
The First Fully Polynomial
Stabilizing Algorithm for BFS

Tree Construction*

A. Cournier, S. Rovedakis, V. Villain

* This work has been supported in part by the ANR project SPADES

Context

2

Undirected and connected network

r

• Anonymous network with a

distinguished root

• Each processor can distinguish

its adjacent links

• Local shared memory

• Distributed unfair daemon

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Context

2

Undirected and connected network

r

• Anonymous network with a

distinguished root

• Each processor can distinguish

its adjacent links

• Local shared memory

• Distributed unfair daemon

• Construction of a BFS tree

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Self-stabilizing systems [Dijkstra, 1974]

• A snap-stabilizing system, regardless of the initial
state of the processors, always behaves according to
its specification. [Bui et al, 1999]

3

Stabilizing systems

Fault(s)

Arbitrary

BFS tree

Convergence

Time

Config.

Time

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Construction Paper Round Step Memory Silent

BFS

[Arora, Gouda 90] O(N2) - O(log(n)) Yes

[Dolev, Israeli, Moran 90] O(d) - O(Δ log(n)) Yes

[Afek, Kutten, Yung 91] O(n2) - O(log(n)) Yes

[Ducourthial, Tixeuil 03] Θ(d) O(n(Max+d)n) O(log(n)) Yes

[Awerbuch, Kutten, Mansour, Patt-
Shamir, Varghese 93]

O(D) Ω(2D/2) O(log2(n)) Yes

[Johnen 97] Ω(d2) - O(log(Δ)) No

[Burman, Kutten 07] O(d) - O(log2(n)) Yes

[Datta, Larmore, Vemula] O(n) Ω(nlog(n)) O(log(n)) Yes

[Cournier, Devismes, Villain 09] Θ(d2+n) O(Δ n3) O(log(n)) No

Any

[Chen, Yu, Huang 91] O(n) Ω(2n) O(log(n)) Yes

[Kosowski, Kuszner 05] O(n) Θ(n2d) O(log(n)) Yes

[Cournier 09] Θ(n) Θ(n2) O(log(n)) Yes

DFS

[Collin, Dolev 94] O(dn Δ) - O(n log(Δ)) Yes

[Cournier, Devismes, Villain 05] O(n2) O(n3) O(log(n)) Yes

[Cournier, Devismes, Petit, Villain 06] O(n) O(n2) O(n log(n)) Yes

[Cournier, Devismes, Villain 09] O(n) O(Δ n3) O(log(Δ+n)) No

4

State of the art

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Definition [fully polynomial algorithm]: It is a stabilizing

algorithm with

• a round complexity O(da) and,

• a step complexity O(nb)

with d the diameter and n the size of the network

Question:

Does there exists a fully polynomial stabilizing algorithm to
construct a spanning tree ?

• Polynomial step complexity

• with a round complexity O(da)

5

Motivation

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Goal:

Construction of a spanning tree satisfying fully
polynomial constraints

• Approach 1 [Huang, Chen 92]

– Classical strategy to construct a a spanning tree

• Root has a zero level

• Each processor hooks on to its neighbor of lowest level

• Problems

- The valid tree grows quickly in terms of rounds

- Invalid trees are deleted slowly

- New processors can join invalid trees

6

Existing approaches

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Goal:

Construction of a spanning tree satisfying fully
polynomial constraints

• Approach 2 ([KK 05] and [Cournier 09])

– Classical strategy to construct a a spanning tree

• Root has a zero level

• Each processor hooks on to its neighbor of lowest level

– Invalid trees are frozen

• Problems
- Invalid trees are deleted quickly (no processor can join)

- The valid tree grows slowly (wait for tree deletions)

7

Existing approaches

Fully polynomial stabilizing BFS tree construction ESTATE 2022

- A forest (constraint on levels)

- A valid tree

- Invalid trees

- Duality

- The valid tree must grow quickly (in terms of rounds and
steps)

- Invalid trees must be deleted quickly too

Need to develop a mechanism to deal with this
duality (question-answer mechanism)

