Crime & Punishment in
Distributed Algorithms

Pierre Civit (Sorbonne Université)
pierre.civit@lip©6.fr

© ;
th
e, § s

Crime & Punishment in
Distributed Algorithms

Pierre Civit (Sorbonne Université)
pierre.civit@lip©6.fr

© ;
th
e, § s

Crime & Punishment in
Distributed Algorithms

Pierre Civit Seth Gilbert Vincent Gramoli Rachid Guerraoui
Sorbonne University, CNRS, LIP6 NUS Singapore University of Sydney Ecole Polytechnique Fédérale de Lausanne (EPFL)

Jovan Komatovic Zarko Milosevic Adi Serendinschi
Ecole Polytechnique Fédérale de Lausanne (EPFL) Informal Systems Informal Systems

message-passing

message-passing

non

message-passing

non
synchronous -

Authenticated

Digital Signature (Public Key Infrastructure)

Authentication
Integrity

Non-Repudiation

Digital Signature

10

Signature

SKa

X

[o
@

"

message-passing

non
synchronous -

Authenticated

12

14

559

gc:

%

559

ALL WE REALLV NEED

SAFET\/

NNNNNNNNNN

LDE
PPPPP v

)

L\VENFSS

15

resilient

16

resilient

17

How many

b7,
J7\, can we tolerate ?

==

f<n/2

18

Gracefully Degrading Task

» (Safety + Liveness)

, >=fo » Safety (Hveress)

Gracefully Degrading Byzantine Task
is generally impossible

t <t, =» (Safety + Liveness)

t >= 1, » Safety (Hveress)

Impossibility of solving GDBG

Undistinguishable scenarios

®
&
&
Q \®

22

Scenarios A and B

Scenario C

DISAGREEMENT

24

Liveness & Safety

Safety (only)

Nothing

n/3

2n/3 n

25

Liveness & Safety

Safety (only)

Nothing

0 n/3

2n/3 n

26

Liveness & Safety
Safety (only)

Nothing

27

n/3+t’

Liveness & Safety
Safety (only)

Nothing

n/3

2n/3

28

n/3-t'/2

Liveness & Safety
Safety (only)

Nothing

29

Liveness & Safety
Safety (only)

Nothing

30

Accountable Algorithm

< to » Safety + Liveness

-+ Safety Violation » Detection =

Liveness & Safety

Accountability

32

solves the same
problem with same
resiliency

accountability in case of
safety violation

33

What are the Byzantine faults to detect/hide ?
Can they cause safety violation ?

What is the cost to detect it ?

34

Fault Glassification

What is a fault ?

36

What is a fault ?

What is a fault ?

-E%’ | \8

Processes

Y

Correct

Non-Correct

39

Non-Correct

Omission

Commission

Crash

40

Non-Correct

Omission

Commission

Byzantine

41

1st minor contribution: formal partitioning

COMMISSION FAULTS

COMMISSION FAULTS

EQUIVOCATION

Mutant Messages

EVASION

42

Faults &
Accountahility

1) Commission faults are necessary to
violate safety

1) Commission faults are necessary to
violate safety

2) Only commission faults detection is
possible

3) Commission faults detection is
necessary™ and sufficient™ to provide
accountability

The cost of detection

48

Warm up: Equivocation

49

Warm up: Equivocation

50

Warm up: Equivocation

51

Chained Gommission
Eaults

54

56

fault insertion

58

find the culprit

59

find the culprit with witnesses

find the culprit with justification with degree

The Fault Detection Problem

Andreas Haeberlen! and Petr Kuznetsov?

! Max Planck Institute for Software Systems (MPI-SWS)
> TU Berlin / Deutsche Telekom Laboratories

62

bit-complexity skyrockets !

63

The end of
accountahility ?

No: Reduction to
detection of directly
ohservable equivocations

66

t SIMULATION :E%

20 e
@.—
~O= =
= 3 &
<0<, S - -

INFORMATION AND COMPUTATION 75, 130-143 (1987)
Asynchronous Byzantine Agreement Protocols
GABRIEL BRACHA

13Bart Street, Tel-Aviv 69104, Israel

68

INFORMATION AND COMPUTATION 75, 130-143 (1987)
Asynchronous Byzantine Agreement Protocols
GABRIEL BRACHA

13Bart Street, Tel-Aviv 69104, Israel

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988 1541

A Compiler that Increases the Fault Tolerance of
Asynchronous Protocols

BRIAN A. COAN

69

e YWILEY
. D3

Distributed

Computing

HAGIT ATTIYA
JENNIFER WELCH

Wiley Serven om Porsdlel and Dustridmited Computing
Albert ¥ Zowogs, Servn Editor

