A Speedup Theorem for Asynchronous Computation

Ami Paz – Université Paris Saclay and CNRS

Joint work with:

Pierre Fraigniaud – Université Paris-Cité and CNRS

Sergio Rajsbaum – Instituto de Matemáticas, UNAM

Speedup Theorem (a.k.a. round elimination)

- Recent technique for LOCAL lower bounds
- Typical problems: Maximal Matching, Sinkless Orientation, Coloring
- We want to show that a problem $P = P_T$ has on T-round algorithm
- High-level idea:

Claim 1: *i*-round algorithm for problem $P_i \Rightarrow$ (*i* - 1)-round algorithm for another problem P_{i-1} Claim 2: No 0-round algorithm for P_0 Technique: simulate distance-*i* view

Speedup Theorem – Example

- Linial's lower bound for 3-coloring a ring
- High-level idea:

Claim 1: *i*-round algorithm for *c*-coloring \Rightarrow (i - 1)-round algorithm for 2^{*c*}-coloring

Claim 2: No 0-round algorithm for (n - 1)-coloring

 $col_{i-1}(u) =$ { $col_i(u)$ | possible color of distance-*i* node}

Round Elimination in Async. Computation?

Shared memory, with iterated model

- distance-*i* is not defined
- But... we can still ask what can process *u* see in round *i*
- High-level idea the same

Claim 1: *i*-round algorithm for task $\Pi_i \Rightarrow$ (*i* - 1)-round algorithm for another task Π_{i-1}

Claim 2: No **0**-round algorithm for **P**₀

Technique: simulate possible views at round *i*

Shared Memory Models

Stronger models, faster algorithms

Shared Memory Models

Tasks and Protocols

A task $\Pi = (\mathcal{I}, \mathcal{O}, \Delta)$

A Task

A Task

• Given $\sigma \in \mathcal{I}, \tau \subseteq V(\Delta(\sigma))$

• Given $\sigma \in \mathcal{I}, \tau \subseteq V(\Delta(\sigma))$, define local task $\Pi_{\tau,\sigma} = (\tau, \Delta(\sigma), \Delta_{\tau,\sigma})$

- Given $\sigma \in \mathcal{I}, \tau \subseteq V(\Delta(\sigma))$, define local task $\Pi_{\tau,\sigma} = (\tau, \Delta(\sigma), \Delta_{\tau,\sigma})$, where $\Delta_{\tau,\sigma}$:
 - $\forall v \in \tau$: $\Delta_{\tau,\sigma}(v) = \{v\}$

- Given $\sigma \in \mathcal{I}, \tau \subseteq V(\Delta(\sigma))$, define local task $\Pi_{\tau,\sigma} = (\tau, \Delta(\sigma), \Delta_{\tau,\sigma})$, where $\Delta_{\tau,\sigma}$:
 - $\forall v \in \tau$: $\Delta_{\tau,\sigma}(v) = \{v\}$

•
$$\forall \tau' \subseteq \tau, |\tau'| > 1$$
: $\Delta_{\tau,\sigma}(\tau') = \operatorname{proj}_{\operatorname{id}(\tau')} \Delta(\sigma)$

- Given $\sigma \in \mathcal{I}, \tau \subseteq V(\Delta(\sigma))$, define local task $\Pi_{\tau,\sigma} = (\tau, \Delta(\sigma), \Delta_{\tau,\sigma})$, where $\Delta_{\tau,\sigma}$:
 - $\forall v \in \tau$: $\Delta_{\tau,\sigma}(v) = \{v\}$

•
$$\forall \tau' \subseteq \tau, |\tau'| > 1$$
: $\Delta_{\tau,\sigma}(\tau') = \operatorname{proj}_{\operatorname{id}(\tau')} \Delta(\sigma)$

- Given $\sigma \in \mathcal{I}, \tau \subseteq V(\Delta(\sigma))$, define local task $\Pi_{\tau,\sigma} = (\tau, \Delta(\sigma), \Delta_{\tau,\sigma})$, where $\Delta_{\tau,\sigma}$:
 - Vertex: itself
 - Not vertex: anywhere

- The core of the technique: defining Π_{i-1}
- Given a task $\Pi = (\mathcal{I}, \mathcal{O}, \Delta)$ and a model M

- The core of the technique: defining Π_{i-1}
- Given a task $\Pi = (\mathcal{I}, \mathcal{O}, \Delta)$ and a model Mwe define a closure task $\operatorname{cl}_M(\Pi) = (\mathcal{I}, \mathcal{O}', \Delta')$

- The core of the technique: defining Π_{i-1}
- Given a task $\Pi = (\mathcal{I}, \mathcal{O}, \Delta)$ and a model Mwe define a closure task $\operatorname{cl}_M(\Pi) = (\mathcal{I}, \mathcal{O}', \Delta')$ by
 - $\forall \sigma \in \mathcal{I}, \ \tau \subseteq V(\Delta(\sigma)): \tau \in \Delta'(\sigma)$?