8

Goal

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Construction Paper Round Step Memory Silent

BFS

[Arora, Gouda 90] O(N2) - O(log(n)) Yes

[Dolev, Israeli, Moran 90] O(d) - O(Δ log(n)) Yes

[Afek, Kutten, Yung 91] O(n2) - O(log(n)) Yes

[Ducourthial, Tixeuil 03] Θ(d) O(n(Max+d)n) O(log(n)) Yes

[Awerbuch, Kutten, Mansour, Patt-
Shamir, Varghese 93]

O(D) Ω(2D/2) O(log2(n)) Yes

[Johnen 97] Ω(d2) - O(log(Δ)) No

[Burman, Kutten 07] O(d) - O(log2(n)) Yes

[Datta, Larmore, Vemula 08] O(n) - O(log(n)) Yes

[Cournier, Devismes, Villain 09] Θ(d2+n) O(Δ n3) O(log(n)) No

[Cournier, Rovedakis, Villain 19] O(d2) O(n6) O(log(n)) Yes

Any

[Chen, Yu, Huang 91] O(n) Ω(2n) O(log(n)) Yes

[Kosowski, Kuszner 05] O(n) Θ(n2d) O(log(n)) Yes

[Cournier 09] Θ(n) Θ(n2) O(log(n)) Yes

DFS

[Collin, Dolev 94] O(dn Δ) - O(n log(Δ)) Yes

[Cournier, Devismes, Villain 05] O(n2) O(n3) O(log(n)) Yes

[Cournier, Devismes, Petit, Villain 06] O(n) O(n2) O(n log(n)) Yes

[Cournier, Devismes, Villain 09] O(n) O(Δ n3) O(log(Δ+n)) No

9

Our contribution

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Stabilizing BFS algorithm

(Question-Answer problem)

10Fully polynomial stabilizing BFS tree construction ESTATE 2022

11

Question-Answer Problem

: Authorized Processor (root r)

: Set of Requesting Processors (De)

Forest F of trees

r

Question-Answer Problem:

Deliver a permission to a requesting processor in an allowed tree

Allowed tree: tree rooted at a processor r

Fully polynomial stabilizing BFS tree construction ESTATE 2022

No permission

must be delivered!

Satisfies

1. Deliver a permission only to requesting processors in
allowed tree

2. If the closest requesting processor(s) of the allowed tree
is at height k, it will receive a permission in 2k rounds

3. And in polynomial number of steps

12

Question-Answer Algorithm

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Stabilizing BFS algorithm

(Spanning tree construction)

13Fully polynomial stabilizing BFS tree construction ESTATE 2022

14

Tree construction problem

: Authorized Processors r

A set of connected components F

r

Allowed tree: tree rooted at a processor r

Only Processor r in AP (Spanning tree)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Normal tree tree rooted at r
• Abnormal tree tree rooted at an abnormal root

• Normal root (processor r)

– No parent

– Zero level for r (r.L = 0)

– Status to C

• Abnormal root

– x has a parent

– Faulty level (x.L ≤ (x.P).L)

Forest (constraint on levels, i.e., p.L=(p.P).L+1))

15

Tree construction

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Detection of an abnormal root

• Propagation of Status E in abnormal trees

16

Tree construction

L=0

S=C

L=4

S=C

L=0

S=E

L=4

S=C

L=0

S=E

L=4

S=C

L=0

S=E

L=4

S=C

S=E

S=E

S=C

S=C

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Permission: allows connections of new processors to a
normal tree

• Ask of a permission

– Case 1: a neighbor q in an abnormal tree (q in Status E)

– Case 2: a neighbor q with high level (q.L > p.L+1)

17

Tree construction

q.S=E

Case 1: Case 2:

Sends a request

p.L=2

p.S=C

Sends a request

p.L=2

p.S=C

q.L=5

q.S=C

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Construction of a BFS

Connection to the neighbor:

– of lowest level

– with a permission (obtained via Algorithm 2)

