
ESTATE

Enhancing Safety and self-sTAbilization in Time-varying distributed Environments

Workshop DUCAT/ESTATE — 16 mars 2022

Franck Petit
Sorbonne University
LIP6 CNRS / INRIA

ESTATE

Enhancing Safety and self-sTAbilization in Time-varying distributed Environments

ESTATE

The JBotSim Library

[A. Casteigts, R. Laplace, 2015]

Enhancing Safety and self-sTAbilization in Time-varying distributed Environments

ESTATE

ESTATE

Self-stabilization

A self-stabilizing system, regardless of its initial state, is

guaranteed to converge to the intended behavior in finite time.

correct correctstabilization phase

Tr
an

si
en

t F
au

lt

Lost of safety

Enhancing Safety and

Partial safety

Weaker Guarantees

Complexity
Guarantees

Stronger Guarantees

Self-
stabilization

Pseudo
stabilization

Weak
stabilization

Fault-
tolerant

stabilization

Strong
stabilization

k-
stabilization

time-
adaptive

k-time-
adaptive

Predicate-
preserving

stabilization

Probabilistic
stabilization

Snap-
stabilization

Probable
stabilization

Strict
stabilization

Fault-
containment

© S. Tixeuil

ESTATE

ESTATE

ESTATE
‣Organization of 6 Events

- Joint Workshop of ANR Projects DUCAT and ESTATE, Saint-Valery, March 15-18, 2022

- Joint Workshop of ANR Projects DESCARTES and ESTATE, Fontainebleau, November 8-10 2021

- Joint Workshop of ANR Projects DESCARTES and ESTATE, Saint-Valery, June 9-12 2020,

CANCELLED DUE TO COVID19 PANDEMIC

- Joint Workshop of ANR Projects DESCARTES and ESTATE, in conjonction with CoA 2019,

Roscoff, April 1-5, 2019

- Joint Workshop ESTATE/VERIMAG, Grenoble Aug. 31th, 2017

- CoDyn, Second Workshop on Computing in Dynamic Networks, Vienna, October 20th, 2017,

co-located with DISC’17

‣ 4 PhD Defenses, 2 HDR

- PhD Defense of Jason Schoeters, Bordeaux March 29th, 2021

- HDR Defense of Stéphane Devismes, Grenoble December, 17th, 2020

- PhD Defense of Sébastien Bouchard, Paris September 26th, 2019

- PhD Defense of Marjorie Bournat, Paris June 27th, 2019

- HDR Defense of Arnaud Casteigts, Bordeaux June, 4th, 2018

- PhD Defense of Anaïs Durand, Grenoble Sept.1st, 2017

‣ 88 publications (43 conf. inter., 29 journaux, 16 conf. nat.)

Weaker Guarantees

Complexity
Guarantees

Stronger Guarantees

Self-
stabilization

Pseudo
stabilization

Weak
stabilization

Fault-
tolerant

stabilization

Strong
stabilization

k-
stabilization

time-
adaptive

k-time-
adaptive

Predicate-
preserving

stabilization

Probabilistic
stabilization

Snap-
stabilization

Probable
stabilization

Strict
stabilization

Fault-
containment

© S. Tixeuil

ESTATE

ESTATE

Snap-Stabilizing Distributed System

• It is difficult to get two computer scientists to agree on what a

distributed system is.
[A. Tanenbaum, R. Van Renesse, ACM Computing Surveys, 1985]

Distributed System

• …distributed algorithm, distributed program, networks…

[N. Lynch, J. Welch, 2004]

• Distributed system Distributed Computing:

A distributed system is a system whose components are located on different
networked computers, which communicate and coordinate their actions by passing
messages to one another from any system.
[Wikipedia, 2022]

Distributed System

• A distributed system is made up of a collection of distributed

computing units, each one abstracted through the notion of
process. The processes are assumed to cooperate on a
common goal, which means that they exchange information in
way or another.
[M. Raynal, 2018]

• A distributed system is a collection of individual computing

devices that can communicate with each other.
[H. Attiya, J. Welch, 2004]

• It is difficult to get two computer scientists to agree on what a

distributed system is.
[A. Tanenbaum, R. Van Renesse, ACM Computing Surveys, 1985]

In a vacuum?

