Operational Model vs. Waitfree Model

Achour Mostefaoui

ANRs Estate / Ducat Le Cap Hornu 16-18 mars 2022

Distributed Computations

® Processes and concurrency

O Processes may interact directly through shared data structures...
m implemented over a shared memory system
m or, through messages exchanged by the different processes

Adobe S*ck | #195759892

Shared Memory and Shared Data Structures

The ABD simulation (Attiya, Bar-Noy and Dolev 1995)

® |t has been proved in 1995 that a shared memory (shared registers) can be
emulated over a distributed system provided that there is a majority of
processes that do not crash

Consistency and Progress Conditions

® A data structure is defined by two properties:
O Asafety property
O A progress condition

® Safety: questions the meaningfulness of the results returned by the
operations

® Progress: will there be a returned value, for whom and when?

Strong Consistency

(linearizability and sequential consistency)

® Linearizability and sequential consistency cannot be distinguished in an
asynchronous system

® Sequential consistency is “cheaper” than linearizability

® However, linearizability is a local property: if all objects are linearizable, then the
whole computation is linearizable!

® A distribution computation is a partial order of events.

® A good consistency criterion consists in totally ordering all events

O linearizability: total order on all events + causality + real-time order
O sequential consistency: total order on all events + causality

Weak Consistency

® CAP Theorem (Consistency, Availability and Partition): Impossibility to
ensure the three progertles at once in purely asynchronous systems prone
to process crashes (Gilbert & Lynch 2002)

® Moreover, even in synchronous failure free systems, the operations cannot
be local (Attiya & Welch 1994)

® In those situations, one can use weak consistency conditions:
O Cache coherence
O Causal consistency
O Eventual consistency
O PRAM consistency
O Serializability ...

Weak Consistency

The world
of consistency conditions
(from M. Perrin PhD thesis)

There are 3 basic families
of consistency conditions

A consistency condition
that merges all of

the three families falls
into strong consistency

..........

SC PC SEC suc CCv WCC SCC LC

Cohérence Cohérence ~ Convergence Cohérence Convergence Cohérence Cohérence Cohérence
séquentielle pipeline forte d’écritures forte causale causale faible causale forte locale

sC* SL EC uc Ser 1% cc C. Cy

Cohérence Localité Cohérence ode gl -2 Cohérence Criteres
de cache d’état Gonvergene d’écritures Serializabilite Validitg causale limites

Instant Messaging

[@ Type a message j ; - [@ Type a message I

Instant Messaging

Bob
Coffee break? | " Coffee break?

[@ Type a message r

[@ Type a message r

Coffee break?

Instant Messaging

Bob =
rCoffeer bréak? T Coffee break? |

[@ Type a message j [@ Type a message J

Of course

Instant Messaging

Bob

8
{No anwser...

Are you upset?

[@ Type a message j

Coffee break? |

No anwser...

Are you upset?
-

\Gafeabuaid)

Instant Messaging

Bob : (¢ Alice i
Coffee break? | , * Coffee break?
LNO anwser... ! Of c,ourse,i

Are you upset? !
|
i i ?
i
!
[@ Type a message f ; [@ Type a message r

Instant Messaging

|
Bob : g
Coffee break? | ~ Coffee break? |
Noanwser.. J
Are you upset?

No anwser... : ‘
Are you upset?

T

[@ Type a message r ' [@ Type a message r

Instant Messaging

Bob

'No anwser...
Are you upset?

[@ Type a message r

Coffee break? l

Coffee break?

PRI

Of course

No anwser... 7
Are you upset?

[@ Type a message f

Weak Consistency

Small experience with instant messaging:
Snapshat, Messenger, Whatsapp, Skype, Hangouts, etc.

® Hangouts: serializability
O message sending can be aborted

® \Whatsapp: PRAM consistency

O local consistency (perhaps the least consistent instant messaging)

® Skype: strong eventual consistency

O messages can be reordered afterwards (all users eventually see all messages in the same
order)

The Classical Waifree Model

Processes

@ Asynchronous : no bounds on the execution time

@ May crash : no waiting possible

Communication

@ Message passing
@ Asynchronous : no bounds on message transfer delays

The Operational Model

Hypothesis: Restrictive on the type of algorithms
@ Objects are fully replicated

@ Read operations are local
@ Messages can only be sent during update operations

Remark:

@ Optimal in the number of messages

Space Complexity of Some Data Structures

Current results on eventually consistent shared objects:

o Sets (O(n log(m))), Counters (O(n)), Registers (O(log(m))),
Multi-value Registers (O(n log(m))) [1].

@ Data Stores (Sets (O(n log(m))), Multi-value Registers
(O(n log(m)))) [2]
e Collaborative Editors (O(m)) [3].

v

[1] Burckhardt S, Gotsman Al, Yang H, Zawirski M : Replicated data types: specification, verification, optimality
[2] Attiya H, Ellen F, Morrison A : Limitations of Highly-Available Eventually-Consistent Data Stores

[3] Attiya H, Burckhardt S, Gotsman A, Morrison A, Yang H, Zawirski M : Specification and complexity of
collaborative text editing

Are the Two Models Equivalent?

We prove that there is:

@ One object O

@ One execution E

@ One implementation of O in the Wait-Free model /yr
Such that:

Any implementation of O in the operational model /oy, takes
strictly more bits of local memory than /e in E.

The I-Countdown-Append Object

/\

Q?

» il \§)

countdown phase
O
b B

a,b a,b ab a,b
c,a c,d c,a g6 >

o il })

4

Q.0

|

= PR

~

append phase

The [-CA Object in the Operational Model

|V1 = |
7= S =N
a/b a/b a/b a/bg—¢ q — conv(vy, v2)
pl 1 L L 1 = } >
‘
"
i ~<i
“'
2 1 1 1 1 } F—>
c/d ¢/d " c/d c//dq_’s q — conv(vi, v2)
g

lva| =1

The [-CA Object in the Operational Model

An example with [= 3:

a baqg—c€ q—)dad
p1

P2 —
Cddd—€ g— dad

The [-CA Object in the Operational Model

[All executions: 22/

4 N
bba bba bab
—==Z"Tdac, —==<"7dad. ——===T7ach.
ddc cdd cdc
aba aba bba

=< =< ')
EEit cdd Ec.a
aba aba aab

cac —===Udad, | _—====Ibdd,
dece ddd dcd

The [-CA Object in the Operational Model

Lemma

There is an execution X in which any implementation of the /-CA
in the operational model requires at least (% — 1) bits of local
memory in the € state.

The [-CA Object in the Classical Model

- Each process maintains a vector of version numbers
- Each time the state of a process changes, it broadcasts its new state (state

transfer)
- A process keeps the state with the highest associated version vector

The algorithm has a local memory complexity of O(n log(/)). I

The [-CA Object in the Classical Model

cocky [0,0] [1,0] [0 1 22 22 [2

leadkerr 1~ 1 1 1 1 -~ 1 = 1
stategy, 2 1 e ¢ o od eod @ cod

P]. | I

Y

P

state, 2 1 & a ab ab
leader, 2 .2 .2 .2 . 2 . 2 : 1

clock, [0,0] [0,1] [0,2] [1,2] [22] [22] [22]

Y

The Best of Both Worlds

We proposed a generic algorithm that combines the two approaches:

- The normal behavior is the one of the operational model.
- Aglobal logical time defines logical phases of size k (a constant)
- Version vectors are reinitialized at the each phase

- State transfer happens only if asynchronism is high

