Fault-tolerant coloring of the asynchronous cycle

Pierre Fraigniaud Patrick Lambein-Monette Mikaël Rabie

IRIF, Université Paris Cité

DUCAT + Estate meeting
18 March 2022

Setup

Takeaway

Contributions

- define the asynchronous k-coloring problem for asynchronous networks
- propose a wait-free algorithm for any ($n \geqslant 3$)-nodes cycle C_{n}
- using a 6-color palette
\downarrow running in $\mathrm{O}\left(\log ^{*} n\right)$ (asynchronous) rounds

Unifies

> synchronous graph k-coloring

- LOCAL model
$>\leadsto \Omega\left(\log ^{*} n\right)$ temporal lower bound
- asynchronous k-renaming
- immediate snapshot shared-memory model
$>\leadsto$ coloring C_{3} requires $(k \geqslant 5)$ colors

Model

async-LOCAL

$>n$ asynchronous processes p_{1}, \ldots, p_{n}
> connected graph $G=(V:=[n], E)$
$>$ schedule $\sigma=\sigma(1), \sigma(2), \ldots \in \Sigma \subseteq 2^{V}$
$>i \in \sigma(t) \Longleftrightarrow p_{i}$ activated at t :

1. writes a value
2. reads values of $p_{j}, j \sim_{G} i$
3. privately computes a next state

Within one step t

1. first activated process all write
2. then activated process all read

- if $i \sim j$ and $i, j \in \sigma(t)$, then i reads j 's step t value

Problem

async k-coloring
For a graph $G=(V, E)$ and
scheduler $\Sigma \subseteq V^{\mathbb{N}}$.
$>$ uniform termination $\exists B$: $|\sigma|_{i} \geqslant B \Longrightarrow p_{i}$ outputs $c_{i} \neq \perp$
> validity if $p_{i} \sim p_{j}$ both output, then $c_{i} \neq c_{j}$
$\vee k$-palette $c_{i}=\perp \vee c_{i} \in\{1, \ldots, k\}$
Assuming initial unique identifiers $\left(X_{u}\right)_{u \in V}$.

Definition (wait-free)

An algorithm solves async-k-coloring wait-free over the graph G if it solves it for the complete scheduler $\Sigma=2^{V(G) \times \mathbb{N}}$.
... also for a graph class \mathcal{G} :

- e.g., cycles $C=\left\{C_{n}: n \geqslant 3\right\}$
> e.g., cliques $\mathcal{K}=\left\{K_{n}: n \geqslant 2\right\}$
\leadsto round complexity (\# of activations before a process returns)

Takeaway

Contributions

define the asynchronous k-coloring problem for asynchronous networks

- propose a wait-free algorithm for any ($n \geqslant 3$)-nodes cycle C_{n}
- using a 6-color palette
\downarrow running in $\mathrm{O}\left(\log ^{*} n\right)$ (asynchronous) rounds

Related works

The LOCAL model

LOCAL

- n nodes p_{1}, \ldots, p_{n} with unique identifiers X_{1}, \ldots, X_{n}
- connected graph $G=(V=[n], E)$
- in each round $t \geqslant 1$, every node p_{i} :

1. sends a message to its neighbors
2. receives each neighbor's round t message
3. privately computes a next state

- all nodes run for T rounds, then output
- What can be computed locally

$$
(\equiv T=\mathrm{o}(n))
$$

The k-coloring problem

graph k-coloring

For a graph $G=(V, E)$

- termination every node p_{i} outputs some color c_{i}
\vee validity if $i \sim j$, then $c_{i} \neq c_{j}$
$\triangleright k$-palette $c_{i} \in\{1, \ldots, k\}$
typically, $k=\Delta+1, \Delta:=\operatorname{deg}(G)$

Fundamental results on C

- 2-coloring non-local
- 3 -coloring C_{n} requires $1 / 2 \log ^{*} n+\mathrm{O}(1)$ rounds (Linial 92)
- 3-coloring C_{n} can be solved in $1 / 2 \log ^{*} n+\mathrm{O}(1)$ rounds (Cole+ 86)

Cole and Vishkin's algorithm

Algorithm 1:3-coloring, code for p_{i}

1 Input: $X_{i} \in \operatorname{Poly}(n)$, unique identifier
2 for $T=\Theta\left(\log ^{*} n\right)$ rounds do
$3 \quad$ write $\left(X_{i}\right)$ and read $\left(X_{i-1}, X_{i+1}\right)$ $X_{i} \leftarrow f\left(X_{i}, X_{i+1}\right)$
$5 \triangleright$ Here $X_{i} \leqslant 5$
6 for $k \in(5,4,3)$ do
$7 \quad$ write $\left(X_{i}\right)$ and read $\left(X_{i-1}, X_{i+1}\right)$
8 if $X_{i}=k$ then $X_{i} \leftarrow \min \mathbb{N} \backslash\left\{X_{i-1}, X_{i+1}\right\}$

