Bamboo Garden Trimming Problem

Ralf Klasing, CNRS - LaBRI - Univ. of Bordeaux

Joint work with Leszek A Gąsieniec, Christos Levcopoulos,

Andrzej Lingas, Jie Min, and Tomasz Radzik

Bamboo Garden Trimming

• Given a set *B* of *n* bamboos b_1 , b_2 ,..., b_n with the respective (daily) growth rates $h_1 \ge h_2 \ge \cdots \ge h_n$, where the initial heights of all bamboos are set to zero.

Discrete BGT

 During each round/day every bamboo b_i grows an extra height h_i and on the conclusion of the round the height of exactly one bamboo is reduced to zero.

- It requires time $t_{ij} > 0$ for the gardener to move from b_i to b_j and the travel distances are symmetric.
- When attended the bamboos are cut instantly.
- Note: Discrete BGT is a special case of Continuous BGT when $t_{ij} = 1$ for all i, j
 - Metric TSP is a special case of Continuous BGT when $h_i = h_j$ for all i, j
- The **main task** in **BGT Problem** is to find a perpetual schedule of cuts with the goal of keeping the height of the bamboo garden as low as possible.

The main results

Algorithms	Approximation ratio	Time complexity in #steps	
Discrete BGT			
Reduce-Max (Greedy approach)	$O(\log_2 n)$	$O(n \log n)$ + each round in $O(\log^2 n)$	
Reduce-Fastest	4	O(n log n) + each round in O(log n)	
Reduce-to-Pinwheel	2 1+δ, balanced instances	O(n) + each round in $O(1)O(n \log n) + each round in O(\log n)$	
Continuous BGT			
Algorithm 1	h_1	Generation of MST $O(n^2)$	
	$O(\frac{1}{h_n})$	+ each round in O(1)	
Algorithm 2	$O(\log_2 \frac{h_1}{h_n})$	Partition $O(n)$ + Generation of MST $O(n^2)$	
Algorithm 3	$O(\log_2 n)$	Partition $O(n)$ + Generation of MST $O(n^2)$	

Note: We do not know whether BGT is tractable, similarly to closely related Pinwheel scheduling studied for years

Research context

• The Art Gallery Problem

- K-watchman Problem
- Boundary (Fence) Patrolling Problem
- Cloud computing
 - Symptom discovery, origin of our problem
- Pinwheel problem (to be discussed later)

Discrete BGT: Important lower bound H

• Max height cannot be kept below $H = h_1 + h_2 + \cdots + h_n$, i.e., a single **round contribution** [The argument is based on the total height which keeps increasing when the cuts are < H.]

Discrete BGT

• Online: memoryless, flexible (fault-tolerant, self-stabilising), harder to analyse

• Approximation ratio μ defined as *Maxheight / H*

• Until recently $\mu = O(\log n)$ for Reduce-Max and $\mu = O(1)$ for Reduce-Fastest

Discrete BGT

• Offline: less flexible (vulnerable to changes), better (more accurate) approximation μ

• Strong relation to the **Pinwheel Problem** (classical scheduling problem)

frequency density

Density of the instance **D**=1/2+1/4+1/7=**25/28**

Basic facts: D>1, not schedulable D \leq 1/2, easy to schedule D \leq 3/4, sometimes hard to schedule D=1, easy to schedule if all fs are powers of 2 D>5/6, not schedulable for, e.g., f=2,3, large int. N

Discrete BGT (μ = 1+ δ , balanced instances)

• <u>Idea</u>:

- derive an appropriate powers-of two instance by gradual transformations of the Pinwheel instances
- start with greater granularity of frequencies than powers of two

<u>Observation1</u>:

- Given instance V of Pinwheel with two equal frequencies $f_i = f_j = 2f$ (f integer).
- If the instance V' obtained from V by replacing these two frequencies with one frequency f is feasible, then so is instance V.

<u>Observation 2</u>:

- Given instance V with m equal frequencies $f_{i,1} = f_{i,2} = \dots = f_{i,m} = mf$ (f integer).
- If the instance V' obtained from V by replacing these m frequencies with one frequency f is feasible, then so is instance V.

- Differences to discrete BGT:
 - Bamboos are located in a (geo)metric space of diameter *D*.
 - For any pair of bamboos b_i and b_j, the gardener needs time t_{ij} > 0 to travel from b_i to b_j and the travel distances are symmetric.
 - Each bamboo is cut instantly.
- Two natural lower bounds:
 - $D h_{max}(V)$
 - $h_{min}(V) MST(V)$

- Algorithm 1
 - Calculate a minimum spanning tree T of the bamboos.
 - Repeatedly perform an Euler-tour traversal of T.

