Distributed Recoloring

Marthe Bonamy, Nicolas Bousquet, Laurent Feuilloley, Marc Heinrich, Paul Ouvrard, <u>Mikaël Rabie</u>, Jukka Suomela, Yara Uitto

IRIF - Université Paris Cité

Thursday, March 17

Recoloring a Path -3 to 2 colors

$1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

Recoloring a Path -3 to 2 colors

$1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

$3 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

$3 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

$3 - 1 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \cdots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

$3 - 1 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

$3 - 1 - 2 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \cdots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

3-1-2-1-2-3-1-2-3-----

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

$2 - 1 - 2 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

2-1-2-3-1-2-3-1-2-3-----

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

$2 - 3 - 2 - 3 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path -3 to 2 colors

2-3-2-3-1-2-3-1-2-3-----

Recoloring a Path -3 to 2 colors

$1 - 3 - 1 - 3 - 1 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Recoloring a Path -3 to 2 colors

$1 - 3 - 1 - 3 - 1 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Recoloring a Path – 3 to 2 colors With an Extra Color

$1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Recoloring a Path – 3 to 2 colors With an Extra Color

$1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 2 - 3 - \dots$

Recoloring a Path – 3 to 2 colors With an Extra Color

1 - 4 - 3 - 4 - 2 - 4 - 1 - 4 - 3 - 4 - 2 - 4 - ...

Recoloring a Path – 3 to 2 colors With an Extra Color

$1 - 4 - 3 - 4 - 2 - 4 - 1 - 4 - 3 - 4 - 2 - 4 - \dots$

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path – 3 to 2 colors With an Extra Color

1 - 4 - 1 -

Recoloring a Path – 3 to 2 colors With an Extra Color

1 - 4 - 1 -

Mikaël RABIE (DUCAT/ESTATE 22)

Disttributed Recoloring

Recoloring a Path – 3 to 2 colors With an Extra Color

1 - 2 - 1 -

Problem Definition

- Input :
 - Graph G
 - 2 Two k colorings α and β
 - c extra colors
- Output :
 - **1** Number *r* of communication rounds in LOCAL model
 - \Rightarrow Each node has knowledge of neighborhood of distance $\leq r$.
 - 2 Recoloring schedule of length *l* for each node.
 - At each step, the reconfigured nodes are independent.
 - \Rightarrow Schedule locally checkable.
- Global Problem :

Given a class of graphs, k and c, determine r(n) and l(n), n being the number of nodes.

Definition

Distributed Recoloring of Cycles – 3+1

Definition

Distributed Recoloring of Cycles – 3+1

Definition

Distributed Recoloring of Cycles – 3+1

Definition

Distributed Recoloring of Cycles – 3+1

Definition

Distributed Recoloring of Cycles – 3+1

Definition

Distributed Recoloring of Cycles – 3+1

- $\mathcal{O}(1)$ communication rounds.
- $\mathcal{O}(1)$ recoloring schedule.

Tree Recoloring Results

input	extra	schedule	communication
colors	colors	length	rounds
2	0	∞	
2	1	$\mathcal{O}(1)$	0
3	0	$\Theta(n)$	$\Theta(n)$
3	1	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
3	2	$\mathcal{O}(1)$	0
4	0	$\Theta(\log n)$	$\Theta(\log n)$
4	1	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
4	2	$\mathcal{O}(1)$?
4	3	$\mathcal{O}(1)$	0

Toroidal Grids Recoloring Results

input	extra	schedule	communication
colors	colors	length	rounds
2	0	∞	
2	1	$\mathcal{O}(1)$	0
3	0	∞	
3	1	∞	
3	2	$\mathcal{O}(1)$	0
4	0	∞	
4	1	$\mathcal{O}(1)$?
4	2	$\mathcal{O}(1)$	$\mathcal{O}(1)$
4	3	$\mathcal{O}(1)$	0
5	0	∞	
5	1	$\mathcal{O}(1)$	$\mathcal{O}(1)$
5	4	$\mathcal{O}(1)$	0
6	0	$\mathcal{O}(1)$	$\mathcal{O}(1)$
		-	

Toroidal Grids Recoloring Results

input	extra	schedule	communication
colors	colors	length	rounds
2	0	∞	
2	1	$\mathcal{O}(1)$	0
3	0	∞	
3	1	∞	
3	2	$\mathcal{O}(1)$	0
4	0	∞	
4	1	$\mathcal{O}(1)$	$\mathcal{O}(\log^* n)$ (2022)
4	2	$\mathcal{O}(1)$	$\mathcal{O}(1)$
4	3	$\mathcal{O}(1)$	0
5	0	∞	
5	1	$\mathcal{O}(1)$	$\mathcal{O}(1)$
5	4	$\mathcal{O}(1)$	0
6	0	$\mathcal{O}(1)$	$\mathcal{O}(1)$
		-	

