a, ¢, 3), (¢,d,4), (d, e, 4)) (non-decreasing)

» Strict, ex: ((a, ¢, 3), (¢, d, 4), (d, e, b))

(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 '\4,5
Example: c 14 d
35 1,2,9
as—57 b
Temporal paths

» Non-strict, ex: {(a, ¢, 3), (¢,d,4), (d, e, 4)) (non-decreasing)
» Strict, ex: ((a, ¢, 3), (¢, d, 4), (d, e, b)) (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 '\4,5
Example: c 14 d
35 1,2,9
as—57 b
Temporal paths

» Non-strict, ex: {(a, ¢, 3), (¢,d,4), (d, e, 4)) (non-decreasing)
» Strict, ex: ((a, ¢, 3), (¢, d, 4), (d, e, b)) (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?

> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?
> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

b
2 os A Py
2,7 3 2 3
a< 1.4 >C ae” 14 ec a< >-c
4\J/1,6 — l]
d size 5 d size 4

Can we do better?
> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
» 3 minimally connected temp. graphs with Q(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

b
2 os A Py
2,7 3 2 3
a< 1.4 >C ae” 14 ec a< >-c
4\J/1,6 — l 4\./1
d size 5 d size 4

Can we do better?
> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
» 3 minimally connected temp. graphs with Q(n log n) labels (Kleinberg, Kempe, Kumar, 2000)
» In fact, 3 some with Q(n?) labels (Axiotis, Fotakis, 2016)

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?

> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?

» 3 minimally connected temp. graphs with Q2(n log n) labels

(Kleinberg, Kempe, Kumar, 2000)
» In fact, 3 some with Q(n?) labels

(Axiotis, Fotakis, 2016)
How about complexity?

» Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

An easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (A : E — N)
2. Adjacent edges have different times (\ is locally injective)

An easier model

Simple Temporal Graphs (STGs): 2/\5
1. A single presence time per edge (A : E — N) % ; %
2. Adjacent edges have different times (\ is locally injective)

Generality:
»> Many negative results apply
> Positive results extend
> No distinction between strict and non-strict temporal paths

An easier model

Simple Temporal Graphs (STGs): 2/\5
1. A single presence time per edge (A : E — N) % ; %
2. Adjacent edges have different times (\ is locally injective)

Generality:

»> Many negative results apply
» Positive results extend
> No distinction between strict and non-strict temporal paths

Further motivations:
» Population protocols and gossip models (without repetition)

» Edge-ordered graphs (Chvatal, Komlos, 1971)

Back to the bad news... and good news

Recall the bad news:
> Q(nlogn)
> Q(n?)

Back to the bad news... and good news

Recall the bad news:
> Q(nlogn)
> Q(n?)

Good news: (C., Raskin, Renken, Zamaraev, 2021):

» Nearly optimal spanners (of size 2n + o(n)) almost surely exist in
random temporal graphs, as soon as the graph is temporally connected

Back to the bad news... and good news

Recall the bad news:
> Q(nlogn)
> Q(n?)

Good news: (C., Raskin, Renken, Zamaraev, 2021):

» Nearly optimal spanners (of size 2n + o(n)) almost surely exist in
random temporal graphs, as soon as the graph is temporally connected

Good news: (C., Peters, Schoeters, 2019): o \ 0.
1 —o

» Spanners of size O(nlogn) always exist T "
in complete temporal graphs . /<<
/

Two techniques for spanners in temporal cliques

Pivotability

0¥—9—o — spanners of size 2n — 3

Two techniques for spanners in temporal cliques

Pivotability

°9—0 —s spanners of size 2n — 3
Dismountability
/9/.\ ‘] /5)/0 ”
o 1 o e 1 o L i
s 2 h.s . _ (;/1/ — \7 Gi{/
. SN/

N 0

o 5 o o 3 o o

5 o

— spanner of size 2n — 3.

Two techniques for spanners in temporal cliques

Pivotability

o—9—0o — spanners of size 2n — 3
Dismountability
/'\ | I\
0/ 1 o e 1 o 1 O_ILQ
Nsz <y
/ N/

N o

o 5 o o g o o0——§———o0 o

5

— spanner of size 2n — 3.

