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Undirected and connected network

Anonymous network with a
distinguished root

Each processor can distinguish
its adjacent links

Local shared memory
Distributed unfair daemon
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Stabilizing systems

* Self-stabilizing systems [Dijkstra, 1974]

Fault(s)

Config.

Arbitrary
BFS tree
>
\Convergence, Time
Time

 Asnap-stabilizing system, regardless of the initial
state of the processors, always behaves according to
its specification. [Bui et al, 1999]
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State of the art

mmm

[Arora, Gouda 90] O(N?) O(log(n)) Yes
[Doley, Israeli, Moran 90] O(d) - O(A log(n)) Yes
[Afek, Kutten, Yung 91] 0(n?) - O(log(n)) Yes
[Ducourthial, Tixeuil 03] O(d) O(n(Max+d)") O(log(n)) Yes
BES [Awerbuch, Kutten, Mansour, Patt- O(D) Q(2°72) O(log?(n)) Yes
Shamir, Varghese 93]
[Johnen 97] Q(d?) - O(log(A)) No
[Burman, Kutten 07] O(d) - O(log?(n)) Yes
[Datta, Larmore, Vemula ] O(n) Q(n'oe(n) O(log(n)) Yes
[Cournier, Devismes, Villain 09] O(d?+n) O(A n3) O(log(n)) No
[Chen, Yu, Huang 91] O(n) Q(2") O(log(n)) Yes
Any [Kosowski, Kuszner 05] O(n) 0O(n3d) O(log(n)) Yes
[Cournier 09] o(n) 0(n?) O(log(n)) Yes
[Collin, Dolev 94] O(dn A) - O(n log(A)) Yes
[Cournier, Devismes, Villain 05] 0(n?) 0O(n3) O(log(n)) Yes
PFS [Cournier, Devismes, Petit, Villain 06] O(n) 0(n?) O(n log(n)) Yes
[Cournier, Devismes, Villain 09] O(n) O(A n3) O(log(A+n)) No
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Definition [fully polynomial algorithm]: It is a stabilizing
algorithm with
e a round complexity O(d“) and,
* a step complexity O(n?)
with d the diameter and n the size of the network

Question:

Does there exists a fully polynomial stabilizing algorithm to
construct a spanning tree ?

* Polynomial step complexity

* with a round complexity O(d?)
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Existing approaches

Goal:

Construction of a spanning tree satisfying fully
polynomial constraints

e Approach 1 [Huang, Chen 92]
— Classical strategy to construct a a spanning tree
* Root has a zero level
e Each processor hooks on to its neighbor of lowest level

* Problems
- The valid tree grows quickly in terms of rounds

- Invalid trees are deleted slowly
- New processors can join invalid trees
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Existing approaches

Goal:

Construction of a spanning tree satisfying fully
polynomial constraints

 Approach 2 ([KK 05] and [Cournier 09])

— Classical strategy to construct a a spanning tree

* Root has a zero level

e Each processor hooks on to its neighbor of lowest level
— Invalid trees are frozen

* Problems

- Invalid trees are deleted quickly (no processor can join)
- The valid tree grows slowly (wait for tree deletions)
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- A forest (constraint on levels)
- Avalid tree
- Invalid trees

- Duality

- The valid tree must grow quickly (in terms of rounds and
steps)

- Invalid trees must be deleted quickly too

—> Need to develop a mechanism to deal with this
duality (question-answer mechanism)
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Our contribution
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[Arora, Gouda 90] O(N?) O(log(n)) Yes
[Doley, Israeli, Moran 90] O(d) - O(A log(n)) Yes
[Afek, Kutten, Yung 91] 0(n?) - O(log(n)) Yes
[Ducourthial, Tixeuil 03] O(d) O(n(Max+d)") O(log(n)) Yes
[Awerbuch, Kutten, Mansour, Patt- O(D) Q(2°72) O(log?(n)) Yes

BFS Shamir, Varghese 93]

[Johnen 97] Q(d?) - O(log(A)) No
[Burman, Kutten 07] O(d) - O(log?(n)) Yes
[Datta, Larmore, Vemula 08] O(n) - O(log(n)) Yes
[Cournier, Devismes, Villain 09] O(d?+n) O(A n3) O(Iog(n)) No
[Cournier, Rovedakis, Villain 19] 0(d?) 0(n®) O(log(n)) Yes
[Chen, Yu, Huang 91] O(n) Q(2") O(log(n)) Yes
Any [Kosowski, Kuszner 05] 0o(n) 0O(n3d) O(log(n)) Yes
[Cournier 09] O(n) 0(n?) O(log(n)) Yes
[Collin, Dolev 94] O(dn A) - O(n log(A)) Yes
[Cournier, Devismes, Villain 05] 0(n?) 0o(n3) O(log(n)) Yes
OFS [Cournier, Devismes, Petit, Villain 06] O(n) 0o(n?) O(n log(n)) Yes
[Cournier, Devismes, Villain 09] O(n) O(A n3) O(log(A+n)) No
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Stabilizing BFS algorithm

(Question-Answer problem)
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Question-Answer Problem

No permission

Forest F of trees must be delivered! \

. Authorized Processor (root r)

® : Set of Requesting Processors (De)

Allowed tree: tree rooted at a processor r

Question-Answer Problem:
Deliver a permission to a requesting processor in an allowed tree
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Question-Answer Algorithm