9 return $\left(X_{i}\right)$

$$
\begin{gathered}
f(x, y)=2 \ell+x_{\ell}, \quad \ell:=\min \left\{i: x_{i} \neq y_{i}\right\} \\
x=\sum_{i \geqslant 0} 2^{i} x_{i}, \quad y=\sum_{i \geqslant 0} 2^{i} y_{i}
\end{gathered}
$$

- each application of f logarithmically reduces $\max \left|X_{i}\right| \ldots$
- ... as long as $X_{i} \geqslant 6$
- final phase in $\mathrm{O}(1)$

The IS (immediate snapshot) model

immediate snapshot

$\downarrow n$ asynchronous processes p_{1}, \ldots, p_{n}

- shared-memory array M
$>$ schedule $\sigma(1), \sigma(2), \ldots \subseteq[n]$
$\vee i \in \sigma(t) \Longleftrightarrow p_{i}$ activated at t :

1. writes in $M[i]$
2. reads entire array \boldsymbol{M}
3. if $\boldsymbol{M} \mid=\mathcal{P}$ terminates with output $f(M)$
4. else privately computes a next state

Within one step t

1. first activated process all write
2. then activated process all read

- if $i, j \in \sigma(t)$, then i reads $\boldsymbol{M}[j](t)$
$>$ what can be computed given (n, Σ) ? e.g., no wait-free consensus

The k-renaming problem

async k-coloring

For initial unique names $X_{1}, \ldots, X_{n}<M$ and scheduler $\Sigma \subseteq V^{\mathbb{N}}$.
\triangleright uniform termination $\exists B$:

$$
|\sigma|_{i} \geqslant B \Longrightarrow p_{i} \text { outputs } c_{i} \neq \perp
$$

\vee unicity if $p_{i} \sim p_{j}$ both output, then $c_{i} \neq c_{j}$
$\vee k$-palette $c_{i}=\perp \vee c_{i} \in\{1, \ldots, k\}$
wait-free when $\Sigma=2^{V \times N}$

Fundamental results

- k-renaming is impossible when $k<2 n-1$ and $n=p^{m}$, p prime (Herlihy+ 99, Castañeda+ 10)
- $(2 n-1)$-renaming can be solved for all $n \geqslant 2$ (Attiya +90 , Attiya +04)

Attiya and Welch's ${ }^{\dagger}$ algorithm

```
```

Algorithm 2: $2 n-1$ renaming, code for p_{i}

```
```

Algorithm 2: $2 n-1$ renaming, code for p_{i}
1 Input: $X_{i} \in\{0,1, \ldots, M-1\}$
1 Input: $X_{i} \in\{0,1, \ldots, M-1\}$
2 Initially: $c_{i} \leftarrow 0$
2 Initially: $c_{i} \leftarrow 0$
3 Forever:
3 Forever:
$4 \quad$ write $\left(X_{i}, c_{i}\right)$
$4 \quad$ write $\left(X_{i}, c_{i}\right)$
$5 \quad \operatorname{read}\left(\left(X_{1}, c_{1}\right), \ldots,\left(X_{n}, c_{n}\right)\right)$
$5 \quad \operatorname{read}\left(\left(X_{1}, c_{1}\right), \ldots,\left(X_{n}, c_{n}\right)\right)$
$6 \quad$ if $c_{i} \notin\left\{c_{j}: j \neq i\right\}$ then return $\left(c_{i}\right)$
$6 \quad$ if $c_{i} \notin\left\{c_{j}: j \neq i\right\}$ then return $\left(c_{i}\right)$
7 else
7 else
$r_{i} \leftarrow\left|\left\{j: X_{j}<X_{i}\right\}\right|$
$r_{i} \leftarrow\left|\left\{j: X_{j}<X_{i}\right\}\right|$
$c_{i} \leftarrow r_{i}$-th \min of $\mathbb{N} \backslash\left\{c_{1}, \ldots, c_{n}\right\}$
$c_{i} \leftarrow r_{i}$-th \min of $\mathbb{N} \backslash\left\{c_{1}, \ldots, c_{n}\right\}$
9

```
```