Unfortunately, only works in most instances
The best we known for general temporal cliques is O(nlogn)

Two techniques for spanners in temporal cliques

Pivotability

o—9—0o — spanners of size 2n — 3
Dismountability
/'\ I\
0/ 1 o e 1 o 1 O_ILQ
Nsz <y
/ N/

N o

o 5 o o g o o0——§———o0 o

5

— spanner of size 2n — 3.

Unfortunately, only works in most instances
The best we known for general temporal cliques is O(nlogn)

Do spanners of size 2n — 3 always exist in temporal cliques?
(searching for counter-examples...)

Generation of simple temporal graphs

(all of them, not just cliques)

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

112

G1 G2

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

2 17 3 11
1 2
~
4 5 8 3
6 10
G G2

How to capture this equivalence?

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

12 1.2
2 17 3 11
2 3 2 3
111 2 A
3 2 ~ 3 2
4 5 8 3
1 1 1 1
2 6 2 2 10 2
gl gg

How to capture this equivalence?

» Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

w
n
w
n

G G2
How to capture this equivalence?

» Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

2 17 3 11
1 2
Y
4 5 8 3
6 10
G1 G2

How to capture this equivalence?

» Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

2/ \17 3/ \ 11
1 2
~
4 5 8 3
6 10
G G2

How to capture this equivalence?
» Option 1: Local ordering?

» Option 2: STG representative

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

2 17 3 11 2 3
1 2
= —
4 5 8 3 3 2
6 10 4
G1 Go Grep

How to capture this equivalence?
» Option 1: Local ordering?

» Option 2: STG representative

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

2 17 3 11 2 3
1 2
o —
4 5 8 3 3 2
6 10 4
G1 Go Grep

How to capture this equivalence?
» Option 1: Local ordering?
» Option 2: STG representative v’

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

17

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

17

STG representatives
Canonization

. Find edges that are local minima 2/ 17
. Assign them the smallest available time /
Increment time

FNQF I O

. Repeat on remaining edges

STG representatives
Canonization

. Find edges that are local minima 2/ 17
. Assign them the smallest available time /
Increment time

FNQF I O

. Repeat on remaining edges

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

2// \\3

/ \

/ \
A

| |
3, 12
| |
— 4

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

2// \\3

/ \

/ \
A

| |
3, 12
| |
— 4

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
Increment time

FNQF I O

. Repeat on remaining edges

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

STG representatives

Canonization

1. Find edges that are local minima 2,/ \3
2. Assign them the smallest available time / \
3. Increment time f - ‘
4. Repeat on remaining edges 3, 12
b

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled ¢ > 1, an adjacent edge is labeled ¢ — 1.

STG representatives

Canonization

1. Find edges that are local minima 2,/ \3
2. Assign them the smallest available time / \
3. Increment time f - ‘
4. Repeat on remaining edges 3, 12
b

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled ¢ > 1, an adjacent edge is labeled ¢ — 1.

(If you know a name for such coloring, let me know.)

How to test for equivalence?

How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

. Fix an arbitrary vertex vy of G1

. Try to send it to a vertex v2 of Ga
. If OK, answer YES

w
N
A WO N =

. If not, try the next vertex of G2
4 (or answer NO if none remain)

How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

. Fix an arbitrary vertex vy of G1

. Try to send it to a vertex v2 of Ga
. If OK, answer YES

w
N
A WO N =

. If not, try the next vertex of G2
4 (or answer NO if none remain)

How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

4 . Fix an arbitrary vertex vy of G1

1
2 3
3 2 ;
. If not, try the next vertex of G2

4 (or answer NO if none remain)

. Try to send it to a vertex v2 of Ga
. If OK, answer YES

A WO N =

How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

. Fix an arbitrary vertex vy of G1

. Try to send it to a vertex v2 of Ga
. If OK, answer YES

w
N
A WO N =

. If not, try the next vertex of G2
4 (or answer NO if none remain)

How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

. Fix an arbitrary vertex vy of G1

. Try to send it to a vertex v2 of Ga
. If OK, answer YES

. If not, try the next vertex of G2
4 (or answer NO if none remain)

w
N
A WO N =

Key observation: when trying to send v; to va, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)

— passes or fails in polynomial time.

