
The LINEARIZABILITY HIERARCHY

(From sequentiality to concurrency)

Michel RAYNAL

Univ Rennes (IRISA, CNRS, Inria) France

© The linearizability hierarchy 1

Table of Contents

From sequential to concurrent specifications

• At the very beginning (the sixties)

• Linearizability (1986, 1991)

• Set-linearizability (1994)

• Interval-linearizability (2018)

• Underlying theory (2018)

© The linearizability hierarchy 2

At the very beginning

© The linearizability hierarchy 3

From structured programming to objects

Once upon a time... sequential computing
• Simula: an algol-based simulation language.

by O.-J. Dahl and K. Nygaard
Communications of the ACM, 9(9):671-678 (1966)

• Go To statement considered harmful.
by E.W. Dijkstra
Communications of the ACM, 11(3):147-148 (1968)

Structured programming.
by O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare
Academic Press, 220 pages (1972)

• Proof of correctness of data representation.
by C.A.R. Hoare
Acta Informatica, 1:271-281 (1972)

• Nondeterminacy and formal derivation of programs.
E.W. Dijkstra
Communications of the ACM, 18(8)):453-457 (1975)

• Programming: sorcery or science?
by C.A.R. Hoare
IEEE Software, 1(2):5-16 (1984)

- Pre/post conditions (Hoare’s logic)
Pre-condition { statement } Post-condition

- Weakest pre-condition, Predicate transformer (EWD)

© The linearizability hierarchy 4

From sequential to concurrent computing

Once upon a time... the advent of concurrency

• Solution of a problem in concurrent programming control.
E.W. Dijkstra
Communications of the ACM, 8(9):569 (1965)

• Cooperating sequential processes.
E.W. Dijkstra
Programming Languages (Genuys Ed.), Academic Press, pp. 43-112 (1968)

• Monitors: an operating system structuring concept.
C.A.R. Hoare
Comm. of the ACM, 17(10):549-557 (1974)

Basically reduces concurrency to sequentiality (mutex)

Mastering concurrent computing through sequential thinking.
S. Rajsbaum & M. Raynal
Communications of the ACM, 83(1):78-87 (2020)
(explores the deep continuity from mutex to consensus)

© The linearizability hierarchy 5

Where is the problem?

• A sequential execution of a queue object

Q.enq(a) Q.enq(c)Q.enq(b) Q.deq() → bQ.deq() → a

• A concurrent execution of a queue object

p1

p2

Q.enq(a) Q.enq(b)

Q.enq(c)

Q.deq() → a|b|c?

Q.deq() → a|b|c?

© The linearizability hierarchy 6

On the definition of time: citations

Time is
what makes that all does not arrive at the same time

Time is what is measured by clocks

© The linearizability hierarchy 7

What is a specification?

• Asynchronous processes, crash failures

• Sequential object:
all the traces of object operations capturing all the
correct behaviors

• Concurrent objects:
Description of all the traces ??? of object operations
capturing all the correct behaviors

Partial orders ??, How to break atomicity (= at most
one operation at a point of the time line? why to
break it? etc.)

(BTW, A question is only the formatting of its answer!)

© The linearizability hierarchy 8

Concurrency: What is a consistency condition (1)?

• Define the (limits on the) way

concurrency is allowed to impact an execution

• (Always respect process order)

© The linearizability hierarchy 9

Concurrency: What is a consistency condition (2)?

• Let us consider a concurrent runR involving an object
O defined by a specification (e.g. a seq. spec.)

• a consistency condition is a mapping from the oper-
ations on the object produced by the run R to the
specification of the object

? If (for example) the specification is sequential the
consistency condition must produce a trace belong-
ing to the specification

? If no such mapping can be produced, the run does
not satisfy the consistency condition

• Linearizability, sequential consistency, serializability,
..., are consistency conditions

© The linearizability hierarchy 10

A guided visit to the linearizability hierarchy

Set-linearizable objects

Interval-linearizable objects

Linearizable objects

© The linearizability hierarchy 11

Linearizability

© The linearizability hierarchy 12

Atomicity, Linearizability, etc.

The masters of time (concurrency)

To synchronize or not to synchronize, that is the question
and what to synchronize?

