The First Fully Polynomial Stabilizing Algorithm for BFS Tree Construction*

A. Cournier, S. Rovedakis, V. Villain

* This work has been supported in part by the ANR project SPADES

Context

Undirected and connected network

- Anonymous network with a distinguished root
- Each processor can distinguish its adjacent links
- Local shared memory
- Distributed unfair daemon

Context

Undirected and connected network

- Anonymous network with a distinguished root
- Each processor can distinguish its adjacent links
- Local shared memory
- Distributed unfair daemon
- Construction of a BFS tree

• Self-stabilizing systems [Dijkstra, 1974]

 A snap-stabilizing system, regardless of the initial state of the processors, always behaves according to its specification. [Bui et al, 1999]

State of the art

Construction	Paper	Round	Step	Memory	Silent
BFS	[Arora, Gouda 90]	O(N ²)	-	O(log(n))	Yes
	[Dolev, Israeli, Moran 90]	O(d)	-	$O(\Delta \log(n))$	Yes
	[Afek, Kutten, Yung 91]	O(n ²)	-	O(log(n))	Yes
	[Ducourthial, Tixeuil 03]	Θ(d)	O(n(Max+d) ⁿ)	O(log(n))	Yes
	[Awerbuch, Kutten, Mansour, Patt- Shamir, Varghese 93]	O(D)	Ω(2 ^{D/2})	O(log ² (n))	Yes
	[Johnen 97]	Ω(d²)	-	$O(log(\Delta))$	No
	[Burman, Kutten 07]	O(d)	-	O(log ² (n))	Yes
	[Datta, Larmore, Vemula]	O(n)	$\Omega(n^{\log(n)})$	O(log(n))	Yes
	[Cournier, Devismes, Villain 09]	Θ(d²+n)	O(Δ n³)	O(log(n))	No
Any	[Chen, Yu, Huang 91]	O(n)	Ω(2 ⁿ)	O(log(n))	Yes
	[Kosowski, Kuszner 05]	O(n)	Θ(n²d)	O(log(n))	Yes
	[Cournier 09]	Θ(n)	Θ(n²)	O(log(n))	Yes
DFS	[Collin, Dolev 94]	O(dn ∆)	-	O(n log(Δ))	Yes
	[Cournier, Devismes, Villain 05]	O(n ²)	O(n ³)	O(log(n))	Yes
	[Cournier, Devismes, Petit, Villain 06]	O(n)	O(n²)	O(n log(n))	Yes
	[Cournier, Devismes, Villain 09]	O(n)	O(Δ n³)	$O(log(\Delta+n))$	No

Definition [fully polynomial algorithm]: It is a stabilizing

algorithm with

- a round complexity O(d^a) and,
- a step complexity $O(n^b)$

with d the diameter and n the size of the network

Question:

Does there exists a *fully polynomial* stabilizing algorithm to construct a spanning tree ?

- Polynomial step complexity
- with a round complexity $O(d^{\alpha})$

Existing approaches

<u>Goal:</u>

Construction of a spanning tree satisfying fully polynomial constraints

• Approach 1 [Huang, Chen 92]

- Classical strategy to construct a a spanning tree
 - Root has a zero level
 - Each processor hooks on to its neighbor of lowest level

Problems

- The valid tree grows **quickly** in terms of **rounds**
- Invalid trees are deleted **slowly**
 - New processors can join invalid trees

Existing approaches

<u>Goal:</u>

Construction of a spanning tree satisfying fully polynomial constraints

- Approach 2 ([KK 05] and [Cournier 09])
 - Classical strategy to construct a a spanning tree
 - Root has a zero level
 - Each processor hooks on to its neighbor of lowest level
 - Invalid trees are frozen

Problems

- Invalid trees are deleted **quickly** (no processor can join)
- The valid tree grows **slowly** (*wait for tree deletions*)

Goal

- A forest (constraint on levels)
 - A valid tree
 - Invalid trees
- Duality
 - The valid tree must grow quickly (in terms of rounds and steps)
 - Invalid trees must be deleted quickly too
- Need to develop a mechanism to deal with this duality (question-answer mechanism)

Our contribution

Construction	Paper	Round	Step	Memory	Silent
BFS	[Arora, Gouda 90]	O(N ²)	-	O(log(n))	Yes
	[Dolev, Israeli, Moran 90]	O(d)	-	$O(\Delta \log(n))$	Yes
	[Afek, Kutten, Yung 91]	O(n ²)	-	O(log(n))	Yes
	[Ducourthial, Tixeuil 03]	Θ(d)	O(n(Max+d) ⁿ)	O(log(n))	Yes
	[Awerbuch, Kutten, Mansour, Patt- Shamir, Varghese 93]	O(D)	Ω(2 ^{D/2})	O(log ² (n))	Yes
	[Johnen 97]	Ω(d²)	-	$O(log(\Delta))$	No
	[Burman, Kutten 07]	O(d)	-	O(log ² (n))	Yes
	[Datta, Larmore, Vemula 08]	O(n)	-	O(log(n))	Yes
	[Cournier, Devismes, Villain 09]	Θ(d²+n)	O(Δ n³)	O(log(n))	No
	[Cournier, Rovedakis, Villain 19]	O(d ²)	O(n ⁶)	O(log(n))	Yes
Any	[Chen, Yu, Huang 91]	O(n)	Ω(2 ⁿ)	O(log(n))	Yes
	[Kosowski, Kuszner 05]	O(n)	Θ(n²d)	O(log(n))	Yes
	[Cournier 09]	Θ(n)	Θ(n²)	O(log(n))	Yes
DFS	[Collin, Dolev 94]	O(dn ∆)	-	O(n log(Δ))	Yes
	[Cournier, Devismes, Villain 05]	O(n ²)	O(n ³)	O(log(n))	Yes
	[Cournier, Devismes, Petit, Villain 06]	O(n)	O(n ²)	O(n log(n))	Yes
	[Cournier, Devismes, Villain 09]	O(n)	Ο(Δ n ³)	$O(log(\Delta+n))$	No
Fully pol	ynomial stabilizing BFS tree cons	struction	ESTATE 202	2	9