How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

. Fix an arbitrary vertex vy of G1

. Try to send it to a vertex v2 of Ga
. If OK, answer YES

w
N
A WO N =

. If not, try the next vertex of G2
4 (or answer NO if none remain)

Key observation: when trying to send v; to va, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)

— passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

ﬁﬁsﬂz

¢ >

2 1

NN

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

SN
<2/ >

NN

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.
SN
T
2

1

N

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.
SN

<®/1>

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

SN

2

< >
}LSH/

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

gZ > At most n automorphisms!

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components

* 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

v
/_\
1/ 1/ 1. Find the underlying components
((* 2. Search for isomorphisms between pairs of components
i i 1 (remember one for each)
1 1 3. Find the automorphisms within each component type

o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ /(1/\‘ 1. Find the underlying components
i -

* 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ ’_\ 1. Find the underlying components

* 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
((* 2. Search for isomorphisms between pairs of components
i i o 1 (remember one for each)

1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components

* 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

‘ﬂ/ 1/ 1. Find the underlying components
((* 2. Search for isomorphisms between pairs of components
i i l (remember one for each)

1 1 3. Find the automorphisms within each component type

o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
((* 2. Search for isomorphisms between pairs of components
i i o l (remember one for each)
1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ v 1/ 1. Find the underlying components
((* 2. Search for isomorphisms between pairs of components
i i l (remember one for each)

1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
((*\ ¥ 2. Search for isomorphisms between pairs of components
i i o l (remember one for each)

1 1 3. Find the automorphisms within each component type

o o (trivially extended to G)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
((* 2. Search for isomorphisms between pairs of components
i i 1 (remember one for each)
1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Claim: Aut(G) = (isomorphisms + automorphisms)

Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
((* 2. Search for isomorphisms between pairs of components
i i 1 (remember one for each)
1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Claim: Aut(G) = (isomorphisms + automorphisms)

— Generators for Aut(G) can be computed in polynomial time!

Enumeration up to “isomorphism”

(motivated by the conjecture on spanners)

Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

Key properties
1. Rigidity is inherited

J Rigid world N

Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

Key properties
1. Rigidity is inherited

2. Dissimilarity is inherited

J Isomorphism types separated (forever)

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

1

P °

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

1

2 3 X% Coloring lemma: (t+1) must be adjacent to (t)

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

) v Coloring lemma: (t+1) must be adjacent to (t)

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 v Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 v Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate all matchings of eligible
non-edges. Each one defines a successor.

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate all matchings of eligible
non-edges. Each one defines a successor.

= Independent sets in the line graph of
eligible non-edges (standard algorithm)

Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1N
= Independent sets in the line graph of DL SRR, SRSy SRSy &
eligible non-edges (standard algorithm) Q b S m 57 _'

Done using the generators for Aut(G)

— Enumerate all matchings of eligible
non-edges. Each one defines a successor.

USing the generator https://github.com/acasteigts/STGen

Implemented in Julia

How to use o
(other versions in Python, Java, and Rust)

include ("generation.j1l")

n=>5
for g in TGraphs (n)

end

https://github.com/acasteigts/STGen

USing the generator https://github.com/acasteigts/STGen

Implemented in Julia
(other versions in Python, Java, and Rust)

How to use

include ("generation.j1l")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)

https://github.com/acasteigts/STGen

USing the generator https://github.com/acasteigts/STGen

Implemented in Julia

How to use o
(other versions in Python, Java, and Rust)

include ("generation.j1l")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n — 3?

https://github.com/acasteigts/STGen

USing the generator https://github.com/acasteigts/STGen

Implemented in Julia
(other versions in Python, Java, and Rust)

How to use

include ("generation.j1l")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n — 3?

— True for n < 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

Some numbers

Vertices

STGs
1
2
4
62
15378
89769096

13828417028594

?

Temporally connected STGs
1
1
1
32
10207
70557834
?

?

Simple Temporal cliques
1
1
1
20
4524
23218501

3128434545680

?

Some numbers

Vertices

STGs
1
2
4
62
15378
89769096

13828417028594

?

Temporally connected STGs
1
1
1
32
10207
70557834
?

?

Simple Temporal cliques
1
1
1
20
4524
23218501

3128434545680

?

Thanks!

	Similarities and symmetries
	The generation process