Grids

Toroidal Grids Impossibility

3	2	1	2	1	2
1	3	2	1	2	1
2	1	3	2	1	2
1	2	1	3	2	1
2	1	2	1	3	2
1	2	1	2	1	3

1	2	1	2	1	3
2	1	2	1	3	2
1	2	1	3	2	1
2	1	3	2	1	2
1	3	2	1	2	1
3	2	1	2	1	2

 \Rightarrow

Grids

 \Rightarrow

Toroidal Grids Impossibility

3	4	1	4	1	4
4	3	4	1	4	1
2	4	3	4	1	4
4	2	4	3	4	1
2	4	2	4	3	4
4	2	4	2	4	3

1	2	1	2	1	3
2	1	2	1	3	2
1	2	1	3	2	1
2	1	3	2	1	2
1	3	2	1	2	1
3	2	1	2	1	2

Grids

 \Rightarrow

Toroidal Grids Impossibility

3	2	1	2	1
1	3	2	1	2
2	1	3	2	1
1	2	1	3	2
2	1	2	1	3

2	1	2	1	3
1	2	1	3	2
2	1	3	2	1
1	3	2	1	2
3	2	1	2	1

Toroidal Grids Impossibility

Recoloring Results

Recoloring Interval Graphs

Let G be an interval graph and α, β be two proper k-colorings of G. It is possible to find a schedule to transform α into β in the LOCAL model in $\mathcal{O}(\text{poly}(\Delta)\log^* n)$ rounds using at most :

- c additional colors, with c = ω − k + 4, if k ≤ ω + 2, with a schedule of length poly(Δ),
- 1 additional color if $k \ge \omega + 3$, with a schedule of length poly(Δ),
- no additional color if k ≥ 2ω with a schedule of exponential-in-Δ length.
- no additional color if $k \ge 4\omega$ with a schedule of length $\mathcal{O}(\omega\Delta)$.

Recoloring Results

Recoloring Chordal Graphs

Let G be a chordal graph and α, β be two proper k-colorings of G. It is possible to find a schedule of length $n^{\mathcal{O}(\log \Delta)}$ to transform α into β in $\mathcal{O}(\omega^2 \Delta^2 \log n)$ rounds in the LOCAL model using at most :

- c additional colors, with $c = \omega k + 4$, if $k \le \omega + 2$,
- 1 additional color if $k \ge \omega + 3$.

Coloring Results

Coloring Interval Graphs

Interval graphs can be colored with $(\omega + 1)$ -colors in $\mathcal{O}(\omega \log^* n)$ rounds in the LOCAL model.

Coloring Chordal Graphs

Chordal graphs can be colored with $(\omega + 1)$ -colors in $\mathcal{O}(\omega \log n)$ rounds in the LOCAL model.

Ł	<u> </u>	е	f		
	а	d	 h		i
		С		g	

Ł	<u> </u>	е		f		
	а	d	I	h		i
		С			g	

Properties of Interval Graphs :

- **Clique path** : maximal cliques form a path. Each node appears in consecutive cliques.
- **Coloring** : can always be colored with ω colors, ω being the size of largest clique.
- Max Degree : Δ can be arbitrarily large compared to ω .

Properties of Interval Graphs :

- **Clique path** : maximal cliques form a path. Each node appears in consecutive cliques.
- **Coloring** : can always be colored with ω colors, ω being the size of largest clique.
- Max Degree : Δ can be arbitrarily large compared to ω .

Roadmap

- \mbox{Goal} : find a schedule from α to β
 - Compute a canonical $\omega + 1$ -coloring γ \Rightarrow **New goal :** Find a schedule from α to γ
 - Reach a coloring γ' from α such that :
 - We use two extra colors
 - γ' and γ match on subintervals of length L at distance D
 - Reach γ from γ' on each subinterval graph

- Compute a (4,5)-ruling set S of G.
- For any $s \in S$, the **box** of s is $\{s\} \cup N(s) = B(s, 1)$
- The nodes that are in a path between s_1 and s_2 , but not in a box, are in the **interbox** between s_1 and s_2 .

- Compute a (4,5)-ruling set S of G.
- For any $s \in S$, the **box** of s is $\{s\} \cup N(s) = B(s,1)$
- The nodes that are in a path between s_1 and s_2 , but not in a box, are in the **interbox** between s_1 and s_2 .

- Compute a (4,5)-ruling set S of G.
- For any $s \in S$, the **box** of s is $\{s\} \cup N(s) = B(s,1)$
- The nodes that are in a path between s_1 and s_2 , but not in a box, are in the **interbox** between s_1 and s_2 .

- Compute a (4,5)-ruling set S of G.
- For any $s \in S$, the **box** of s is $\{s\} \cup N(s) = B(s, 1)$
- The nodes that are in a path between s_1 and s_2 , but not in a box, are in the **interbox** between s_1 and s_2 .