© The linearizability hierarchy 13

Basic articles

• Solution of a problem in concurrent programming control
E.W. Dijkstra
Communications of the ACM, 8(9):569 (1965)

First article on concurrency

• On interprocess communication, Part I: basic formalism, Part II: algorithms
L. Lamport
Distributed Computing, 1(2):77-101 (1986)

This article analyzes the nature of what is atomic, and what is not

• Linearizability: a correctness condition for concurrent objects
M.P. Herlihy and J.M. and Wing J.M.
ACM Transactions on Progr. Languages and Systems, 12(3):463-492 (1990)

This article introduced linearizability and its properties

For a pedagogical presentation see also chapter 4 (Atomicity: Formal Defini-
tion and Properties) in Concurrent Programming: Algorithms, Principles, and
Foundations, Springer, 528 pages (2013) M. Raynal

© The linearizability hierarchy 14

Object operations vs events

Asynchronous processes, crash failures

p1

p2

e5 e6 e7 e8e4e3e2e1 e9 e10

enqueue(a) enqueue(b) dequeue() → a|b|c?

dequeue() → a|b|c?enqueue(c)

Physical (or logical time) line of an
external omniscient observer

© The linearizability hierarchy 15

Linearizability: definition

From sequential specifications to concurrent executions

• Linearizability considers objects defined by a sequen-
tial specification on total operations

• An execution of an object is linearizable if it is possi-
ble to totally order all the operations on the object in
such a way that this order respects real-time order

(if an operation on the object op1 terminated before
an operation op2 started, op1 appears before op2 in
the total order)

Remarks:
- total operation: always returns a result
- always respects process order

© The linearizability hierarchy 16

Linearizability example: snapshot object (1)

An object SN containing pairs with two operations

• SN.write(v):
adds the pair 〈i, v〉 to SN
and suppress the previous pair 〈i,−〉 ∈ SN if any

• SN.snapshot(): returns the “current” set of pairs

- Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873-890 (1993)

© The linearizability hierarchy 17

Linearizability example: snapshot object (2)

the operation

value of the

p3

p2

p1

SN.write(5)

SN.write(1) SN.write(4)

SN.snapshot() → {〈2, 1〉}

SN.write(2) SN.snapshot() → {〈1, 5〉, 〈2, 4〉〈3, 2〉}

physical time line

External observer’s

snapshot after
{〈1, 5〉, 〈2, 4〉〈3, 2〉}

{〈2, 4〉, 〈3, 2〉}
{〈2, 4〉}{〈2, 1〉}

• Internally (implementation): concurrency

• Externally (spec. for users): sequentiality

© The linearizability hierarchy 18

Fundamental properties of linearizability

• Non-blocking:
To complete an object operation does not need to
wait for another to terminate

• Composability:
Lineararizable objects compose for free

© The linearizability hierarchy 19

Composability: example

Module I1

Q1.deq()

Queue Q1

Q2.deq()Q1.enq()

Module I2

Q2.enq()

Q.enq1() Q.deq1() Q.enq2() Q.deq2()

Module I implementing the object Q

Queue Q2

© The linearizability hierarchy 20

Sequential consistency

• How to make a multiprocessor computer that correctly executes multiprocess
programs. L. Lamport
IEEE Transactions on Computers, C28(9):690-691 (1979)

• Definition:
an execution of an object is sequentially consistent if
if it is possible to totally order all the operations on
the object while respecting each process order

• The “witness” total order is “physical” in linearizabil-
ity and “logical” only in sequential consistency

• Seq. consistent objects do not compose for free!

© The linearizability hierarchy 21

Example of sequential consistency

p1

Q.enq(a) Q′.enq(b′) Q′.deq() → b′

p2
Q′.enq(a′) Q.enq(b) Q.deq() → b

© The linearizability hierarchy 22

A lot of works relaxing linearizability

Many++ works investigated weakening of linearizability

© The linearizability hierarchy 23

Relaxing linearizability: a few examples

• A scalable lock-free stack algorithm

D. Hendler, N. Shavit and L. Yerushalmi
Proc. 32nd ACM SPAA, pp. 206-215 (2004)

• Quasi-linearizability: relaxed consistency for improved concurrency
Afek Y., Korland G., and Yanovsky E.

