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Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)
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Temporal paths

» Non-strict, ex: {(a, ¢, 3), (¢,d,4), (d, e, 4)) (non-decreasing)
» Strict, ex: ((a, ¢, 3), (¢, d, 4), (d, e, b)) (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!
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Temporal spanners (motivation)

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?

> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?

» 3 minimally connected temp. graphs with Q2(n log n) labels

(Kleinberg, Kempe, Kumar, 2000)
» In fact, 3 some with Q(n?) labels

(Axiotis, Fotakis, 2016)
How about complexity?

» Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)
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An easier model

Simple Temporal Graphs (STGs): 2/\5
1. A single presence time per edge (A : E — N) % ; %
2. Adjacent edges have different times (\ is locally injective)

Generality:

»> Many negative results apply
» Positive results extend
> No distinction between strict and non-strict temporal paths

Further motivations:
» Population protocols and gossip models (without repetition)

» Edge-ordered graphs (Chvatal, Komlos, 1971)
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Back to the bad news... and good news

Recall the bad news:
> Q(nlogn)
> Q(n?)

Good news: (C., Raskin, Renken, Zamaraev, 2021):

» Nearly optimal spanners (of size 2n + o(n)) almost surely exist in
random temporal graphs, as soon as the graph is temporally connected

Good news: (C., Peters, Schoeters, 2019): o \ 0.
1 —o

» Spanners of size O(nlogn) always exist T "
in complete temporal graphs . /<<
/
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— spanner of size 2n — 3.

Unfortunately, only works in most instances
The best we known for general temporal cliques is O(nlogn)

Do spanners of size 2n — 3 always exist in temporal cliques?
(searching for counter-examples...)



Generation of simple temporal graphs

(all of them, not just cliques)
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Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability (i.e. “lsomorphic”)

2 17 3 11 2 3
1 2
o —
4 5 8 3 3 2
6 10 4
G1 Go Grep

How to capture this equivalence?
» Option 1: Local ordering?
» Option 2: STG representative v’

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.
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STG representatives

Canonization

1. Find edges that are local minima 2,/ \3
2. Assign them the smallest available time / \
3. Increment time f - ‘
4. Repeat on remaining edges 3, 12
b

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled ¢ > 1, an adjacent edge is labeled ¢ — 1.

(If you know a name for such coloring, let me know.)
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How to test for equivalence?

Input: Two STGs G; and G2
Output: Are they equivalent?
Two steps algorithm:
1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

. Fix an arbitrary vertex vy of G1

. Try to send it to a vertex v2 of Ga
. If OK, answer YES

w
N
A WO N =

. If not, try the next vertex of G2
4 (or answer NO if none remain)

Key observation: when trying to send v; to va, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)

— passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)
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Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
( ( * 2. Search for isomorphisms between pairs of components
i i 1 (remember one for each)
1 1 3. Find the automorphisms within each component type
o o (trivially extended to G)

Claim: Aut(G) = ( isomorphisms + automorphisms )

— Generators for Aut(G) can be computed in polynomial time!
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(motivated by the conjecture on spanners)
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Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

Key properties
1. Rigidity is inherited

2. Dissimilarity is inherited

J Isomorphism types separated (forever)
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Generating successors in the tree?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1N
= Independent sets in the line graph of DL SRR, SRSy SRSy &
eligible non-edges (standard algorithm) Q b S m 57 _'

Done using the generators for Aut(G)

— Enumerate all matchings of eligible
non-edges. Each one defines a successor.
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Implemented in Julia

How to use o
(other versions in Python, Java, and Rust)

include ("generation.j1l")

n=>5
for g in TGraphs (n)

end
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USing the generator https://github.com/acasteigts/STGen

Implemented in Julia
(other versions in Python, Java, and Rust)

How to use

include ("generation.j1l")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n — 3?

— True for n < 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)
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Some numbers

# Vertices

# STGs
1
2
4
62
15378
89769096

13828417028594

?

# Temporally connected STGs
1
1
1
32
10207
70557834
?

?

# Simple Temporal cliques
1
1
1
20
4524
23218501

3128434545680

?
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?

Thanks!
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