- The core of the technique: defining Π_{i-1}
- Given a task $\Pi = (\mathcal{I}, \mathcal{O}, \Delta)$ and a model Mwe define a closure task $\operatorname{cl}_M(\Pi) = (\mathcal{I}, \mathcal{O}', \Delta')$ by
 - $\forall \sigma \in \mathcal{I}, \ \tau \subseteq V(\Delta(\sigma)): \tau \in \Delta'(\sigma) \Leftrightarrow \text{the local task } \Pi_{\tau,\sigma} \text{ is 1-round solvable in } M$

Theorem: *i*-round algorithm for task Π in $M \Longrightarrow$ (*i* - 1)-round algorithm for $\operatorname{cl}_M(\Pi)$ in M

Theorem: *i*-round algorithm for task Π in $M \Longrightarrow$ (*i* - 1)-round algorithm for $\operatorname{cl}_M(\Pi)$ in M

Theorem: *i*-round algorithm for task Π in $M \Longrightarrow (i-1)$ -round algorithm for $\operatorname{cl}_M(\Pi)$ in M

Theorem: *i*-round algorithm for task Π in $M \Longrightarrow$ (*i* - 1)-round algorithm for $\operatorname{cl}_M(\Pi)$ in M

Applications

- M = wait free iterated immediate snapshot
- $\Pi = (\mathcal{I}, \mathcal{O}, \Delta) = \text{Consensus}$
- $cl_M(\Pi) = ?$

- $\tau \in \Delta'(\sigma) \Leftrightarrow \Pi_{\tau,\sigma}$ is 1-round solvable in M
- If au contains both 0 and 1, then $\Delta_{ au,\sigma}$ is not 1-round solvable

• $\tau \in \Delta'(\sigma) \Leftrightarrow \Pi_{\tau,\sigma}$ is 1-round solvable in M

• If au contains both 0 and 1, then $\Delta_{ au,\sigma}$ is not 1-round solvable

30

- $\operatorname{cl}_M(\Pi) = (\mathcal{I}, \mathcal{O}', \Delta')$ has the same simplices as $\Pi = (\mathcal{I}, \mathcal{O}, \Delta)$
- So for consensus $\operatorname{cl}_M(\Pi) = \Pi$

Claim 1: *i*-round algorithm for consensus \Rightarrow (i - 1)-round algorithm for consensus

Claim 1: *i*-round algorithm for consensus \Rightarrow (i - 1)-round algorithm for consensus

Claim 2: No **0**-round algorithm for consensus

Conclusion: Impossibility of consensus in iterated immediate snapshot model

- M = wait free iterated immediate snapshot
- $\Pi_{\epsilon} = (\mathcal{I}, \mathcal{O}, \Delta) = \epsilon$ -agreement
- $\operatorname{cl}_M(\Pi_{\epsilon}) = ?$

• $\tau \in \Delta'(\sigma) \Leftrightarrow \Pi_{\tau,\sigma}$ is 1-round solvable in M

• $\tau \in \Delta'(\sigma) \Leftrightarrow \Pi_{\tau,\sigma}$ is 1-round solvable in M

- $\operatorname{cl}_M(\Pi_{\epsilon}) = ?$
 - Simplices of δ -agreement are in Δ' , but only for small δ
 - We show: $cl_M(\Pi_{\epsilon}) = 2\epsilon$ -agreement

• $\operatorname{cl}_M(\Pi_{\epsilon}) = \operatorname{cl}_M(\Pi_{2\epsilon})$

Claim 1: *i*-round algorithm ϵ -agreement \Rightarrow (i - 1)-round algorithm for 2ϵ -agreement

Claim 1: *i*-round algorithm ϵ -agreement \Rightarrow (i-1)-round algorithm for 2ϵ -agreement

If ϵ -agreement solvable in t rounds, 2ϵ -agreement solvable in t - 1 rounds

Claim 2: No 0-round alg. for δ -agreement, $\delta < 1$

 $2^t\epsilon$ -agreement solvable in 0 rounds

. . .

The Power of Simplicity

• Core of the proofs: What happens in a single round?

The Power of Simplicity

- Core of the proofs: What happens in a single round?
- Makes the proofs easy to extend

One Technique to Prove them All

Impossibility of consensus

Model
IIS
IIS + T&S

Consensus time lower bounds

Model	Time for $m{n}=2$	Time for $n\geq 3$	
IIS	$\log_3 \epsilon$	$\log_2 \epsilon$	With
IIS + T&S	$\log_3 \epsilon$	$\log_2 \epsilon$	limitations
IIS + Bin. Consensus		$\min(\log_2 1/\epsilon, \log n - 1)$ °	