Distributed Network Computing through the Lens of Algebraic Topology (DUCAT)

Pierre Fraigniaud

IRIF
Université Paris Cité and CNRS

Shared Memory Model

Single Writer / Multiple Reader registers

Wait-Free Computing

Code of process $i \in\{1, \ldots, n\}$ with input x_{i}

$$
\begin{aligned}
& V_{i} \leftarrow x_{i} \\
& \text { For } r=1 \text { to } t \text { do } \\
& \begin{array}{c}
\text { Atomic } \\
\text { operations } \\
\\
\text { write } \\
\left(V_{i}\right) \text { in register } M[i]
\end{array} \\
& \text { for } j=1 \text { to } n \text { do } v_{j} \leftarrow \operatorname{read}(M[j]) \\
& \text { Full } \\
& \text { Information } \\
& \longrightarrow V_{i} \leftarrow\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& \text { protocol }
\end{aligned}
$$

Read/Write Interleaving

Assume $n=3$

Read/Write Interleaving

- process 1
- process 2
- process 3

French Grammar

- First Group: all verbs with infinitive form -er (but aller).
- Second group: all verbs with infinitive form -ir and gerundive form -issant.
- Third group: all the rest!

Snapshots

and Immediate Snapshots

IMMEDIATE SNAPSHOTS

SNAPSHOTS

Immediate Snapshots

- process 1
- process 2
- process 3

(Non-Immediate) Snapshots

- process 1
- process 2
- process 3

The Rest...

- process 1
- process 2
- process 3

\{3\}

System Configuration

Configuration $\sigma=\left\{p_{1}\right.$ in state x_{1}, p_{2} in state x_{2}, p_{3} in state $\left.x_{3}\right\}$

- process 1
- process 2
- process 3

One Round Starting from σ

Iterated Model

For every $i=1,2, \ldots$ the i-th write of each process, as well as all the $n-1$ reads performed after that write are performed in the \boldsymbol{i}-th level of the memory.

Iterated Wait-Free Computing

Code of process $i \in\{1, \ldots, n\}$ with input x_{i}

$$
\begin{aligned}
& V_{i} \leftarrow x_{i} \\
& \text { For } r=1 \text { to } t \text { do } \\
& \quad \text { write }\left(V_{i}\right) \text { in register } M_{r}[i] \\
& \quad \text { for } j=1 \text { to } n \text { do } v_{j} \leftarrow \operatorname{read}\left(M_{r}[j]\right) \\
& \qquad V_{i} \leftarrow\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& \text { decide } y_{i}=f\left(V_{i}\right)
\end{aligned}
$$

Multi-Round Computation with Immediate Snapshots

Simplicial Complex

- A (simplicial) complex \mathscr{K} over a set V is a collection of non-empty subsets of V closed by inclusion

$$
(\sigma \in \mathscr{K} \text { and } \emptyset \neq \tau \subseteq \sigma) \Longrightarrow \tau \in \mathscr{K}
$$

- Any set $\sigma \in \mathscr{K}$ is called a simplex.
- Any element of V that is in \mathscr{K} is called a vertex.
- Example: A graph $G=(V, E)$ is the complex over V with simplices $V \cup E$

Task $\Pi=(\mathscr{F}, \mathscr{O}, \Delta)$

Protocol Complex

Input complex \mathscr{J}

Protocol complex $\mathscr{P}^{(t)}$

Output Computation

Protocol complex $\mathscr{P}^{(t)}$

Output complex \mathcal{O}

A simplicial map from \mathscr{K} to \mathscr{K}^{\prime} is a function $f: V(\mathscr{K}) \rightarrow V\left(\mathscr{K}^{\prime}\right)$ such that, for every $\sigma \in \mathscr{K}, f(\sigma) \in \mathscr{K}^{\prime}$.

The decision map is a simplicial map from $\mathscr{P}^{(t)}$ to \mathcal{O} that is chromatic (it preserves the IDs of the processes), and agrees with Δ, i.e., $\forall \sigma \in \mathscr{F}$, $f(\mathscr{P}(\sigma)) \subseteq \Delta(\sigma)$.

Wait-Free Solvability

Theorem [Herlihy, Shavit (1999)]

A task $(\mathscr{F}, \mathcal{O}, \Delta)$ is solvable wait-free if and only if there is a simplicial map $f: \mathscr{P} \rightarrow \mathcal{O}$ from a chromatic subdivision \mathscr{P} of \mathscr{J} to \mathcal{O} that agrees with Δ.

Topology

Impossibility of Consensus

There are no simplicial maps

$$
f: \mathscr{P}^{(t)} \rightarrow \mathcal{O}
$$

that agree with Δ

Output complex \mathcal{O}

Beyond Wait-Free

- Other kinds of adversarial models (e.g., t-resilient)
- Stronger forms of failures (e.g., Byzantine)
- Message-passing

DUCAT: Extension of the theory to network computing

Protocol Complex

Example 1

Input
complex

Protocol
complex for C_{3}

\bigcirc

Protocol Complex

Example 2

Input
complex

Protocol
complex for S_{3}

\bigcirc

Consensus Solvability 1

Consensus Solvability 2

Path-Connectivity

LOCAL Model

LOCAL model: synchronous rounds in a fixed graph G, no failures

Theorem For any $k \geq 1$, k-set-agreement in network G requires at least r rounds, where r is the smallest integer such that $\gamma\left(G^{r}\right) \leq k$.

Dynamic Networks

DYNAMIC networks: synchronous, no failure; A sequence of labeled digraphs $\mathscr{G}=\left(G_{t}\right)_{t \geq 1}$

Round 1: G_{1}

Round 2: G_{2}

Corollary 2 For any $k \geq 1$, k-set-agreement in dynamic network $\mathscr{G}=\left(G_{t}\right)_{t \geq 1}$ requires at least r rounds, where r is the smallest integer such that \mathscr{G} has temporal domination number $\leq k$

DUCAT

Distributed Network Computing through the Lens of Combinatorial Topology

- IRIF (CNRS and Université de Paris) - Pierre Fraigniaud
- LIS (CNRS and Aix-Marseille University) - Jérémie Chalopin

Project starts: March 15, 2021

Context and Objectives

- Algorithms design and analysis: establishing lower bounds or impossibility results is extremely difficult.
- Combinatorial topology: extensively used in the context of crash-prone asynchronous shared-memory (or messagepassing).
- Objective of DUCAT: Extending these results to other models
- Network computing
- Dynamic networks
- Beyond full-information protocols

Expected Outcomes

1. Complexity results: New lower bounds, but also new upper bounds
2. Better understanding of the nature of distributed computing
3. Unified framework for distributed computing
