Distributed Network Computing through the Lens of Algebraic Topology (DUCAT)

Pierre Fraigniaud

IRIF Université Paris Cité and CNRS

> DUCAT-ESTATE Workshop Cap Hornu, March 16-18, 2022

Shared Memory Model

Single Writer / Multiple Reader registers

Wait-Free Computing

Read/Write Interleaving

Assume n = 3

Read/Write Interleaving

French Grammar

- First Group: all verbs with infinitive form -er (but aller).
- Second group: all verbs with infinitive form -ir and gerundive form -issant.
- Third group: all the rest!

Snapshots and Immediate Snapshots

IMMEDIATE SNAPSHOTS

SNAPSHOTS

Immediate Snapshots

(Non-Immediate) Snapshots

{1}

- process 1
- $_{\bigcirc}$ process 2
- process 3

The Rest...

{1}

- process 1process 2
- process 3

System Configuration

Configuration $\sigma = \{p_1 \text{ in state } x_1, p_2 \text{ in state } x_2, p_3 \text{ in state } x_3\}$

One Round Starting from σ

Iterated Model

For every i = 1, 2, ... the *i*-th write of each process, as well as all the n - 1 reads performed after that write are performed in the *i*-th level of the memory.

Iterated Wait-Free Computing

Code of process $i \in \{1, ..., n\}$ with input x_i $V_i \leftarrow x_i$ For r = 1 to t do write (V_i) in register $M_r[i]$ for j = 1 to n do $v_i \leftarrow \text{read}(M_r[j])$ $V_i \leftarrow (v_1, v_2, \dots, v_n)$ decide $y_i = f(V_i)$

Simplicial Complex

- A (simplicial) complex *X* over a set *V* is a collection of non-empty subsets of *V* closed by inclusion
 (*σ* ∈ *X* and Ø ≠ *τ* ⊆ *σ*) ⇒ *τ* ∈ *X*
- Any set $\sigma \in \mathcal{K}$ is called a simplex.
- Any element of V that is in \mathcal{K} is called a vertex.
- Example: A graph G = (V, E) is the complex over V with simplices $V \cup E$

Protocol Complex

Protocol complex $\mathscr{P}^{(t)}$

Output Computation

Protocol complex $\mathscr{P}^{(t)}$

Output complex \mathcal{O}

A simplicial map from \mathscr{K} to \mathscr{K}' is a function $f: V(\mathscr{K}) \to V(\mathscr{K}')$ such that, for every $\sigma \in \mathcal{K}$, $f(\sigma) \in \mathcal{K}'$.

The decision map is a simplicial map from $\mathscr{P}^{(t)}$ to \mathscr{O} that is chromatic (it preserves the IDs of the processes), and agrees with Δ , i.e., $\forall \sigma \in \mathscr{S}$, $f(\mathscr{P}(\sigma)) \subseteq \Delta(\sigma).$

Wait-Free Solvability

Theorem [Herlihy, Shavit (1999)]

A task $(\mathscr{I}, \mathscr{O}, \Delta)$ is solvable wait-free if and only if there is a simplicial map $f : \mathscr{P} \to \mathscr{O}$ from a chromatic subdivision \mathscr{P} of \mathscr{I} to \mathscr{O} that agrees with Δ .

Topology

Impossibility of Consensus

Beyond Wait-Free

- Other kinds of adversarial models (e.g., *t*-resilient)
- Stronger forms of failures (e.g., Byzantine)
- Message-passing

DUCAT: Extension of the theory to network computing

Protocol Complex

Example 1

 $\left(\right)$

Protocol Complex

Example 2

Consensus Solvability 1

Consensus Solvability 2

LOCAL Model

LOCAL model: synchronous rounds in a fixed graph G, no failures

Theorem For any $k \ge 1$, *k*-set-agreement in network *G* requires at least *r* rounds, where *r* is the smallest integer such that $\gamma(G^r) \le k$.

Dynamic Networks

DYNAMIC networks: synchronous, no failure; A sequence of labeled digraphs $\mathscr{G} = (G_t)_{t \ge 1}$

Corollary 2 For any $k \ge 1$, *k*-set-agreement in dynamic network $\mathscr{G} = (G_t)_{t\ge 1}$ requires at least *r* rounds, where *r* is the smallest integer such that \mathscr{G} has *temporal* domination number $\le k$

DUCAT

Distributed Network Computing through the Lens of Combinatorial Topology

- IRIF (CNRS and Université de Paris) Pierre Fraigniaud
- LIS (CNRS and Aix-Marseille University) Jérémie Chalopin

Project starts: March 15, 2021

Context and Objectives

- Algorithms design and analysis: establishing lower bounds or impossibility results is extremely difficult.
- Combinatorial topology: extensively used in the context of crash-prone asynchronous shared-memory (or messagepassing).
- Objective of DUCAT: Extending these results to other models
 - Network computing
 - Dynamic networks
 - Beyond full-information protocols

Expected Outcomes

- 1. Complexity results: New lower bounds, but also new upper bounds
- 2. Better understanding of the nature of distributed computing
- 3. Unified framework for distributed computing