Proc. 14th OPODIS, Springer LNCS 6490, pp. 395-410 (2010)

Idea: Each run is at a bounded distance of a linearizable run
• Data structures in the multicore age

Shavit N.,
Commmunications of the ACM, 54(3):76-84 (2011)

• Local linearizability for concurrent container-type data structures

Haas A., Henzinger T.A., Holzer A., Kirsch Ch.M, Lippautz M., Payer H.,
Sezgin A., Sokolova A., and Veith H.
Proc. 27th CONCUR, LIPIcs Vol. 59, pages 6:1–6:15 (2016)

Introduced the notion of container object (RW is not a container)

© The linearizability hierarchy 24

Relaxing linearizability: a few examples: Cont’d

• The computability of relaxed data structures: queues and stacks as examples

Shavit N. and Taubenfeld G.,
Distributed Computing, 29(5):395-407 (2016)

• Distributionally linearizable data structures

Alistarh D., Brown T., Kopinsky J., Li J. and Nadiradze G.,
Proc. 30th ACM SPAA, ACM Press, pp. 133-142 (2018)

• Intermediate value linearizability: a quantitative correctness condition

Rinberg A. and Keidar I.,
Proc. 34th DISC, LIPICs 179, 17 pages (2020)

• Relaxed queues and stacks from read/write operations

A. Castañeda,S. Rajsbaum, M. Raynal.
Proc. 24th OPODIS, LIPICs 184, 19 pages (2020)

• Upper and lower bounds for deterministic approximate objects

Hendler D., Khattabi A., Milani A.,and Travers C.,
Proc. 41st IEEE ICDCS, LIPICs, pp. 438-448 (2021)

© The linearizability hierarchy 25

Set-linearizability

© The linearizability hierarchy 26

• Introduced by Gil Neiger:
Set linearizability.
Proc. 13th ACM symposium on Principles of distributed computing (PODC’94),
Brief announcement, ACM Press, page 396 (1994)

• Later investigated in:

? Hemed N., Rinetzky N., and Vafeiadis V.,
Modular verification of concurrency-aware linearizability.
Proc. 29th DISC, Springer LNCS 9363, pp. 371-387 (2015)

? Castañeda A., Rajsbaum S., and Raynal M.,
Unifying concurrent objects and distributed tasks: interval-linearizability.
Journal of the ACM, 65(6), Article 45, 42 pages (2018)

© The linearizability hierarchy 27

Why set-linearizability?

• Motivation example: k-set agreement object
? Each process proposes a value and decides a value

? a decided value is a proposed value

? at most k different values are decided

• Linearizability:

? cannot capture the full generality of k-set agree-
ment (and many other objects)

?
? Due to its very definition: restricted to seq. spec.

• need to free from the “burden of the (seq.) past”

© The linearizability hierarchy 28

What does set-linearizability add

Linearizability Set-linearizability

Atomicity Atomicity + simultaneity
User level: specification Sequential Concurrent

Implementation level FT + Concurrent FT +Concurrent

• Due to its very definition: linearizability ↔ seq. spec.

• Set-linearizability

? allows to capture simultaneity of operations
? captures the notion of point contention

• Suited to a class of concurrent object specification

Set-lin = linearizability + simultaneity

© The linearizability hierarchy 29

Set-lin example: Immediate snapshot object

• Immediate atomic snapshots and fast renaming.
Borowsky E. and Gafni E., Proc. 12th ACM PODC’93, pp. 41–51 (1993)

• A snapshot object with concurrent specification

• A single operation denoted im snapshot(v)

• When a process pi invokes im snapshot(vi)

? it deposits the pair 〈i, vi〉 in the object

? and returns a set of pairs denoted viewi

© The linearizability hierarchy 30

Set-LIN: Immediate snapshot object

• Termination. If a process invokes im snapshot() and
does not crash, its invocation terminates

• Self-inclusion.
im snapshot(vi) returns viewi to pi ⇒ (〈i, vi〉 ∈ viewi)

• Global inclusion (Containment).
invocation of im snapshot(vi) by pi returns viewi and
invocation of im snapshot(vj) by pj returns viewj ⇒
viewi ⊆ viewj or viewj ⊆ viewi

• Immediacy.
(〈i, vi〉 ∈ viewj) ∧ (〈j, vj〉 ∈ viewi)⇒ (viewi = viewj)