Stabilizing BFS algorithm

(Question-Answer problem)

Fully polynomial stabilizing BFS tree construction

ESTATE 2022

Question-Answer Problem

Allowed tree: tree rooted at a processor r

Question-Answer Problem:

Deliver a permission to a *requesting* processor in an *allowed* tree

Satisfies

- 1. Deliver a permission **only** to requesting processors in allowed tree
- 2. If the closest requesting processor(s) of the allowed tree is at height *k*, it will receive a permission in 2*k* rounds
- 3. And in polynomial number of steps

Stabilizing BFS algorithm

(Spanning tree construction)

Fully polynomial stabilizing BFS tree construction

ESTATE 2022

Tree construction problem

A set of connected components F

Allowed tree: tree rooted at a processor **r**

Only Processor r in AP (Spanning tree)

- Normal root (processor r)
 - No parent
 - Zero level for r (r.L = 0)
 - Status to C
- Abnormal root
 - x has a parent
 - Faulty level $(x.L \leq (x.P).L)$

Forest (constraint on levels, i.e., *p.L=(p.P).L+1*))

- Normal tree is tree rooted at r
- Abnormal tree is tree rooted at an abnormal root

• Detection of an abnormal root

• Propagation of Status E in abnormal trees

- **Permission:** allows connections of new processors to a normal tree
- Ask of a permission
 - **Case 1:** a neighbor q in an abnormal tree (q in Status E)
 - Case 2: a neighbor q with high level (q.L > p.L+1)

• Construction of a BFS

Connection to the neighbor:

- of lowest level
- with a permission (*obtained via Algorithm 2*)

• Construction of a BFS

Connection to the neighbor:

- of lowest level
- with a permission (*obtained via Algorithm 2*)

• Construction of a BFS

Connection to the neighbor:

- of lowest level
- with a permission (obtained via Algorithm 2)

Complexity analysis

Fully polynomial stabilizing BFS tree construction

ESTATE 2022

Rounds complexity

- Our algorithm constructs a BFS tree layer by layer, each new layer uses permissions
 - Processors closest to r at height k, receive a permission in O(k) rounds (Algorithm 2)
 - There are at most *d* layers in a BFS tree
 - \Box $O(d^2)$ rounds to construct a BFS tree
 - Processors in abnormal trees connect to BFS tree in O(d²)
 (do not wait the end of propagation)

☐ In O(**d**²) rounds a BFS tree is constructed

Step complexity

- Topological change:
 - Status changes from C to E
 - Connection to a new parent
- Only neighbors of an abnormal tree can join it (permission is needed)
 - At most 1 connection via the same neighbor

Step complexity

- Topological change:
 - Status changes from C to E
 - Connection to a new parent
- Only neighbors of an abnormal tree can join it (permission is needed)
 - At most 1 connection via the same neighbor

- Each processor produces at most 2Δ+n topological changes
 - $< 2\Delta$ topological changes (while not in normal tree)
 - < n topological changes (while in normal tree)</p>

As a consequence the time step complexity is $O(\Delta mn^3+mn^4) \le O(n^6)$ steps

Conclusion

- Silent stabilizing algorithm to construct BFS tree in O(d²) rounds and O(n⁶) steps
 - Best comprise between round and step complexities
 - Questioning mechanism reduces step complexity (avoids useless requests), but higher round complexity

Perspectives

- Does there exist a stabilizing algorithm to construct a spanning tree in O(d) rounds with a polynomial step complexity ?
- Determine the problems which admit a fully polynomial algorithm

Thank you

Fully polynomial stabilizing BFS tree construction

ESTATE 2022

Stabilizing BFS construction

- Conditional composition of Algorithm 1 and 2
- Legitimate configuration (Algorithm 1)
 For every p:
 - p.L=(p.P).L+1
 - For every neighbor q, $|p.L-q.L| \le 1$
 - No new request is generated (**Rem1**)

• Silent Property

- Algorithm 1 is silent (levels are correct, no new connection)
- Algorithm 2 is silent (from Rem1)

Stabilizing BFS tree algorithm

- Stabilizing BFS tree algorithm obtained by composition of Algorithm 1 and 2
- Use of a conditional composition (*use of a Predicate*)
 - Algorithm 2 executed before Algorithm 1
 - Algorithm 2 executed at p iff
 - p belongs to a normal tree
 - p belongs to a tree locally correct
 - p has lower height than its neighbor q

Algorithm outline

• Conditional composition of 2 stabilizing algorithms

Handles processor attachments

Delivers authorizations

• Algorithm 1 monitors Algorithm 2 using variable Req

Step complexity: Algorithm 2

- Each topological change produces at most Δ requests
- (1) At most $2\Delta m$ +mn requests to construct a BFS tree
 - Since there are $2\Delta n + n^2$ topological changes (Algorithm 1)
- (2) In O(n³) steps every requesting processor receives a permission
 - At least a requesting processor (nearest to r) receive a permission in O(n²) steps

Final step complexity

 $O(2\Delta m+mn) \times O(n^3) = O(\Delta mn^3+mn^4) \le O(n^6)$ steps