Distributed Recoloring

Marthe Bonamy, Nicolas Bousquet, Laurent Feuilloley, Marc Heinrich, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, Yara Uitto

IRIF - Université Paris Cité

Thursday, March 17

Recoloring

Recoloring

Recoloring

Recoloring

Recoloring

Recoloring

Recoloring

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors

Recoloring a Path - 3 to 2 colors With an Extra Color

Recoloring a Path - 3 to 2 colors With an Extra Color

Recoloring a Path - 3 to 2 colors With an Extra Color

Recoloring a Path - 3 to 2 colors With an Extra Color

Recoloring a Path - 3 to 2 colors With an Extra Color

Recoloring a Path - 3 to 2 colors With an Extra Color

Recoloring a Path - 3 to 2 colors With an Extra Color

Problem Definition

- Input:
(1) Graph G
(2) Two k colorings α and β
(3) c extra colors
- Output:
(1) Number r of communication rounds in LOCAL model
\Rightarrow Each node has knowledge of neighborhood of distance $\leq r$.
(2) Recoloring schedule of length / for each node.

At each step, the reconfigured nodes are independent.
\Rightarrow Schedule locally checkable.

- Global Problem :

Given a class of graphs, k and c, determine $r(n)$ and $I(n), n$ being the number of nodes.

Distributed Recoloring of Cycles $-3+1$

- $\mathcal{O}(1)$ communication rounds.
- $\mathcal{O}(1)$ recoloring schedule.

Tree Recoloring Results

input colors	extra colors	schedule length	communication rounds
2	0	∞	
2	1	$\mathcal{O}(1)$	0
3	0	$\Theta(n)$	$\Theta(n)$
3	1	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
3	2	$\mathcal{O}(1)$	0
4	0	$\Theta(\log n)$	$\Theta(\log n)$
4	1	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
4	2	$\mathcal{O}(1)$	$?$
4	3	$\mathcal{O}(1)$	0

Tree Shattering

Toroidal Grids Recoloring Results

input	extra	schedule colors	communication colors
length	rounds		
2	0	∞	
2	1	$\mathcal{O}(1)$	0
3	0	∞	
3	1	∞	
3	2	$\mathcal{O}(1)$	0
4	0	∞	
4	1	$\mathcal{O}(1)$	$?$
4	2	$\mathcal{O}(1)$	$\mathcal{O}(1)$
4	3	$\mathcal{O}(1)$	0
5	0	∞	
5	1	$\mathcal{O}(1)$	$\mathcal{O}(1)$
5	4	$\mathcal{O}(1)$	0
6	0	$\mathcal{O}(1)$	$\mathcal{O}(1)$

Toroidal Grids Recoloring Results

input	extra	schedule colors	communication colors
length	rounds		
2	0	∞	
2	1	$\mathcal{O}(1)$	0
3	0	∞	
3	1	∞	
3	2	$\mathcal{O}(1)$	0
4	0	∞	
4	1	$\mathcal{O}(1)$	$\mathcal{O}\left(\log ^{*} n\right)(2022)$
4	2	$\mathcal{O}(1)$	$\mathcal{O}(1)$
4	3	$\mathcal{O}(1)$	0
5	0	∞	
5	1	$\mathcal{O}(1)$	$\mathcal{O}(1)$
5	4	$\mathcal{O}(1)$	0
6	0	$\mathcal{O}(1)$	$\mathcal{O}(1)$

Toroidal Grids Impossibility

3	2	1	2	1	2							
1	3	2	1	2	1							
2	1	3	2	1	2							
1	2	1	3	2	1							
2	1	2	1	3	2							
1	2	1	2	1	3	\Rightarrow	1	2	1	2	1	3
:---	:---	:---	:---	:---	:---							
2	1	2	1	3	2							
1	2	1	3	2	1							
2	1	3	2	1	2							
1	3	2	1	2	1							
3	2	1	2	1	2							