Immediacy ⇒ simultaneity

© The linearizability hierarchy 31

Set-lin: immediate snapshot algorithm

Shared registers:
MEM [1..n] init to [⊥, · · · ,⊥]
LEVEL[1..n] init to [(n+ 1), · · · , (n+ 1)]

operation im snapshot(v)is % code for process pi
MEM [i]← v;
repeat LEVEL[i]← LEVEL[i]− 1;

(L3) for each j ∈ {1, . . . , n} do leveli[j]← LEVEL[j] end for;
seti ← {x | leveli[x] ≤ leveli[i]}

until (|seti| ≥ leveli[i]) end repeat;
(L6) let viewi = { 〈x,MEM [x]〉 | x ∈ seti };

return(viewi)
end operation.

© The linearizability hierarchy 32

Immediate snapshot example of an execution

A possible run of the previous algorithm

p1

p2

p3

External observer’s

after the linearization points

time line

IS.im_snapshot(c) → {(〈2, b〉, 〈3, c〉, 〈1, a〉}

value of immediate-snapshot

IS.im_snapshot(1) → {(〈a, 1〉}

IS.im_snapshot(b) → {(〈2, b〉, 〈1, a〉, 〈3, c〉}

{〈1, a〉, 〈3, c〉, 〈2, b〉}{〈1, a〉}

© The linearizability hierarchy 33

Interval-linearizability

© The linearizability hierarchy 34

What does interval linearizability add

Consist. cond. Specification Implementation

Linearizability Sequentiality Concurrent
Set Lin. Lin + simultaneity Concurrent

Interval Lin. Set Lin + time ubiquity Concurrent

- Castañeda A., Rajsbaum S., and Raynal M.,
Unifying concurrent objects and distributed tasks: interval-linearizability.
Journal of the ACM, 65(6), Article 45, 42 pages (2018)

© The linearizability hierarchy 35

Int-lin: write-snapshot object (definition)

• Its is a snapshot object in which the two operations
write() and snapshot() are pieced together into a single
operation denoted write snapshot()

• Properties:

? Self-inclusion: (〈i, vi〉 ∈ viewi)
? Containment: viewi ⊆ viewj or viewj ⊆ viewi

Reminder: Self-inclusion is not a property required by the
base snapshot object (operations write() and snapshot())

© The linearizability hierarchy 36

One-shot write-snapshot object: algorithm

operation write snapshot(v) is % code for process pi
MEM [i]← 〈i, v〉;
newi ← ∪1≤j≤n{〈j,MEM [j]〉 such that MEM [j] 6= ⊥};
repeat oldi ← newi;

newi ← ∪1≤j≤n{MEM [j] such that MEM [j] 6= ⊥}
until (oldi = newi) end repeat;
return(newi)

end operation

© The linearizability hierarchy 37

Write-snapshot: example of an execution

A possible run of the previous algorithm

p1

p2

p3

External observer’s

{〈1, a〉, 〈3, c〉, 〈2, b〉}{〈1, a〉, 〈2, b〉}
after the linearization points

time line

WS.write_snapshot(a) → {(〈2, b〉, 〈1, a〉}

WS.write_snapshot(b) → {(〈2, b〉, 〈1, a〉, 〈3, c〉}

WS.write_snapshot(c) → {(〈2, b〉, 〈3, c〉, 〈1, a〉}

value of write-snapshot

© The linearizability hierarchy 38

Interval linearizability: another example

Lattice agreement

• A set L partially ordered by a binary relation v s. t.
any pair x, y ∈ L has a least upper bound called join

• A one-shot operation propose(v)
with input v ∈ L, returns a value v′ ∈ L, such that:

? Validity: v′ is a join of some proposed values includ-
ing v and all values returned by previous propose()
operations

? Consistency: returned values are ordered by v

Used in distributed state reconciliation:
Accountability and Reconfiguration: Self-Healing Lattice Agreement, OPODIS
2021: 25:1-25:23 (2021), Freitas de Souza L., Kuznetsov P., Rieutord Th.,
Tucci Piergiovanni S.