12

- Improving the Fault

Tolerance of Algorithms

70

WWILEY

Distributed

Computing

HAGIT ATTIYA
JENNIFER WELCH

Wiley Serven om Porsdlel and Dustridmited Computing
Albert ¥ Zowogs, Servn Editor

send recv T
crash simulation
send\ recv sendJ/ recy \
omission ‘ simulation
send ! recv T send / recv T
 identical Byzantine§ ¢ simulatio
send \L recv T scndl recv \ send | recv | send | recv |

Byzantine communication system

7

>
€
659

~O= ;
01 t SIMULATION %

SZaY .
29 = '
=]
@ 2 <L Rb-bcast éé: ‘E%

+=0<;
&5 63 R &
<0<, o< simulation

t<n/3
O(n"2) bits

74

7 A

76

77

78

FullReview Implementation

A

State-machine

7Y

send receive
v —

Valid-enabling
module

broadcast deliver =—@

Secure
broadcast

r'y -

send receive

Network

Fig. 1. Overview of the 7y, transformation

79

Reliable-Broadcast

Interface

Broadcast

Deliver

81

Interface

Broadcast

Deliver

82

Interface

Broadcast Deliver

Validity Consistency + Totality

If the sender is correct, every correct process delivers its message. Either every correct process
delivers the same message, or no correct process delivers any message.

84

Validity Consistency + Totality

@a! @a! @a!

If the sender is correct, every correct process delivers its message. Either every correct process
delivers the same message, or no correct process delivers any message.

85

86

secure-broadcast = multishor RB-hroadcast

e Integrity: a correct process executes deliver(p, m) at most once, and, in case the sender
process p is benign, only if p called broadcast(m).

e Agreement: if p and g are correct and p executes deliver(r, m), then g eventually executes
deliver(r, m).

e Validity: if p is correct and executes broadcast(m), then p eventually executes deliver(p, m).

e Source Order: if p and g are benign and p executes deliver(r, m) before deliver(r, m’), then
q does not execute deliver(r, m’) before executing deliver(r, m). Moreover, if r is benign and
broadcasts m and afterwards broadcasts m’, then no benign process delivers these two

messages in the opposite order.

87

7 A

88

89

90

Returning to
Accountahility

State-machine

A

send receive
v

Valid-enabling
module

broadcast deliver

Secure
broadcast

send receive

Network

—0

-

Fig. 1. Overview of the 7y, transformation

92

State-machine

— send receive
v —
— Valid-enabling
(‘ ' module
'J
_ h“ broadcast deliver —@
"“ Secure
— broadcast
* send receive
/]
Network

Fig. 1. Overview of the 7y, transformation

93

NV pre com dec

State-machine

send receive
Y, v —
A’lﬁ Valid-enabling
\\“\"' é module
)
Q“"’é broadcast deliver +—@
Secure
broadcast
send receive
Network

Fig. 1. Overview of the 7y, transformation

94

|

[

] i
N oW
hgyé,‘g \L/ I/

i w \ml

_ m

\ [

W |
& A
‘\\‘ /

X
N
u//“u

95

|

W..
‘\

[W

il

[

u
W
N
|

7 /A\\‘ 7

1)

I\

g
i \Wia il
/ A 4‘6' /",4‘"
e o)\l
"“ 0

=]

]
|

\
i

)

96

necessary and sufficient transformation

. -----.1

State-machine ————

send receive

v —
Valid-enabling
module

broadcast deliver =—@

Secure
broadcast

-

send receive

Network

Fig. 1. Overview of the 7, transformation

Answers

What are the Byzantine faults to detect ? Commission = Equivocation + Evasion
Can they cause safety violation ? Commission are necessary

What is the cost to detect it ? Quadratic overhead in worst case

n

Can be applied to randomized protocols.

Can be applied to most of practical protocols that assume private channels
Can be applied to permissionless protocols

Can be applied to committee-based blockchains with fully corrupted committee

Cachin-Tessaro Optimization can be applied to heavy messages.

98

99

100

Easy accountable task (consensus, RB-hcast, ...)

BC, under A& BCx not under A
Agreement]
Validity
Terminaison w. p. 1

BC)y

propose] (v) propose] (v)

(@) (df\.
%(v‘y) submit;-' (v}’)

function propose(v) do
: > bc is any Byzantine consensus protocol

1:

2

3: v « be.propose(v)

4 broadcast [CONFIRM, v']

5 wait for n — to[CONFIRM, ¥/']
6 return v’

submit) (v}) (d;,) =2 (”}'r)

Confs under A ‘ On f A Conf, not under A
Terminati

convergerl:ég accountability

101

- Easy agreement tasks can be trivially made accountable (cf. “As easy as ABC
(A)ccountable (B)yzantine (C)onsensus is easy!”).

- Only secure-broadcast critical sections.

- Use (randomized) scalable secure-broadcast with n.log(n) overhead and
exchange scr-delivered messages with a certain probability only

102

Next ? Fully privacy-preserving
accountahility

103