Satisfies

1. Deliver a permission only to requesting processors in
allowed tree

2. If the closest requesting processor(s) of the allowed tree
is at height k, it will receive a permission in 2k rounds

3. And in polynomial number of steps
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Stabilizing BFS algorithm

(Spanning tree construction)
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Tree construction problem

A set of connected components F

® : Authorized Processors r

Allowed tree: tree rooted at a processor r
I:> Only Processor r in AP (Spanning tree)
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Tree construction

* Normal root (processor r)
— No parent
— Zero level forr (r.L =0)
— Statusto C
* Abnormal root
— X has a parent
— Faulty level (x.L <(x.P).L)

# Forest (constrainton levels,i.e., p.L=(p.P).L+1))

* Normal tree mm) tree rooted atr
« Abnormal tree B tree rooted at an abnormal root
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Tree construction

e Detection of an abnormal root

m ©

wmr

A
LA

* Propagation of Status E in abnormal trees
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Tree construction

* Permission: allows connections of new processors to a
normal tree

* Ask of a permission
— Case 1: a neighbor g in an abnormal tree (q in Status E)
— Case 2: a neighbor g with high level (g.L > p.L+1)

/ Sends arequest q.5=C Sends a request
p.L=2 7 pL=2
p.S=C p.S=C
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Tree construction

* Construction of a BFS
Connection to the neighbor:
— of lowest level
— with a permission (obtained via Algorithm 2)

/ Receives a permission
p.L=2
p.S=C
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Tree construction

* Construction of a BFS
Connection to the neighbor:
— of lowest level
— with a permission (obtained via Algorithm 2)

Receives a permission

x.L=1
X.S5=C
VY VY
k —
q.S=E -~ - q.S=E -~ -

Receives a permission / Receives a permission
p.L=2 p.L=2
p.S=C p.S=C
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Tree construction

 Construction of a BFS

Connection to the neighbor:
— of lowest level
— with a permission (obtained via Algorithm 2)

Receives a permission

x.L=1
X.S=C
7
&< —
q.S=E -~ - q.S=E -
Receives a permission Recelves a permission
p.L=2 p.L=2
p.S=C p.S=C
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Complexity analysis
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Rounds complexity

* Our algorithm constructs a BFS tree layer by layer,
each new layer uses permissions

— Processors closest to r at height k, receive a permission in
O(k) rounds (Algorithm 2)

— There are at most d layers in a BFS tree
|:> O(d?) rounds to construct a BFS tree

— Processors in abnormal trees connect to BFS tree in O(d?)
(do not wait the end of propagation)

—> In O(d?) rounds a BFS tree is constructed
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Step complexity

* Topological change:
— Status changes from Cto E
— Connection to a new parent

* Only neighbors of an abnormal tree can join it
(permission is needed)

— At most 1 connection via the «
same neighbor o

@
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Step complexity

* Topological change:
— Status changes from Cto E
— Connection to a new parent

* Only neighbors of an abnormal tree can join it
(permission is needed)

— At most 1 connection via the «
same neighbor o

@

* Each processor produces at most 2A+n topological
changes

— < 2A topological changes (while not in normal tree)
— < n topological changes (while in normal tree)
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Step complexity

As a consequence the time step complexity is
O(Amn3+mn?) < O(n®) steps
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Conclusion

e Silent stabilizing algorithm to construct BFS tree in
O(d?) rounds and O(n®) steps
* Best comprise between round and step
complexities

* Questioning mechanism reduces step complexity
(avoids useless requests), but higher round
complexity

Perspectives

* Does there exist a stabilizing algorithm to construct a
spanning tree in O(d) rounds with a polynomial step
complexity ?

* Determine the problems which admit a fully
polynomial algorithm
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Thank you
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Stabilizing BFS construction

e Conditional composition of Algorithm 1 and 2

* Legitimate configuration (Algorithm 1)

For every p:

— p.L=(p.P).L+1

— For every neighbor g, |p.L-g.L| £1
—> No new request is generated (Rem1)

* Silent Property
— Algorithm 1 is silent (/evels are correct, no new connection)
— Algorithm 2 is silent (from Rem1)
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Stabilizing BFS tree algorithm

e Stabilizing BFS tree algorithm obtained by
composition of Algorithm 1 and 2

e Use of a conditional composition (use of a Predicate)
e Algorithm 2 executed before Algorithm 1
e Algorithm 2 executed at p iff
* p belongs to a normal tree

* p belongs to a tree locally correct
* p has lower height than its neighbor q
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Algorithm outline

e Conditional composition of 2 stabilizing algorithms

/ ASK \
Algorithm 1 [ Algorithm 2
OuT WAIT
Handles processor attachments Delivers authorizations

e Algorithm 1 monitors Algorithm 2 using variable Req
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Step complexity: Algorithm 2

* Each topological change produces at most A requests

(1) At most 2Am+mn requests to construct a BFS tree
— Since there are 2An+n? topological changes (Algorithm 1)

(2) In O(n3) steps every requesting processor receives a
permission

— At least a requesting processor (nearest to r) receive a
permission in O(n?) steps

Final step complexity
O(2Am+mn) x O(n3) = O(Amn3+mn?) < O(n®) steps

Fully polynomial stabilizing BFS tree construction ESTATE 2022