• It is difficult to get two computer scientists to agree on what a

distributed system is.
[A. Tanenbaum, R. Van Renesse, ACM Computing Surveys, 1985]

Distributed System

• […] we use the term « distributed system » to mean a

distributed operating system. […]
A distributed (operating) system is one that looks to its users
like an ordinary centralized (operating) system but runs on
multiple, independent central processing units (CPUs). The key
concept here is transparency. In other words, the use of
multiple processors should be invisible (transparent) to the
user.
[A. Tanenbaum, R. Van Renesse, ACM Computing Surveys, 1986]

Masking Fault-Tolerance?

• It is difficult to get two computer scientists to agree on what a

distributed system is.
[A. Tanenbaum, R. Van Renesse, ACM Computing Surveys, 1985]

Distributed System

• […] one safe approach is to consider first what a centralized

system is. […]
The most desirable situation in a distributed system is to be
able to supply the user with a centralized view of the system,
i.e., to make the distributed nature of the system transparent
to the user, and let it act as though it is only use of the system,
and the system is composed of a single entity […].
[D. Peleg, 2000]

Distributed System

X F(X)F(.)

From the user’s point of view…

A self-stabilizing system, regardless of the initial state of the processors,
is guaranteed to converge to the intended behavior in finite time.

Dijkstra 1974

Abnormal
Configuration

correct correctstabilization phase

Perturbation

Correctness cannot be guaranteed!

Normal
Configuration

Correct behavior

Self-Stabilizing Distributed System

X F(X) ?F(.)

From the user’s point of view…

Self-Stabilizing Distributed System

F(X) ?F(.)

From the user’s point of view…

F(X) ?F(X) ?F(X) ?N.X F(X)

N unknown!

Self-Stabilizing Distributed System

Non Masking Fault-Tolerance

Self-Stabilization

Rough Approach

Critical Section

Mutual Exclusion

1 2 3 4 5

‣Liveness: Upon a request, a process enters the critical
section in finite time.

‣ Safety: No two processes execute the critical
section simultaneously.

Critical Section

Mutual Exclusion

1 2 4

3

5

‣Liveness: Upon a request, a process enters the critical
section in finite time.

‣ Safety: No two processes execute the critical
section simultaneously.

…

Critical Section

Self-Stabilizing Mutual Exclusion

1

2 4

5
3

‣Liveness: Upon a request, a process enters the critical
section in finite time.

‣ Safety: Eventually, no two processes execute the
critical section simultaneously.

Critical Section

Self-Stabilizing Mutual Exclusion

5

‣Liveness: Upon a request, a process enters the critical
section in finite time.

‣ Safety: Eventually, no two processes execute the
critical section simultaneously.

2 4

1 3

…

Snap-Stabilizing Distributed System

correct correctstabilization phase

Correct behavior

A snap-stabilizing system, regardless of the initial state of the processors,
is guaranteed to converge to the intended behavior in 0 time.

Bui, Datta, Petit, and Villain 1999

Snap-Stabilizing Distributed System

1.X F(.)

From the user’s point of view…

F(X) !

Snap-Stabilization

Cautious Approach

Non Masking Fault-Tolerance

Termination

Feedback

Broadcast

Broadcast Feedback Initial State

(iii) (iv)(i) (ii)

root root rootroot

Propagation of Information with Feedback

[A Segall. IEEE Transactions on Information Theory, 1983]

PIF

Broadcast Feedback Initial State

root

Self-Stabilizing PIF

[Bui, Datta, Petit, Villain. Distributed Computing 2007]

Broadcast Feedback Initial State

root

Snap-Stabilizing PIF

[Bui, Datta, Petit, Villain. Distributed Computing 2007]

Broadcast Feedback Initial State

root

Snap-Stabilizing PIF

[Bui, Datta, Petit, Villain. Distributed Computing 2007]

Broadcast Feedback Initial State

root

Snap-Stabilizing PIF

Self-Stabilizing PIF
in

Trees with No Sense of Direction

root

With no sense of direction, Broadcast can move toward the root

…

Snap-Stabilizing PIF
in

Trees with No Sense of Direction

root
…

Critical Section

Self-Stabilizing Mutual Exclusion

1

2 4

5
3

‣Liveness: Upon a request, a process enters the critical
section in finite time.