18

Tree construction

Receives a permission

p.L=2

p.S=C

q.S=E

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Construction of a BFS

Connection to the neighbor:

– of lowest level

– with a permission (obtained via Algorithm 2)

19

Tree construction

q.S=E q.S=E

Receives a permission

x.L=1

x.S=C

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Receives a permission

p.L=2

p.S=C

Receives a permission

p.L=2

p.S=C

• Construction of a BFS

Connection to the neighbor:

– of lowest level

– with a permission (obtained via Algorithm 2)

20

Tree construction

q.S=E q.S=E

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Receives a permission

x.L=1

x.S=C

Receives a permission

p.L=2

p.S=C

Receives a permission

p.L=2

p.S=C

Complexity analysis

21Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Our algorithm constructs a BFS tree layer by layer,
each new layer uses permissions
– Processors closest to r at height k, receive a permission in

O(k) rounds (Algorithm 2)

– There are at most d layers in a BFS tree

O(d2) rounds to construct a BFS tree

– Processors in abnormal trees connect to BFS tree in O(d2)
(do not wait the end of propagation)

22

Rounds complexity

In O(d2) rounds a BFS tree is constructed

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Topological change:
– Status changes from C to E

– Connection to a new parent

• Only neighbors of an abnormal tree can join it
(permission is needed)
– At most 1 connection via the

same neighbor

23

Step complexity

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Topological change:
– Status changes from C to E

– Connection to a new parent

• Only neighbors of an abnormal tree can join it
(permission is needed)
– At most 1 connection via the

same neighbor

• Each processor produces at most 2∆+n topological
changes
– < 2∆ topological changes (while not in normal tree)

– < n topological changes (while in normal tree)

23

Step complexity

Fully polynomial stabilizing BFS tree construction ESTATE 2022

As a consequence the time step complexity is

O(∆mn3+mn4) ≤ O(n6) steps

24

Step complexity

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Conclusion

25

• Silent stabilizing algorithm to construct BFS tree in
O(d2) rounds and O(n6) steps

• Best comprise between round and step
complexities

• Questioning mechanism reduces step complexity
(avoids useless requests), but higher round
complexity

Perspectives

• Does there exist a stabilizing algorithm to construct a
spanning tree in O(d) rounds with a polynomial step
complexity ?

• Determine the problems which admit a fully
polynomial algorithm

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Thank you

26Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Conditional composition of Algorithm 1 and 2

• Legitimate configuration (Algorithm 1)

For every p:

– p.L=(p.P).L+1

– For every neighbor q, |p.L-q.L| ≤ 1

No new request is generated (Rem1)

• Silent Property

– Algorithm 1 is silent (levels are correct, no new connection)

– Algorithm 2 is silent (from Rem1)
27

Stabilizing BFS construction

Fully polynomial stabilizing BFS tree construction ESTATE 2022

28

Stabilizing BFS tree algorithm

• Stabilizing BFS tree algorithm obtained by
composition of Algorithm 1 and 2

• Use of a conditional composition (use of a Predicate)

• Algorithm 2 executed before Algorithm 1

• Algorithm 2 executed at p iff

• p belongs to a normal tree

• p belongs to a tree locally correct

• p has lower height than its neighbor q

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Conditional composition of 2 stabilizing algorithms

7

Algorithm outline

Handles processor attachments Delivers authorizations

Algorithm 1 Algorithm 2

Req

ASK

REP

WAITOUT

• Algorithm 1 monitors Algorithm 2 using variable Req

Fully polynomial stabilizing BFS tree construction ESTATE 2022

• Each topological change produces at most ∆ requests

At most 2∆m+mn requests to construct a BFS tree
– Since there are 2∆n+n2 topological changes (Algorithm 1)

In O(n3) steps every requesting processor receives a
permission
– At least a requesting processor (nearest to r) receive a

permission in O(n2) steps

Final step complexity

O(2∆m+mn) x O(n3) = O(∆mn3+mn4) ≤ O(n6) steps

28

Step complexity: Algorithm 2

(1)

(2)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

