
1/16

Efficient generation of simple temporal graphs
(up to “isomorphism”)

Arnaud Casteigts

LaBRI, Université de Bordeaux

ESTATE-DUCAT Workshop 2022

Related to joint works with:

Jason Schoeters Joseph Peters Michael Raskin Malte Renken Viktor Zamaraev Timothée Corsini
(Le Havre) (Vancouver) (Munich) (Berlin) (Liverpool) (Bordeaux)

2/16

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Non-strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/16

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Non-strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/16

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Non-strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/16

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Non-strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/16

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Non-strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Strict, ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64

→
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?

I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

3/16

Temporal spanners (motivation)

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I ∃ minimally connected temp. graphs with Ω(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

I In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
I Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

4/16

An easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality:
I Many negative results apply
I Positive results extend
I No distinction between strict and non-strict temporal paths

Further motivations:
I Population protocols and gossip models (without repetition)

I Edge-ordered graphs (Chvátal, Komlós, 1971)

4/16

An easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality:
I Many negative results apply
I Positive results extend
I No distinction between strict and non-strict temporal paths

Further motivations:
I Population protocols and gossip models (without repetition)

I Edge-ordered graphs (Chvátal, Komlós, 1971)

4/16

An easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality:
I Many negative results apply
I Positive results extend
I No distinction between strict and non-strict temporal paths

Further motivations:
I Population protocols and gossip models (without repetition)

I Edge-ordered graphs (Chvátal, Komlós, 1971)

5/16

Back to the bad news... and good news

Recall the bad news:

I Ω(n logn)

I Ω(n2)

Good news: (C., Raskin, Renken, Zamaraev, 2021):
I Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, as soon as the graph is temporally connected

Good news: (C., Peters, Schoeters, 2019):
I Spanners of size O(n logn) always exist

in complete temporal graphs

5/16

Back to the bad news... and good news

Recall the bad news:

I Ω(n logn)

I Ω(n2)

Good news: (C., Raskin, Renken, Zamaraev, 2021):
I Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, as soon as the graph is temporally connected

Good news: (C., Peters, Schoeters, 2019):
I Spanners of size O(n logn) always exist

in complete temporal graphs

5/16

Back to the bad news... and good news

Recall the bad news:

I Ω(n logn)

I Ω(n2)

Good news: (C., Raskin, Renken, Zamaraev, 2021):
I Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, as soon as the graph is temporally connected

Good news: (C., Peters, Schoeters, 2019):
I Spanners of size O(n logn) always exist

in complete temporal graphs

6/16

Two techniques for spanners in temporal cliques

Pivotability

→ spanners of size 2n− 3

Dismountability

→

→ spanner of size 2n− 3.

Unfortunately, only works in most instances

The best we known for general temporal cliques is O(n logn)

Do spanners of size 2n− 3 always exist in temporal cliques?

(searching for counter-examples...)

6/16

Two techniques for spanners in temporal cliques

Pivotability

→ spanners of size 2n− 3

Dismountability

→

→ spanner of size 2n− 3.

Unfortunately, only works in most instances

The best we known for general temporal cliques is O(n logn)

Do spanners of size 2n− 3 always exist in temporal cliques?

(searching for counter-examples...)

6/16

Two techniques for spanners in temporal cliques

Pivotability

→ spanners of size 2n− 3

Dismountability

→

→ spanner of size 2n− 3.

Unfortunately, only works in most instances

The best we known for general temporal cliques is O(n logn)

Do spanners of size 2n− 3 always exist in temporal cliques?

(searching for counter-examples...)

6/16

Two techniques for spanners in temporal cliques

Pivotability

→ spanners of size 2n− 3

Dismountability

→

→ spanner of size 2n− 3.

Unfortunately, only works in most instances

The best we known for general temporal cliques is O(n logn)

Do spanners of size 2n− 3 always exist in temporal cliques?

(searching for counter-examples...)

7/16

Generation of simple temporal graphs

(all of them, not just cliques)

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative

X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative

X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative

X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative

X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative

X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative

X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative

X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

8/16

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “Isomorphic”)

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

I Option 1: Local ordering?

I Option 2: STG representative X

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

9/16

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, an adjacent edge is labeled t− 1.

(If you know a name for such coloring, let me know.)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X
1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X
1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

10/16

How to test for equivalence?

Input: Two STGs G1 and G2
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

X
1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X

X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X

X
1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

11/16

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

X

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

X

X
X

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = 〈 isomorphisms + automorphisms 〉

→ Generators for Aut(G) can be computed in polynomial time!

12/16

Enumeration up to “isomorphism”

(motivated by the conjecture on spanners)

13/16

Generation tree

Principle: One level = one time unit
→ children of a graph = all the possible ways to add the next time

Key properties
1. Rigidity is inherited

2. Dissimilarity is inherited

1 1 1

2

1
2

1

2

2

1 1

2

1 1

2

2

1 3 2

31
2

1 3

2

31 3

2

1 3

2

2

31

2

2

31 3

2

2

31 1

2

31 13

↓ Rigid world

↓ Isomorphism types separated (forever)

time 1

time 2

time 3

13/16

Generation tree

Principle: One level = one time unit
→ children of a graph = all the possible ways to add the next time

Key properties
1. Rigidity is inherited

2. Dissimilarity is inherited

1 1 1

2

1
2

1

2

2

1 1

2

1 1

2

2

1 3 2

31
2

1 3

2

31 3

2

1 3

2

2

31

2

2

31 3

2

2

31 1

2

31 13

↓ Rigid world

↓ Isomorphism types separated (forever)

time 1

time 2

time 3

13/16

Generation tree

Principle: One level = one time unit
→ children of a graph = all the possible ways to add the next time

Key properties
1. Rigidity is inherited

2. Dissimilarity is inherited 1 1 1

2

1
2

1

2

2

1 1

2

1 1

2

2

1 3 2

31
2

1 3

2

31 3

2

1 3

2

2

31

2

2

31 3

2

2

31 1

2

31 13

↓ Rigid world

↓ Isomorphism types separated (forever)

time 1

time 2

time 3

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3× Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3× Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3× Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

14/16

Generating successors in the tree?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible
non-edges. Each one defines a successor.

≡ Independent sets in the line graph of
eligible non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

15/16

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions in Python, Java, and Rust)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n− 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

15/16

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions in Python, Java, and Rust)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n− 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

15/16

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions in Python, Java, and Rust)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n− 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

15/16

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions in Python, Java, and Rust)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n− 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

16/16

Some numbers

Thanks!

16/16

Some numbers

Thanks!

	Similarities and symmetries
	The generation process

