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Gracefully Degrading Task

» (Safety + Liveness)
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Gracefully Degrading Byzantine Task
is generally impossible
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Impossibility of solving GDBG
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Scenarios A and B




Scenario C
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Accountable Algorithm
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Liveness & Safety

Accountability
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solves the same
problem with same
resiliency

accountability in case of
safety violation
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What are the Byzantine faults to detect/hide ?
Can they cause safety violation ?

What is the cost to detect it ?
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Fault Glassification



What is a fault ?
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What is a fault ?




What is a fault ?
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1st minor contribution: formal partitioning

COMMISSION FAULTS
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Faults &
Accountahility




1) Commission faults are necessary to
violate safety



1) Commission faults are necessary to
violate safety

2) Only commission faults detection is
possible



3) Commission faults detection is
necessary™ and sufficient™ to provide
accountability



The cost of detection
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Warm up: Equivocation
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Warm up: Equivocation
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Warm up: Equivocation
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Chained Gommission
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fault insertion
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find the culprit
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find the culprit with witnesses




find the culprit with justification with degree




The Fault Detection Problem

Andreas Haeberlen! and Petr Kuznetsov?

! Max Planck Institute for Software Systems (MPI-SWS)
> TU Berlin / Deutsche Telekom Laboratories
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bit-complexity skyrockets !
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The end of
accountahility ?



No: Reduction to
detection of directly
ohservable equivocations
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INFORMATION AND COMPUTATION 75, 130-143 (1987)
Asynchronous Byzantine Agreement Protocols
GABRIEL BRACHA

13Bart Street, Tel-Aviv 69104, Israel
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A Compiler that Increases the Fault Tolerance of
Asynchronous Protocols

BRIAN A. COAN
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FullReview Implementation

A
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Fig. 1. Overview of the 7y, transformation
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Deliver
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Deliver
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Broadcast Deliver




Validity Consistency + Totality

If the sender is correct, every correct process delivers its message. Either every correct process
delivers the same message, or no correct process delivers any message.
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Validity Consistency + Totality

@a! @a! @a!

If the sender is correct, every correct process delivers its message. Either every correct process
delivers the same message, or no correct process delivers any message.
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secure-broadcast = multishor RB-hroadcast

e Integrity: a correct process executes deliver(p, m) at most once, and, in case the sender
process p is benign, only if p called broadcast(m).

e Agreement: if p and g are correct and p executes deliver(r, m), then g eventually executes
deliver(r, m).

e Validity: if p is correct and executes broadcast(m), then p eventually executes deliver(p, m).

e Source Order: if p and g are benign and p executes deliver(r, m) before deliver(r, m’), then
q does not execute deliver(r, m’) before executing deliver(r, m). Moreover, if r is benign and
broadcasts m and afterwards broadcasts m’, then no benign process delivers these two

messages in the opposite order.
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Returning to
Accountahility



State-machine
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Fig. 1. Overview of the 7y, transformation
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Fig. 1. Overview of the 7y, transformation
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necessary and sufficient transformation

. -----.1

State-machine ————

send receive

v —
Valid-enabling
module

broadcast deliver =—@

Secure
broadcast

-

send receive

Network

Fig. 1. Overview of the 7, transformation



Answers

What are the Byzantine faults to detect ? Commission = Equivocation + Evasion
Can they cause safety violation ? Commission are necessary

What is the cost to detect it ? Quadratic overhead in worst case

n

Can be applied to randomized protocols.

Can be applied to most of practical protocols that assume private channels
Can be applied to permissionless protocols

Can be applied to committee-based blockchains with fully corrupted committee

Cachin-Tessaro Optimization can be applied to heavy messages.
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Easy accountable task (consensus, RB-hcast, ...)

BC, under A& BCx not under A
Agreement ]
Validity
Terminaison w. p. 1

BC)y

propose] (v) propose] (v)

(@) (df\.
%(v‘y) submit;-' (v}’)

function propose(v) do
: > bc is any Byzantine consensus protocol

1:

2

3: v « be.propose(v)

4 broadcast [CONFIRM, v']

5 wait for n — to[CONFIRM, ¥/']
6 return v’

submit) (v}) (d;,) =2 (”}'r)

Confs under A ‘ On f A Conf, not under A
Terminati

convergerl:ég accountability
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- Easy agreement tasks can be trivially made accountable (cf. “As easy as ABC
(A)ccountable (B)yzantine (C)onsensus is easy!” ).

- Only secure-broadcast critical sections.

- Use (randomized) scalable secure-broadcast with n.log(n) overhead and
exchange scr-delivered messages with a certain probability only
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Next ? Fully privacy-preserving
accountahility
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