Mikaël RABIE (DUCAT/ESTATE 22)

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of *I*.
- For two consecutive boxes A and B of I, c_B is a permutation of c_A .
- Perform up to ω inversions to reach c_B from c_A .

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of *I*.
- For two consecutive boxes A and B of I, c_B is a permutation of c_A .
- Perform up to ω inversions to reach c_B from c_A .

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of *I*.
- For two consecutive boxes A and B of I, c_B is a permutation of c_A .
- Perform up to ω inversions to reach c_B from c_A .

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of *I*.
- For two consecutive boxes A and B of I, c_B is a permutation of c_A .
- Perform up to ω inversions to reach c_B from c_A .

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of *I*.
- For two consecutive boxes A and B of I, c_B is a permutation of c_A .
- Perform up to ω inversions to reach c_B from c_A .

Kempe Recoloring

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Local Kempe Recoloring

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Local Kempe Recoloring

- Select two colors *a* and *b*.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.
- With one more extra color, bound the component

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need 2f(L) blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need 2f(L) blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need 2f(L) blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need 2f(L) blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

Completing the coloring

We have an alternation of intervals corresponding to γ and intervals k+1-colored.

We use as a blackbox the corresponding algorithm :

Bartier and Bousquet, ESA 2019

Let G be an interval graph with clique path \mathcal{P} (given with an ordering). Let γ', γ be two colorings. Let k' be the number of colors in γ and $k \ge k' + 3$. Let Y be a set of consecutive cliques of G such that γ' corresponds to γ on its borders of length at least L. Let C be the first clique of Y. Then we can obtain a coloring γ'' from γ such that :

- Only vertices that belong to vertices in Y are recolored.
- No vertex of C is recolored. In particular $\gamma_C'' = \gamma_C$.
- The coloring γ" restricted to the N cliques Z starting in the clique after C correspond to γ.
- The total length of the schedule is poly(|Y|, k).

Clique Tree

Properties of Chordal Graphs :

- Clique tree : partition into cliques forming a tree. Each node forms a subtree.
- **Coloring** : can always be colored with ω colors, ω being the size of largest clique.

Mikaël RABIE (DUCAT/ESTATE 22)

Idea of the Generalization

- Rake and Compress :
 - At each step, remove leafs and long paths.
 - Level of a node : step when it is fully removed.
 - After $\mathcal{O}(\log n)$ steps, everything is removed.
- Build the schedule from higher level to smaller.
- For long paths, act as interval graphs.
- For leafs (small diameter), compute optimal recoloring schedule.
- To go from level i to i − 1, at each step of level ≥ i, first recolor level i − 1 nodes to avoid conflicts.

Recoloring Chordal Graphs

Let G be a chordal graph and α, β be two proper k-colorings of G. It is possible to find a schedule of length $n^{\mathcal{O}(\log \Delta)}$ to transform α into β in $\mathcal{O}(\omega^2 \Delta^2 \log n)$ rounds in the LOCAL model.

Mikaël RABIE (DUCAT/ESTATE 22)

Main Results

Centralized Result

Let G be a connected graph with $\Delta \geq 3$ and α, β be two non-frozen k-colorings of G with $k \geq \Delta + 1$. Then we can transform α into β with a sequence of at most $\mathcal{O}(\Delta^{c\Delta} n)$ single vertex recolorings, where c is a constant.

Distributed Result

Let G be a graph with $\Delta \geq 3$. Let α, β be two $\Delta + 1$ -colorings of G which are r-locally non-frozen. There exists three constants c, c', c'' such that we can transform α into β with a parallel schedule of length at most $\mathcal{O}(\Delta^{c\Delta+c'r})$ in $\mathcal{O}(\Delta^{c''} + \log^2 n \cdot \log^2 \Delta)$ rounds in the LOCAL model.

- Compute a maximal independent set *I* at distance 2*d*
- Consider the graph without the balls B(u, d) for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- Compute a maximal independent set *I* at distance 2*d*
- Consider the graph without the balls B(u, d) for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- Compute a maximal independent set *I* at distance 2*d*
- Consider the graph without the balls B(u, d) for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- Compute a maximal independent set *I* at distance 2*d*
- Consider the graph without the balls B(u, d) for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- Compute a maximal independent set *I* at distance 2*d*
- Consider the graph without the balls B(u, d) for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- Compute a maximal independent set *I* at distance 2*d*
- Consider the graph without the balls B(u, d) for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- Compute a maximal independent set I at distance 2d
- Consider the graph without the balls B(u, d) for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- A $\Delta^{O(d)}$ length schedule exists to recolor those nodes
- A schedule exists to recolor those balls (up to some extra nodes)