‣ Safety: No two processes execute the critical
section simultaneously.

…

Critical Section

Snap-Stabilizing Mutual Exclusion

1

2 4

5
3

‣Liveness: Upon a request, a process enters the critical
section in finite time.

‣ Safety: No two processes execute the critical
section simultaneously.

…

Snap-Stabilizing Distributed System

1.X F(.)

From the user’s point of view…

F(X) !

Stabilization Time equal zero

Distributed System

correct correctstabilization phase

Distributed System

correct correctstabilization phase

Initial Configuration(Legitimate) (Global)

Distributed System

correct correctstabilization phase

Initial Configuration(Legitimate) (Global)

Initial Configuration(Legitimate) (Local)

Distributed System

correct correctstabilization phase

Initial Configuration(Legitimate) (Global)

Initial Configuration(Legitimate) (Local)

Activable (Initial) Action

Distributed System

correct correctstabilization phase

Initial Configuration(Legitimate) (Global)

Initial Configuration(Legitimate) (Local)

Activable (Initial) Action

Distributed System

correct correctstabilization phase

stabilization time

prefix

Good Suffix

Distributed System

From the user’s point of view…

prefix prefix

Prefix : « response time » to start the algorithm (or the user request)

correct correctstabilisation phase

Stabilization Factor = Real time to stabilize Good Suffixprefix

Self-Stabilizing Distributed System

Snap-stabilizing executions contain no stabilizing factors
w.r.t. specifications

Stabilization Time is equal to 0.

Snap-Stabilizing Distributed System

Expressiveness of Snap-Stabilization

Can we provide a snap-stabilizing solution to
every problem that has a self-stabilizing solution?

Expressiveness of Snap-Stabilization
•What is the expressiveness of self-stabilization?

‣ A self-stabilizing transformer working in the message-passing model that

transforms most of non-self-stabilizing algorithms (every problem that can

be defined by a suffix-closed specification) into self-stabilizing ones.

[S. Katz and K. Perry, DC,1993]

•What about the expressiveness snap-stabilization?
‣ A universal transformer that provides a snap-stabilizing version of any

protocol that can be self-stabilized with the transformer of [KP93] (in the

locally shared memory model).

[A. Cournier, S. Devismes, A. K. Datta, S. Devismes, F. Petit, and V. Villain, TCS,

2016]

PIF
• Propagation of Information with Feedback in

General Graphs

• Distributed-Control Problems

• Broadcast, Routing, Synchronization,
Protocol, Leader Election, Resource Sharing
and Allocation, Graph Algorithms,
Termination Detection, Deadlock Detection,
Reset, Distributed Ranking, Distributed
Sorting...

Self-Stabilizing Compiler

• GOAL

• «Universal» Tool to Transform (Compile)
any non self-stabilizing distributed algorithm
into a self-stabilizing one
[Katz and Perry 1993]

T Self-Stabilizing T

Snap-Stabilizing Compiler

• GOAL

• «Universal» Tool to Transform (Compile)
any non self-stabilizing distributed algorithm
into a snap-stabilizing one

T Snap-Stabilizing T

• IDEA

• Snap-stabilizing leader test

• Snap-stabilizing reset

• Snap-stabilizing snapshot

• Snap-stabilizing termination detectionSnap-sta
bilizin

g

PIF

Snap-Stabilizing Compiler

Network

Initiator

P
TT
T

With a Single Initiator

Snap-Stabilizing Compiler

Network

Initiator

Snapshot

With a Single Initiator

TT
T

Snap-Stabilizing Compiler

Network

Initiator

If not OK then
Reset

With a Single Initiator

TT
T

Snap-Stabilizing Compiler

With a Single Initiator

Snap-Stabilizing Compiler
1. Each step of P (which is not even self-

stabilizing) is scheduled using a snap-
stabilizing PIF wave.

