Bamboo Garden Trimming Problem

Ralf Klasing, CNRS - LaBRI - Univ. of Bordeaux

Joint work with Leszek A Gąsieniec, Christos Levcopoulos,
Andrzej Lingas, Jie Min, and Tomasz Radzik

Bamboo Garden Trimming

- Given a set B of n bamboos $b_{1}, b_{2}, \ldots, b_{n}$ with the respective (daily) growth rates $h_{1} \geq h_{2} \geq \cdots \geq h_{n}$, where the initial heights of all bamboos are set to zero.

- Discrete BGT

- During each round/day every bamboo b_{i} grows an extra height h_{i} and on the conclusion of the round the height of exactly one bamboo is reduced to zero.

- Continuous BGT

- It requires time $\mathrm{t}_{i j}>0$ for the gardener to move from b_{i} to b_{j} and the travel distances are symmetric.
- When attended the bamboos are cut instantly.
- Note: - Discrete BGT is a special case of Continuous BGT when $t_{i j}=1$ for all i, j
- Metric TSP is a special case of Continuous BGT when $h_{i}=h_{j}$ for all i, j
- The main task in BGT Problem is to find a perpetual schedule of cuts with the goal of keeping the height of the bamboo garden as low as possible.

Example

The main results

Algorithms

Discrete BGT

Reduce-Max (Greedy approach)	$O\left(\log _{2} n\right)$	$O(n \log n)+$ each round in $O\left(\log ^{2} n\right)$
Reduce-Fastest	4	$O(n \log n)+$ each round in $O(\log n)$
Reduce-to-Pinwheel	$1+\delta$, balanced instances	$O(n \log n)+$ each round in $O(1)$

Continuous BGT

Algorithm 1	$0\left(\frac{h_{1}}{h_{n}}\right)$	Generation of MST $O\left(n^{2}\right)$ + each round in $O(1)$
Algorithm 2	$O\left(\log _{2} \frac{h_{1}}{h_{n}}\right)$	Partition $O(n)+$ Generation of MST $O\left(n^{2}\right)$
Algorithm 3	$0\left(\log _{2} n\right)$	Partition $O(n)+$ Generation of MST $O\left(n^{2}\right)$

Note: We do not know whether BGT is tractable, similarly to closely related Pinwheel scheduling studied for years

Research context

- The Art Gallery Problem

- K-watchman Problem
- Boundary (Fence) Patrolling Problem
- Cloud computing
- Symptom discovery, origin of our problem
- Pinwheel problem (to be discussed later)

Discrete BGT: Important lower bound H

- Max height cannot be kept below $H=h_{1}+h_{2}+\cdots+h_{n}$, i.e., a single round contribution [The argument is based on the total height which keeps increasing when the cuts are < H.]

Discrete BGT

- Online: memoryless, flexible (fault-tolerant, self-stabilising), harder to analyse
- Reduce-Max (Greedy 1)

- Reduce-Fastest (Greedy 2)

Max height
$\leq 4 H$

Preprocessing in $\mathrm{O}(n \log n)$
Each round in $\mathrm{O}(\log n)$ steps

- Approximation ratio μ defined as Maxheight / H
- Until recently $\mu=O(\log n)$ for Reduce-Max and $\mu=O(1)$ for Reduce-Fastest

Discrete BGT

- Offline: less flexible (vulnerable to changes), better (more accurate) approximation μ
- Strong relation to the Pinwheel Problem (classical scheduling problem)

Density of the instance D $=1 / 2+1 / 4+1 / 7=\mathbf{2 5} / \mathbf{2 8}$

Basic facts:

D>1, not schedulable $D \leq 1 / 2$, easy to schedule $D \leq 3 / 4$, sometimes hard to schedule $D=1$, easy to schedule if all fs are powers of 2 $\mathrm{D}>5 / 6$, not schedulable for, e.g., $f=2,3$, large int. N

Discrete BGT

- Reduction to Pinwheel with density ≤ 1

Comment:

By adopting $\delta=1$ one can allow all frequencies f to be powers of 2 . l.e., $\boldsymbol{\mu}=2$ approx. is always feasible

Discrete BGT ($\mu=1+\delta$, balanced instances)

- Idea:
- derive an appropriate powers-of two instance by gradual transformations of the Pinwheel instances
- start with greater granularity of frequencies than powers of two

- Observation1:

- Given instance V of Pinwheel with two equal frequencies $f_{i}=f_{j}=2 f$ (f integer).
- If the instance V^{\prime} obtained from V by replacing these two frequencies with one frequency f is feasible, then so is instance V.

- Observation 2:

- Given instance V with m equal frequencies $f_{i, 1}=f_{i, 2}=\ldots=f_{i, m}=m f$ (f integer).
- If the instance V^{\prime} obtained from V by replacing these m frequencies with one frequency f is feasible, then so is instance V.

Continuous BGT

- Differences to discrete BGT:
- Bamboos are located in a (geo)metric space of diameter D.
- For any pair of bamboos b_{i} and b_{j}, the gardener

Continuous BGT

- Algorithm 1
- Calculate a minimum spanning tree T of the bamboos.
- Repeatedly perform an Euler-tour traversal of T.
- Upper bound: $\mathrm{O}\left(h_{\max }(V)\right.$ MST(V))

Continuous BGT

- Algorithm 1
- Calculate a minimum spanning tree T of the bamboos.
- Repeatedly perform an Euler-tour traversal of T.
- Upper bound: $\mathrm{O}\left(h_{\max }(V) M S T(V)\right)$

- Approximation ratio: $\mathrm{O}\left(h_{\max }(\mathrm{V}) / h_{\min }(\mathrm{V})\right)$

Continuous BGT

- Algorithm 2
- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $\mathrm{V}_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.