9

```
```

$>c_{i} \leqslant 2 n-1$

- active process p_{i} with smallest X_{i} cannot work forever
- all processes eventually terminate

A tale of two models

both problems inform our study:

LOCAL model

> coincides with our model when $\Sigma=(V, V, \ldots)$

- any async- k-coloring algorithm is a k-coloring algorithm
- $\Omega\left(\log ^{*} n\right)$ rounds necessary to color the cycle C_{n}

Is model

> coincides with our model when $G=K_{n}$

- any async- k-coloring algorithm is a k-renaming algorithm for $G=C_{3}=K_{3}$
- 5-color palette necessary to color the cycle C_{3}

Takeaway

Contributions

- define the asynchronous k-coloring problem for asynchronous networks
- propose a wait-free algorithm for any ($n \geqslant 3$)-nodes cycle C_{n}
- using a 6-color palette
\downarrow running in $\mathrm{O}\left(\log ^{*} n\right)$ (asynchronous) rounds

Unifies

> synchronous graph k-coloring

- LOCAL model
$>\leadsto \Omega\left(\log ^{*} n\right)$ temporal lower bound
- asynchronous k-renaming
- immediate snapshot shared-memory model
$>\leadsto$ coloring C_{3} requires $(k \geqslant 5)$ colors

Algorithmic contributions

async-6-coloring ("slow" worst-case)

Algorithm 3: async 6-coloring, code for p_{i}
1 Input: $X_{i} \in \mathbb{N} \triangleright$ proper coloring
2 Initially: $c_{i}=\left(a_{i}, b_{i}\right) \leftarrow(0,0)$
3 Forever:

```
4 \mp@code { w r i t e ( X , ~ ( } , C _ { i } ) \triangleright \text { immediate snapshot}
read((X,c),( ( X', c'))
    if }\mp@subsup{c}{i}{}\not\in{c,\mp@subsup{c}{}{\prime}}\mathrm{ then return( (ci)
    else
        ai}\leftarrow\operatorname{min}\mathbb{N}\{\mp@subsup{a}{j}{}:(\mp@subsup{X}{j}{}>\mp@subsup{X}{i}{})
            b _ { i } \leftarrow \operatorname { m i n } \mathbb { N } \ \{ b _ { j } : ( X _ { j } < X _ { i } ) \}
```

> $a_{i}+b_{i} \leqslant 2 \Longrightarrow$ 6-colors palette

- local maxima/minima stubbornly keep $a_{i}=0 / b_{i}=0$
- local extrema terminate in $\mathrm{O}(1)$
- process terminate in $\mathrm{O}(\ell), \ell$ distance to a local extremum

Next?

- 5-coloration
- general graphs
- other problems

async-6-coloring ("fast" worst-case)

```
Algorithm 4: async 6-coloring, code for \(p_{i}\)
Input: \(X_{i} \in \mathbb{N} \triangleright\) proper coloring
Initially: \(c_{i}=\left(a_{i}, b_{i}\right) \leftarrow(0,0), r_{i} \leftarrow 0\)
Forever:
    write \(\left(X_{i}, c_{i}, r_{i}\right) \triangleright\) immediate snapshot
    \(\operatorname{read}\left((X, c, r),\left(X^{\prime}, c^{\prime}, r^{\prime}\right)\right)\)
    \(\triangleright\) update \(c_{i}\) as before
    if \(\left(r_{i}<\infty\right) \wedge\left(r_{i} \leqslant \min \left\{r, r^{\prime}\right\}\right)\) then
        if \(\min \left\{X, X^{\prime}\right\}<X_{p}<\max \left\{X, X^{\prime}\right\}\) then
            \(r_{i} \leftarrow r_{i}+1\)
            \(Y \leftarrow f\left(X_{i}, \min \left\{X, X^{\prime}\right\}\right) \quad \Delta f(x, y)=2 \ell+x_{\ell}, \quad \ell:=\min \{|x|,|y|\} \cup\left\{i: x_{i} \neq y_{i}\right\}\)
            if \(Y<\min \left\{X_{q}, X_{q^{\prime}}\right\}\) then \(X_{p} \leftarrow Y\)
            else
            \(r_{i} \leftarrow \infty\)
            if \(X_{i}<\min \left\{X, X^{\prime}\right\}\) then
                    \(X_{i} \leftarrow \min \left\{X_{i}, \min \left(\mathbb{N} \backslash\left\{f\left(X, X_{i}\right), f\left(X^{\prime}, X_{i}\right)\right\}\right)\right\}\)
```

