The First Fully Polynomial
Stabilizing Algorithm for BFS
Tree Construction®

A. Cournier, S. Rovedakis, V. Villain

UNIVERSITE

de Picardie
]w(u v

e cham

* This work has been supported in part by the ANR project SPADES

Undirected and connected network

Anonymous network with a
distinguished root

Each processor can distinguish
its adjacent links

Local shared memory
Distributed unfair daemon

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Undirected and connected network

Anonymous network with a
distinguished root

Each processor can distinguish
its adjacent links

Local shared memory
Distributed unfair daemon

Construction of a BFS tree

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Stabilizing systems

* Self-stabilizing systems [Dijkstra, 1974]

Fault(s)

Config.

Arbitrary
BFS tree
>
\Convergence, Time
Time

 Asnap-stabilizing system, regardless of the initial
state of the processors, always behaves according to
its specification. [Bui et al, 1999]

Fully polynomial stabilizing BFS tree construction ESTATE 2022

State of the art

mmm

[Arora, Gouda 90] O(N?) O(log(n)) Yes
[Doley, Israeli, Moran 90] O(d) - O(A log(n)) Yes
[Afek, Kutten, Yung 91] 0(n?) - O(log(n)) Yes
[Ducourthial, Tixeuil 03] O(d) O(n(Max+d)") O(log(n)) Yes
BES [Awerbuch, Kutten, Mansour, Patt- O(D) Q(2°72) O(log?(n)) Yes
Shamir, Varghese 93]
[Johnen 97] Q(d?) - O(log(A)) No
[Burman, Kutten 07] O(d) - O(log?(n)) Yes
[Datta, Larmore, Vemula] O(n) Q(n'oe(n) O(log(n)) Yes
[Cournier, Devismes, Villain 09] O(d?+n) O(A n3) O(log(n)) No
[Chen, Yu, Huang 91] O(n) Q(2") O(log(n)) Yes
Any [Kosowski, Kuszner 05] O(n) 0O(n3d) O(log(n)) Yes
[Cournier 09] o(n) 0(n?) O(log(n)) Yes
[Collin, Dolev 94] O(dn A) - O(n log(A)) Yes
[Cournier, Devismes, Villain 05] 0(n?) 0O(n3) O(log(n)) Yes
PFS [Cournier, Devismes, Petit, Villain 06] O(n) 0(n?) O(n log(n)) Yes
[Cournier, Devismes, Villain 09] O(n) O(A n3) O(log(A+n)) No

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Definition [fully polynomial algorithm]: It is a stabilizing
algorithm with
e a round complexity O(d“) and,
* a step complexity O(n?)
with d the diameter and n the size of the network

Question:

Does there exists a fully polynomial stabilizing algorithm to
construct a spanning tree ?

* Polynomial step complexity

* with a round complexity O(d?)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Existing approaches

Goal:

Construction of a spanning tree satisfying fully
polynomial constraints

e Approach 1 [Huang, Chen 92]
— Classical strategy to construct a a spanning tree
* Root has a zero level
e Each processor hooks on to its neighbor of lowest level

* Problems
- The valid tree grows quickly in terms of rounds

- Invalid trees are deleted slowly
- New processors can join invalid trees

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Existing approaches

Goal:

Construction of a spanning tree satisfying fully
polynomial constraints

 Approach 2 ([KK 05] and [Cournier 09])

— Classical strategy to construct a a spanning tree

* Root has a zero level

e Each processor hooks on to its neighbor of lowest level
— Invalid trees are frozen

* Problems

- Invalid trees are deleted quickly (no processor can join)
- The valid tree grows slowly (wait for tree deletions)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

- A forest (constraint on levels)
- Avalid tree
- Invalid trees

- Duality

- The valid tree must grow quickly (in terms of rounds and
steps)

- Invalid trees must be deleted quickly too

—> Need to develop a mechanism to deal with this
duality (question-answer mechanism)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Our contribution

e S N ™S B BT

[Arora, Gouda 90] O(N?) O(log(n)) Yes
[Doley, Israeli, Moran 90] O(d) - O(A log(n)) Yes
[Afek, Kutten, Yung 91] 0(n?) - O(log(n)) Yes
[Ducourthial, Tixeuil 03] O(d) O(n(Max+d)") O(log(n)) Yes
[Awerbuch, Kutten, Mansour, Patt- O(D) Q(2°72) O(log?(n)) Yes

BFS Shamir, Varghese 93]

[Johnen 97] Q(d?) - O(log(A)) No
[Burman, Kutten 07] O(d) - O(log?(n)) Yes
[Datta, Larmore, Vemula 08] O(n) - O(log(n)) Yes
[Cournier, Devismes, Villain 09] O(d?+n) O(A n3) O(Iog(n)) No
[Cournier, Rovedakis, Villain 19] 0(d?) 0(n®) O(log(n)) Yes
[Chen, Yu, Huang 91] O(n) Q(2") O(log(n)) Yes
Any [Kosowski, Kuszner 05] 0o(n) 0O(n3d) O(log(n)) Yes
[Cournier 09] O(n) 0(n?) O(log(n)) Yes
[Collin, Dolev 94] O(dn A) - O(n log(A)) Yes
[Cournier, Devismes, Villain 05] 0(n?) 0o(n3) O(log(n)) Yes
OFS [Cournier, Devismes, Petit, Villain 06] O(n) 0o(n?) O(n log(n)) Yes
[Cournier, Devismes, Villain 09] O(n) O(A n3) O(log(A+n)) No

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Stabilizing BFS algorithm

(Question-Answer problem)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Question-Answer Problem