Toroidal Grids Impossibility

3	4	1	4	1	4							
4	3	4	1	4	1							
2	4	3	4	1	4							
4	2	4	3	4	1							
2	4	2	4	3	4							
4	2	4	2	4	3	\Rightarrow	1	2	1	2	1	3
:---	:---	:---	:---	:---	:---							
2	1	2	1	3	2							
1	2	1	3	2	1							
2	1	3	2	1	2							
1	3	2	1	2	1							
3	2	1	2	1	2							

Toroidal Grids Impossibility

3	2	1	2	1
1	3	2	1	2
2	1	3	2	1
1	2	1	3	2
2	1	2	1	3

2	1	2	1	3
1	2	1	3	2
2	1	3	2	1
1	3	2	1	2
3	2	1	2	1

Toroidal Grids Impossibility

Recoloring Results

Recoloring Interval Graphs

Let G be an interval graph and α, β be two proper k-colorings of G. It is possible to find a schedule to transform α into β in the LOCAL model in $\mathcal{O}\left(\right.$ poly $\left.(\Delta) \log ^{*} n\right)$ rounds using at most :

- c additional colors, with $c=\omega-k+4$, if $k \leq \omega+2$, with a schedule of length poly (Δ),
- 1 additional color if $k \geq \omega+3$, with a schedule of length poly (Δ),
- no additional color if $k \geq 2 \omega$ with a schedule of exponential-in- Δ length.
- no additional color if $k \geq 4 \omega$ with a schedule of length $\mathcal{O}(\omega \Delta)$.

Recoloring Results

Recoloring Chordal Graphs

Let G be a chordal graph and α, β be two proper k-colorings of G. It is possible to find a schedule of length $n^{\mathcal{O}(\log \Delta)}$ to transform α into β in $\mathcal{O}\left(\omega^{2} \Delta^{2} \log n\right)$ rounds in the LOCAL model using at most :

- c additional colors, with $c=\omega-k+4$, if $k \leq \omega+2$,
- 1 additional color if $k \geq \omega+3$.

Coloring Results

Coloring Interval Graphs

Interval graphs can be colored with $(\omega+1)$-colors in $\mathcal{O}\left(\omega \log ^{*} n\right)$ rounds in the LOCAL model.

Coloring Chordal Graphs

Chordal graphs can be colored with $(\omega+1)$-colors in $\mathcal{O}(\omega \log n)$ rounds in the LOCAL model.

Interval Graphs

Interval Graphs

Interval Graphs

Interval Graphs

Interval Graphs

b
\qquad
\square c

g

Properties of Interval Graphs:

- Clique path : maximal cliques form a path. Each node appears in consecutive cliques.
- Coloring : can always be colored with ω colors, ω being the size of largest clique.
- Max Degree : Δ can be arbitrarily large compared to ω.

Interval Graphs

b
\qquad a C

h
\qquad

Properties of Interval Graphs:

- Clique path : maximal cliques form a path. Each node appears in consecutive cliques.
- Coloring : can always be colored with ω colors, ω being the size of largest clique.
- Max Degree : Δ can be arbitrarily large compared to ω.

Roadmap

Goal : find a schedule from α to β

- Compute a canonical $\omega+1$-coloring γ
\Rightarrow New goal : Find a schedule from α to γ
- Reach a coloring γ^{\prime} from α such that:
- We use two extra colors
- γ^{\prime} and γ match on subintervals of length L at distance D
- Reach γ from γ^{\prime} on each subinterval graph

Boxes and Interboxes partition

- Compute a $(4,5)$-ruling set S of G.
- For any $s \in S$, the box of s is $\{s\} \cup N(s)=B(s, 1)$
- The nodes that are in a path between s_{1} and s_{2}, but not in a box, are in the interbox between s_{1} and s_{2}.
a

Boxes and Interboxes partition

- Compute a $(4,5)$-ruling set S of G.
- For any $s \in S$, the box of s is $\{s\} \cup N(s)=B(s, 1)$
- The nodes that are in a path between s_{1} and s_{2}, but not in a box, are in the interbox between s_{1} and s_{2}.

$$
B(c, 1)
$$

Boxes and Interboxes partition

- Compute a $(4,5)$-ruling set S of G.
- For any $s \in S$, the box of s is $\{s\} \cup N(s)=B(s, 1)$
- The nodes that are in a path between s_{1} and s_{2}, but not in a box, are in the interbox between s_{1} and s_{2}.

