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Distributed Computations

® Processes and concurrency

O Processes may interact directly through shared data structures...
m implemented over a shared memory system
m or, through messages exchanged by the different processes
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Shared Memory and Shared Data Structures

The ABD simulation (Attiya, Bar-Noy and Dolev 1995)

® |t has been proved in 1995 that a shared memory (shared registers) can be
emulated over a distributed system provided that there is a majority of
processes that do not crash




Consistency and Progress Conditions

® A data structure is defined by two properties:
O Asafety property
O A progress condition

® Safety: questions the meaningfulness of the results returned by the
operations

® Progress: will there be a returned value, for whom and when?



Strong Consistency

(linearizability and sequential consistency)

® Linearizability and sequential consistency cannot be distinguished in an
asynchronous system

® Sequential consistency is “cheaper” than linearizability

® However, linearizability is a local property: if all objects are linearizable, then the
whole computation is linearizable!

® A distribution computation is a partial order of events.

® A good consistency criterion consists in totally ordering all events

O linearizability: total order on all events + causality + real-time order
O sequential consistency: total order on all events + causality



Weak Consistency

® CAP Theorem (Consistency, Availability and Partition): Impossibility to
ensure the three progertles at once in purely asynchronous systems prone
to process crashes (Gilbert & Lynch 2002)

® Moreover, even in synchronous failure free systems, the operations cannot
be local (Attiya & Welch 1994)

® In those situations, one can use weak consistency conditions:
O Cache coherence
O Causal consistency
O Eventual consistency
O PRAM consistency
O Serializability ...



Weak Consistency

The world
of consistency conditions
(from M. Perrin PhD thesis)

There are 3 basic families
of consistency conditions

A consistency condition
that merges all of

the three families falls
into strong consistency
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Instant Messaging

[@ Type a message j ; - [@ Type a message I




Instant Messaging

Bob
Coffee break? | " Coffee break?

[@ Type a message r

[@ Type a message r

Coffee break?




Instant Messaging

Bob =
rCoffeer bréak? T Coffee break? |

[@ Type a message j [@ Type a message J

Of course




Instant Messaging

Bob

8
{No anwser...

Are you upset?

[@ Type a message j

Coffee break? |

No anwser...

Are you upset?
-
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Instant Messaging

Bob : (¢ Alice i
Coffee break? | , * Coffee break?
LNO anwser... ! Of c,ourse,i

Are you upset? !
|
i i ?
i
!
[@ Type a message f ; [@ Type a message r




Instant Messaging

|
Bob : g
Coffee break? | ~ Coffee break? |
Noanwser.. J
Are you upset?

No anwser... : ‘
Are you upset?

T

[@ Type a message r ' [@ Type a message r




Instant Messaging

Bob

'No anwser...
Are you upset?

[@ Type a message r

Coffee break? l

Coffee break?

PRI

Of course

No anwser... 7
Are you upset?

[@ Type a message f




Weak Consistency

Small experience with instant messaging:
Snapshat, Messenger, Whatsapp, Skype, Hangouts, etc.

® Hangouts: serializability
O message sending can be aborted

® \Whatsapp: PRAM consistency

O local consistency (perhaps the least consistent instant messaging)

® Skype: strong eventual consistency

O messages can be reordered afterwards (all users eventually see all messages in the same
order)



The Classical Waifree Model

Processes

@ Asynchronous : no bounds on the execution time

@ May crash : no waiting possible

Communication

@ Message passing
@ Asynchronous : no bounds on message transfer delays




The Operational Model

Hypothesis: Restrictive on the type of algorithms
@ Objects are fully replicated

@ Read operations are local
@ Messages can only be sent during update operations

Remark:

@ Optimal in the number of messages



Space Complexity of Some Data Structures

Current results on eventually consistent shared objects:

o Sets (O(n log(m))), Counters (O(n)), Registers (O(log(m))),
Multi-value Registers (O(n log(m))) [1].

@ Data Stores (Sets (O(n log(m))), Multi-value Registers
(O(n log(m)))) [2]
e Collaborative Editors (O(m)) [3].

v
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Are the Two Models Equivalent?

We prove that there is:

@ One object O

@ One execution E

@ One implementation of O in the Wait-Free model /yr
Such that:

Any implementation of O in the operational model /oy, takes
strictly more bits of local memory than /e in E.




The I-Countdown-Append Object
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The [-CA Object in the Operational Model
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The [-CA Object in the Operational Model

An example with [ = 3:
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The [-CA Object in the Operational Model

[ All executions: 22/
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The [-CA Object in the Operational Model

Lemma

There is an execution X in which any implementation of the /-CA
in the operational model requires at least (% — 1) bits of local
memory in the € state.




The [-CA Object in the Classical Model

- Each process maintains a vector of version numbers
- Each time the state of a process changes, it broadcasts its new state (state

transfer)
- A process keeps the state with the highest associated version vector

The algorithm has a local memory complexity of O(n log(/)). I




The [-CA Object in the Classical Model
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The Best of Both Worlds

We proposed a generic algorithm that combines the two approaches:

- The normal behavior is the one of the operational model.
- Aglobal logical time defines logical phases of size k (a constant)
- Version vectors are reinitialized at the each phase

- State transfer happens only if asynchronism is high