PIFP

With a Single Initiator

Snap-Stabilizing Compiler
1. Each step of P (which is not even self-

stabilizing) is scheduled using a snap-
stabilizing PIF wave.
2. A simple attempt to transform T into a

snap-stabilizing protocol is to reset the
network using RP before starting P.

RP

PIFP

With a Single Initiator

Snap-Stabilizing Compiler
1. Each step of P (which is not even self-

stabilizing) is scheduled using a snap-
stabilizing PIF wave.
2. A simple attempt to transform T into a

snap-stabilizing protocol is to reset the
network using RP before starting P.
3. A snap-stabilizing snapshot SP protocol

is associated to each step of P to detect
if either (1) the configuration is normal
w.r.t. to the specifications of P, (2) P
terminated, or (3) none of this two cases.

PIFi
A

SP

Ri
A

OK ⋀ ¬TD

Req⋀ (¬OK ∨ TD)

RP

PIFP

• Same principle

• Snap-stabilizing leader test

• Snap-stabilizing leader election

• Snap-stabilizing reset

• Snap-stabilizing snapshot

• Snap-stabilizing termination detection

With a Multiple Initiator Protocol

Snap-Stabilizing Compiler

Expressiveness of Snap-Stabilization
‣A universal transformer that provides a snap-stabilizing version

of any protocol that can be self-stabilized with the transformer

of [KP93] (in the locally shared memory model).

[Cournier, Datta, Petit, Villain. Enabling snap-stabilization, 2003.]

[Cournier, Devismes, Villain. From Self- to Snap- Stabilization. 2006]

[A. Cournier, S. Devismes, A. K. Datta, S. Devismes, F. Petit, and V. Villain,

TCS, 2016]

‣Snap-Stabilization in Message-Passing System : Snap-

stabilization requires bounded-capacity channels.

[S. Delaët, S. Devismes, M. Nesterenko, S. Tixeuil, JPDC 2010]

• Key Idea:
– Relaxing snap-stabilization without altering its strong

safety guarantees
– to address anonymous networks

• Weakened form of snap-stabilization

59

Probabilistic Snap-stabilization in
Anonymous Networks

[K. Altisen, S. Devismes, TCS 2017]

• 2 probabilistic snap-stabilizing protocols for the
guaranteed service leader election for anonymous
networks in the atomic-state model (assuming the
knowledge of B, B<n≤2B)

Snap-Stabilization in Anonymous
Distributed Systems

‣Snap-Stabilizing Waves in Anonymous Networks.

[C. Boulinier, M. Levert, F. Petit, ICDCN 2008]

• Key Idea : PIF in anonymous distributed systems based on
the unison in [C. Boulinier, F. Petit, V. Villain, PODC 2004]

• Generic snap-stabilizing tool for anonymous networks
(assuming the knowledge of D, the diameter of the network)

• Snap-stabilizing causal atomic broadcast for anonymous
distributed systems, that can be used as a pipeline of
messages.

Snap-Stabilization in Anonymous
Distributed Systems

• Key Idea: Detection whether an observed terminating
silent self-stabilizing algorithm A has converged to a
configuration that satisfies an intended predicate.

• Based on any self-stabilizing unison in the literature.

‣Silent Anonymous Snap-Stabilizing Termination Detection.

[L. Blin, C. Johnen, G. Le Bouder, F. Petit, under submission, 2022]

‣Snap-Stabilizing Waves in Anonymous Networks.

[C. Boulinier, M. Levert, F. Petit, ICDCN 2008]

1.X F(.) F(X) !

in
Dynamic Distributed Systems?

Snap-Stabilization