$B(a, 1) \quad B(b, 1) \quad B(c, 1)$

Boxes and Interboxes partition

- Compute a $(4,5)$-ruling set S of G.
- For any $s \in S$, the box of s is $\{s\} \cup N(s)=B(s, 1)$
- The nodes that are in a path between s_{1} and s_{2}, but not in a box, are in the interbox between s_{1} and s_{2}.

$\omega+1$-coloring of the graph

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of I.
- For two consecutive boxes A and B of I, c_{B} is a permutation of c_{A}.
- Perform up to ω inversions to reach c_{B} from c_{A}.

$\omega+1$-coloring of the graph

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of I.
- For two consecutive boxes A and B of I, c_{B} is a permutation of c_{A}.
- Perform up to ω inversions to reach c_{B} from c_{A}.

$\omega+1$-coloring of the graph

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of I.
- For two consecutive boxes A and B of I, c_{B} is a permutation of c_{A}.
- Perform up to ω inversions to reach c_{B} from c_{A}.

$\omega+1$-coloring of the graph

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of I.
- For two consecutive boxes A and B of I, c_{B} is a permutation of c_{A}.
- Perform up to ω inversions to reach c_{B} from c_{A}.

$\omega+1$-coloring of the graph

- Compute a maximal independent set I at distance 3ω of S.
- Compute a coloring of the boxes of I.
- For two consecutive boxes A and B of I, c_{B} is a permutation of c_{A}.
- Perform up to ω inversions to reach c_{B} from c_{A}.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.

Kempe Recoloring

- Select two colors a and b.
- Select a connected component of nodes of those colors.
- With an extra color, switch the color of those nodes.
- With one more extra color, bound the component

Sequencing Kempe recolorings

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need $2 f(L)$ blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

Sequencing Kempe recolorings

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need $2 f(L)$ blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

Sequencing Kempe recolorings

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need $2 f(L)$ blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

Sequencing Kempe recolorings

- To recolor a subinterval of length $L \Rightarrow f(L)$ Kempe recolorings.
- Need $2 f(L)$ blocks on both ends of the interval.
- Iterate Kempe recolorings by adding bounds with the extra color.

Completing the coloring

We have an alternation of intervals corresponding to γ and intervals $k+1$-colored.
We use as a blackbox the corresponding algorithm :

Bartier and Bousquet, ESA 2019

Let G be an interval graph with clique path \mathcal{P} (given with an ordering). Let γ^{\prime}, γ be two colorings. Let k^{\prime} be the number of colors in γ and $k \geq k^{\prime}+3$. Let Y be a set of consecutive cliques of G such that γ^{\prime} corresponds to γ on its borders of length at least L. Let C be the first clique of Y. Then we can obtain a coloring $\gamma^{\prime \prime}$ from γ such that:

- Only vertices that belong to vertices in Y are recolored.
- No vertex of C is recolored. In particular $\gamma_{C}^{\prime \prime}=\gamma_{C}$.
- The coloring $\gamma^{\prime \prime}$ restricted to the N cliques Z starting in the clique after C correspond to γ.
- The total length of the schedule is poly $(|Y|, k)$.

Clique Tree

Properties of Chordal Graphs:

- Clique tree : partition into cliques forming a tree. Each node forms a subtree.
- Coloring : can always be colored with ω colors, ω being the size of largest clique.