Continuous BGT

- Algorithm 2
- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $\mathrm{V}_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.

Continuous BGT

- Algorithm 2
- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $\mathrm{V}_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.

Continuous BGT

- Algorithm 2
- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $\mathrm{V}_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.

Continuous BGT

- Algorithm 2
- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $\mathrm{V}_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.

Continuous BGT

- Algorithm 2
- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $\mathrm{V}_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.

Continuous BGT

- Algorithm 2
- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $V_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.

Continuous BGT

- Algorithm 2

- Partition bamboos into sets according to their growth rates.
- $\mathrm{V}_{1}: h_{\text {min }} \leq h_{i}<2 h_{\text {min }}$
- $\mathrm{V}_{2}: 2 h_{\text {min }} \leq h_{i}<4 h_{\text {min }}$
- At most $\left\lceil\log _{2} \frac{h_{\max }}{h_{\min }}\right\rceil$ sets
- Calculate a minimum spanning tree T of the bamboo sets.
- Upper bound: $\mathrm{O}\left(\log _{2} \frac{h_{\text {max }}}{h_{\text {min }}} h_{\max }\left(V_{i}\right) \max \left\{D, M S T\left(V_{i}\right)\right\}\right)$

- Approximation ratio: $O\left(\log _{2} \frac{h_{\text {max }}}{h_{\text {min }}}\right)$

Continuous BGT

- Algorithm 3
- Different partitions.
- $\mathrm{V}_{0}: h_{i} \leq n^{-2}$
- $\mathrm{V}_{1}: n^{-2}<h_{i} \leq 2 n^{-2}$
- $V_{2}: 2 n^{-2}<h_{i} \leq 4 n^{-2}$
-...
- At most $\left\lceil 2 \log _{2} n\right\rceil$ sets

Continuous BGT

- Algorithm 3
- Different partitions.
- $V_{0}: h_{i} \leq n^{-2}$
- $\mathrm{V}_{1}: n^{-2}<h_{i} \leq 2 n^{-2}$
- $\mathrm{V}_{2}: 2 n^{-2}<h_{i} \leq 4 n^{-2}$
-...
- At most $\left\lceil 2 \log _{2} n\right\rceil$ sets
- Upper bound: $\mathrm{O}\left(\log _{2} n h_{\max }\left(V_{i}\right) \max \left\{D, \operatorname{MST}\left(V_{i}\right)\right\}\right)$
- Upper bound of $\mathrm{V}_{0}: \mathrm{O}\left(\frac{1}{n} \mathrm{D} \log _{2} n\right)=\mathrm{O}\left(h_{\max } \mathrm{D} \log _{2} n\right)$
- Approximation ratio: $O\left(\log _{2} n\right)$

The main results

Algorithms

Discrete BGT

Reduce-Max
(Greedy approach)
Reduce-Fastest
Reduce-to-Pinwhee
0
$O(n \log n)+$ each round in $O(\log n)$
$O(n)+$ each round in $O(1)$
$1+\delta$, balanced instances $O(n \log n)+$ each round in $O(\log n)$

Continuous BGT

\(\left.$$
\begin{array}{|l|c|c|}\hline \text { Algorithm 1 } & O\left(\frac{h_{1}}{h_{n}}\right) & \begin{array}{c}\text { Generation of MST } O\left(n^{2}\right) \\
+ \text { each round in } O(1)\end{array} \\
\hline \text { Algorithm 2 } & O\left(\log _{2} \frac{h_{1}}{h_{n}}\right) & O\left(\log _{2} n\right)\end{array}
$$ \begin{array}{c}Partition O(n)+

Generation of MST O\left(n^{2}\right)\end{array}\right]\)| Partition $O(n)+$ |
| :---: |
| Algorithm 3 |

Note: We do not know whether BGT is tractable, similarly to closely related Pinwheel scheduling studied for years

Open Questions (Discrete BGT)

- Exact approximation ratios of Reduce-Max and Reduce-Fastest

Bilò et al. (2021):

- first constant upper bound of 9 for Reduce-Max
- improved upper bound of ≈ 2.62 for Reduce-Fastest

Simple examples: approximation ratios cannot be better than 2

- Improving the approximation ratio for arbitrary instances

Van Ee (2021):

- 2-approximation improved to 12/7-approximation

Open Questions (Discrete BGT)

- Designing efficient algorithms, easy to implement, avoiding reduction to Pinwheel

Bilò et al. (2021):

- 2-approximation
$-\mathrm{O}(n \log n)+$ each round in $\mathrm{O}(\log n)$ amortized time
- Lower bounds on approximability
- Show hardness of discrete BGT problem + Pinwheel problem
- Improving the approximation ratio for balanced instances

Open Questions (Continuous BGT)

- Does Algorithm 3 have approximation ratio o(log n)?
- Is there any other algorithm with approximation ratio o(log n)?
- discrete BGT and metric TSP (as two special cases of continuous BGT) are both approximable with approximation ratio $\mathrm{O}(1)$.
- It is NP-hard to approximate continuous BGT with a factor better than 123/122 (as Metric TSP is a subproblem of continuous BGT).
- approximation ratio for geometric / Euclidean BGT instances?
- Multiple gardeners