• Upper bound: O(*h_{max}(V*) *MST(V*))

- Algorithm 1
 - Calculate a minimum spanning tree T of the bamboos.
 - Repeatedly perform an Euler-tour traversal of T.
- Upper bound: O(*h_{max}(V*) *MST(V*))
- Approximation ratio: $O(h_{max}(V) / h_{min}(V))$

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - V₁: $h_{min} \le h_i < 2h_{min}$
 - V₂: $2h_{min} \le h_i < 4h_{min}$
 - ... • At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - V₁: $h_{min} \le h_i < 2h_{min}$
 - V₂: $2h_{min} \le h_i < 4h_{min}$
 - ... • At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - $V_1: h_{min} \le h_i < 2h_{min}$
 - V₂: $2h_{min} \le h_i < 4h_{min}$
 - ... • At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - $V_1: h_{min} \le h_i < 2h_{min}$
 - V₂: $2h_{min} \le h_i < 4h_{min}$
 - ... • At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - $V_1: h_{min} \le h_i < 2h_{min}$
 - V₂: $2h_{min} \le h_i < 4h_{min}$
 - ... • At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - V₁: $h_{min} \le h_i < 2h_{min}$
 - V₂: $2h_{min} \le h_i < 4h_{min}$
 - At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - V₁: $h_{min} \le h_i < 2h_{min}$
 - V_2 : $2h_{min} \le h_i < 4h_{min}$
 - ... • At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.

- Algorithm 2
 - Partition bamboos into sets according to their growth rates.
 - V₁: $h_{min} \le h_i < 2h_{min}$
 - V_2 : $2h_{min} \le h_i < 4h_{min}$
 - ... • At most $\left[\log_2 \frac{h_{max}}{h_{min}}\right]$ sets
 - Calculate a minimum spanning tree T of the bamboo sets.
- Upper bound: $O(\log_2 \frac{h_{max}}{h_{min}} h_{max}(V_i) \max\{D, MST(V_i)\})$
- Approximation ratio: $O(\log_2 \frac{h_{max}}{h_{min}})$

- Algorithm 3
 - Different partitions.

•
$$V_0$$
: $h_i \leq n^{-2}$

- V_1 : $n^{-2} < h_i \le 2n^{-2}$
- V_2 : $2n^{-2} < h_i \le 4n^{-2}$
- ...
- At most $[2 \log_2 n]$ sets

- Algorithm 3
 - Different partitions.

•
$$V_0: h_i \le n^{-2}$$

• $V_1: n^{-2} < h_i \le 2n^{-2}$

• V₂:
$$2n^{-2} < h_i \le 4n^{-2}$$

- ...
- At most $\lceil 2 \log_2 n \rceil$ sets
- Upper bound: $O(\log_2 n h_{max}(V_i)\max\{D, MST(V_i)\})$

2

• Upper bound of V₀: $O\left(\frac{1}{n}D\log_2 n\right) = O(h_{max}D\log_2 n)$

• Approximation ratio: $O(\log_2 n)$

The main results

Algorithms	Approximation ratio	Time complexity in #steps	
Discrete BGT			
Reduce-Max (Greedy approach)	$O(\log_2 n)$	$O(n \log n) + each round in O(log2 n)$	
Reduce-Fastest	4	$O(n \log n) + each round in O(log n)$	
Reduce-to-Pinwheel	2 1+ δ , balanced instances	O(n) + each round in $O(1)O(n \log n) + each round in O(\log n)$	
Continuous BGT			
Algorithm 1	$O(\frac{h_1}{h_n})$	Generation of MST <i>O(n²)</i> + each round in <i>O(1)</i>	
Algorithm 2	$O(\log_2 \frac{h_1}{h_n})$	Partition $O(n)$ + Generation of MST $O(n^2)$	
Algorithm 3	$O(\log_2 n)$	Partition $O(n)$ + Generation of MST $O(n^2)$	

Note: We do not know whether BGT is tractable, similarly to closely related Pinwheel scheduling studied for years

Open Questions (Discrete BGT)

- Exact approximation ratios of *Reduce-Max* and *Reduce-Fastest* <u>Bilò et al. (2021)</u>:
 - first constant upper bound of 9 for *Reduce-Max*
 - improved upper bound of \approx 2.62 for *Reduce-Fastest*
 - Simple examples: approximation ratios cannot be better than 2
- Improving the approximation ratio for arbitrary instances
 <u>Van Ee (2021)</u>:
 - 2-approximation improved to 12/7-approximation

Open Questions (Discrete BGT)

 Designing efficient algorithms, easy to implement, avoiding reduction to Pinwheel

<u>Bilò et al. (2021)</u>:

- 2-approximation
- $O(n \log n)$ + each round in $O(\log n)$ amortized time
- Lower bounds on approximability
- Show hardness of discrete BGT problem + Pinwheel problem
- Improving the approximation ratio for balanced instances

Open Questions (Continuous BGT)

- Does Algorithm 3 have approximation ratio *o(log n)*?
- Is there any other algorithm with approximation ratio o(log n)?
 - discrete BGT and metric TSP (as two special cases of continuous BGT) are both approximable with approximation ratio O(1).
 - It is NP-hard to approximate continuous BGT with a factor better than 123/122 (as Metric TSP is a subproblem of continuous BGT).
 - approximation ratio for geometric / Euclidean BGT instances?
- Multiple gardeners