Idea of the Generalization

- Rake and Compress :
- At each step, remove leafs and long paths.
- Level of a node: step when it is fully removed.
- After $\mathcal{O}(\log n)$ steps, everything is removed.
- Build the schedule from higher level to smaller.
- For long paths, act as interval graphs.
- For leafs (small diameter), compute optimal recoloring schedule.
- To go from level i to $i-1$, at each step of level $\geq i$, first recolor level $i-1$ nodes to avoid conflicts.

Recoloring Chordal Graphs

Let G be a chordal graph and α, β be two proper k-colorings of G. It is possible to find a schedule of length $n^{\mathcal{O}(\log \Delta)}$ to transform α into β in $\mathcal{O}\left(\omega^{2} \Delta^{2} \log n\right)$ rounds in the LOCAL model.

Main Results

Centralized Result

Let G be a connected graph with $\Delta \geq 3$ and α, β be two non-frozen k-colorings of G with $k \geq \Delta+1$. Then we can transform α into β with a sequence of at most $\mathcal{O}\left(\Delta^{c \Delta} n\right)$ single vertex recolorings, where c is a constant.

Distributed Result

Let G be a graph with $\Delta \geq 3$. Let α, β be two $\Delta+1$-colorings of G which are r-locally non-frozen. There exists three constants $c, c^{\prime}, c^{\prime \prime}$ such that we can transform α into β with a parallel schedule of length at most $\mathcal{O}\left(\Delta^{c \Delta+c^{\prime} r}\right)$ in $\mathcal{O}\left(\Delta^{c^{\prime \prime}}+\log ^{2} n \cdot \log ^{2} \Delta\right)$ rounds in the LOCAL model.

Unfreezing the Border of a Ball

Let u be a node an unfrozen node, and v a frozen node at distance d. There exists a schedule to unfreeze v in $2 d$ rounds that changes color of nodes in $B(u, d-1)$.

Unfreezing the Border of a Ball

Let u be a node an unfrozen node, and v a frozen node at distance d. There exists a schedule to unfreeze v in $2 d$ rounds that changes color of nodes in $B(u, d-1)$.

Unfreezing the Border of a Ball

Let u be a node an unfrozen node, and v a frozen node at distance d. There exists a schedule to unfreeze v in $2 d$ rounds that changes color of nodes in $B(u, d-1)$.

Unfreezing the Border of a Ball

Let u be a node an unfrozen node, and v a frozen node at distance d. There exists a schedule to unfreeze v in $2 d$ rounds that changes color of nodes in $B(u, d-1)$.

Unfreezing the Border of a Ball

Let u be a node an unfrozen node, and v a frozen node at distance d. There exists a schedule to unfreeze v in $2 d$ rounds that changes color of nodes in $B(u, d-1)$.

Outside of the Balls

- Compute a maximal independent set I at distance $2 d$
- Consider the graph without the balls $B(u, d)$ for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

Outside of the Balls

- Compute a maximal independent set I at distance $2 d$
- Consider the graph without the balls $B(u, d)$ for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

Outside of the Balls

- Compute a maximal independent set I at distance $2 d$
- Consider the graph without the balls $B(u, d)$ for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

Outside of the Balls

- Compute a maximal independent set I at distance $2 d$
- Consider the graph without the balls $B(u, d)$ for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

Outside of the Balls

- Compute a maximal independent set I at distance $2 d$
- Consider the graph without the balls $B(u, d)$ for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

Outside of the Balls

- Compute a maximal independent set I at distance $2 d$
- Consider the graph without the balls $B(u, d)$ for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

Outside of the Balls

- Compute a maximal independent set I at distance $2 d$
- Consider the graph without the balls $B(u, d)$ for $u \in I$
- Recolor from the farthest nodes to the closest nodes to those balls

- A $\Delta^{O(d)}$ length schedule exists to recolor those nodes
- A schedule exists to recolor those balls (up to some extra nodes)