No permission

Forest F of trees must be delivered! \

. Authorized Processor (root r)

® : Set of Requesting Processors (De)

Allowed tree: tree rooted at a processor r

Question-Answer Problem:
Deliver a permission to a requesting processor in an allowed tree

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Question-Answer Algorithm

Satisfies

1. Deliver a permission only to requesting processors in
allowed tree

2. If the closest requesting processor(s) of the allowed tree
is at height k, it will receive a permission in 2k rounds

3. And in polynomial number of steps

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Stabilizing BFS algorithm

(Spanning tree construction)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Tree construction problem

A set of connected components F

® : Authorized Processors r

Allowed tree: tree rooted at a processor r
I:> Only Processor r in AP (Spanning tree)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Tree construction

* Normal root (processor r)
— No parent
— Zero level forr (r.L =0)
— Statusto C
* Abnormal root
— X has a parent
— Faulty level (x.L <(x.P).L)

Forest (constrainton levels,i.e., p.L=(p.P).L+1))

* Normal tree mm) tree rooted atr
« Abnormal tree B tree rooted at an abnormal root

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Tree construction

e Detection of an abnormal root

m ©

wmr

A
LA

* Propagation of Status E in abnormal trees

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Tree construction

* Permission: allows connections of new processors to a
normal tree

* Ask of a permission
— Case 1: a neighbor g in an abnormal tree (q in Status E)
— Case 2: a neighbor g with high level (g.L > p.L+1)

/ Sends arequest q.5=C Sends a request
p.L=2 7 pL=2
p.S=C p.S=C

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Tree construction

* Construction of a BFS
Connection to the neighbor:
— of lowest level
— with a permission (obtained via Algorithm 2)

/ Receives a permission
p.L=2
p.S=C

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Tree construction

* Construction of a BFS
Connection to the neighbor:
— of lowest level
— with a permission (obtained via Algorithm 2)

Receives a permission

x.L=1
X.S5=C
VY VY
k —
q.S=E -~ - q.S=E -~ -

Receives a permission / Receives a permission
p.L=2 p.L=2
p.S=C p.S=C

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Tree construction

 Construction of a BFS

Connection to the neighbor:
— of lowest level
— with a permission (obtained via Algorithm 2)

Receives a permission

x.L=1
X.S=C
7
&< —
q.S=E -~ - q.S=E -
Receives a permission Recelves a permission
p.L=2 p.L=2
p.S=C p.S=C

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Complexity analysis

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Rounds complexity

* Our algorithm constructs a BFS tree layer by layer,
each new layer uses permissions

— Processors closest to r at height k, receive a permission in
O(k) rounds (Algorithm 2)

— There are at most d layers in a BFS tree
|:> O(d?) rounds to construct a BFS tree

— Processors in abnormal trees connect to BFS tree in O(d?)
(do not wait the end of propagation)

—> In O(d?) rounds a BFS tree is constructed

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Step complexity

* Topological change:
— Status changes from Cto E
— Connection to a new parent

* Only neighbors of an abnormal tree can join it
(permission is needed)

— At most 1 connection via the «
same neighbor o

@

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Step complexity

* Topological change:
— Status changes from Cto E
— Connection to a new parent

* Only neighbors of an abnormal tree can join it
(permission is needed)

— At most 1 connection via the «
same neighbor o

@

* Each processor produces at most 2A+n topological
changes

— < 2A topological changes (while not in normal tree)
— < n topological changes (while in normal tree)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Step complexity

As a consequence the time step complexity is
O(Amn3+mn?) < O(n®) steps

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Conclusion

e Silent stabilizing algorithm to construct BFS tree in
O(d?) rounds and O(n®) steps
* Best comprise between round and step
complexities

* Questioning mechanism reduces step complexity
(avoids useless requests), but higher round
complexity

Perspectives

* Does there exist a stabilizing algorithm to construct a
spanning tree in O(d) rounds with a polynomial step
complexity ?

* Determine the problems which admit a fully
polynomial algorithm

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Thank you

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Stabilizing BFS construction

e Conditional composition of Algorithm 1 and 2

* Legitimate configuration (Algorithm 1)

For every p:

— p.L=(p.P).L+1

— For every neighbor g, |p.L-g.L| £1
—> No new request is generated (Rem1)

* Silent Property
— Algorithm 1 is silent (/evels are correct, no new connection)
— Algorithm 2 is silent (from Rem1)

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Stabilizing BFS tree algorithm

e Stabilizing BFS tree algorithm obtained by
composition of Algorithm 1 and 2

e Use of a conditional composition (use of a Predicate)
e Algorithm 2 executed before Algorithm 1
e Algorithm 2 executed at p iff
* p belongs to a normal tree

* p belongs to a tree locally correct
* p has lower height than its neighbor q

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Algorithm outline

e Conditional composition of 2 stabilizing algorithms

/ ASK \
Algorithm 1 [Algorithm 2
OuT WAIT
Handles processor attachments Delivers authorizations

e Algorithm 1 monitors Algorithm 2 using variable Req

Fully polynomial stabilizing BFS tree construction ESTATE 2022

Step complexity: Algorithm 2

* Each topological change produces at most A requests

(1) At most 2Am+mn requests to construct a BFS tree
— Since there are 2An+n? topological changes (Algorithm 1)

(2) In O(n3) steps every requesting processor receives a
permission

— At least a requesting processor (nearest to r) receive a
permission in O(n?) steps

Final step complexity
O(2Am+mn) x O(n3) = O(Amn3+mn?) < O(n®) steps

Fully polynomial stabilizing BFS tree construction ESTATE 2022