© The linearizability hierarchy 39

Many objects are defined by distributed tasks

Distributed tasks: no notion of“order” on operation ex-
ecution

ini
pi outi

I = [in1, · · · , inn]

Task T : O = ∆(I)

O = [out1, · · · , outn]

Vector of
distributed inputs

Communicating processes

Vector of

distributed outputs

p1, ..., pn

© The linearizability hierarchy 40

Two important theorems

• Concurrent specifications: beyond linearizability
Goubault E., Ledent J., and Mimram S.,
22nd OPODIS, LIPIcs 125, 16 pages (2018)

Theorem:
Every concurrent specification is interval-linearizable

• Unifying concurrent objects and distributed tasks: interval-linearizability
Castañeda A., A., Rajsbaum S., and Raynal M.,
Journal of the ACM, 65(6), 42 pages (2018)

Theorem:
interval-linearizable objects and (refined) tasks have
the same expressive power (both are complete in the
sense they are able to specify any prefix-closed set of
well-formed executions)

© The linearizability hierarchy 41

On progress conditions

On the progress in the presence of failures

(Net effect of asynchrony and failures: mutex is irrelevant)

• 1991: Wait-freedom: If a process does crash (while
executing an object operation) it terminates

• 1990: Non-blocking ∼ no deadlock

• 2005: Obstruction-freedom: if a process executes
alone during a long enough period (and does not
crash) it terminates its operation

(All these properties are due to M. Herlihy and co-authors)

© The linearizability hierarchy 42

On the interplay betwen safety and liveness

Queue in the consensus number (CN) 1 and 2 worlds

i .e., with the help of the
weakest computability/synchronization power

in the presence of asynchrony and crashes

- Castañeda A., Rajsbaum S. and Raynal M., Relaxed queues and stacks from
read/write operations. Proc.24th Conference on Principles of Distributed Sys-
tems (OPODIS 2020), LIPICS Vol. 184, Article 13, 19 pages (2020)

© The linearizability hierarchy 43

Additional results

p3

p2

p1

physical time line

External observer’s

enq(a) enq(c)

enq(b)

b b, a b, a, c

This execution fragment is linearizable

© The linearizability hierarchy 44

Additional results

p3

p2

p1

physical time line

External observer’s

enq(a) enq(c)

enq(b) deq() → a

deq() → adeq() → b

b b, a a a, c c

This execution fragment is set-linearizable

(See work-stealing for idempotent jobs)

© The linearizability hierarchy 45

Additional results

p3

p2

p1

physical time line

External observer’s

enq(a) enq(c)

enq(b) deq() → a

deq() → b

b b, a a a, c c

deq() → c

© The linearizability hierarchy 46

Additional results

Base object Liveness Safety

CN = 1 enqueue(): wait-freedom enqueue(): linearizability
dequeue(): non-blocking dequeue(): set-linearizability

CN = 1 enqueue(): wait-freedom enqueue(): linearizability
dequeue(): wait-freedom dequeue(): interval-linearizability

CN = 2 enqueue(): wait-freedom enqueue(): linearizability
dequeue(): non-blocking dequeue(): linearizability

CN = 2 enqueue(): wait-freedom enqueue(): linearizability
dequeue(): wait-freedom dequeue(): interval-linearizability

© The linearizability hierarchy 46

Additional results cont’d

Stack in the consensus number (CN) 1 and 2 worlds

Base object Liveness Safety

CN = 1 push(): wait-freedom push(): linearizability
pop(): wait-freedom pop(): set-linearizability

CN = 2 push(): wait-freedom push(): linearizability
pop(): wait-freedom pop(): linearizability

© The linearizability hierarchy 47

THE GLOBAL PICTURE

Consistency condition User layer specification Implementation layer

Linearizability Sequential FT + Concurrent
Set-linearizability concurrent: simultaneity FT + Concurrent
Int-linearizability concurrent: time-ubiquity FT + Concurrent

Set-linearizable objects

Interval-linearizable objects

Linearizable objects

As Lin, Set lin and Int lin are composable for free!

© The linearizability hierarchy 48

A look at the underlying theory

© The linearizability hierarchy 49

Two articles

• Introduced in:

Unifying concurrent objects and distributed tasks:
interval-linearizability
Castañeda A., A., Rajsbaum S., and Raynal M.,
Journal of the ACM, 65(6), Article 45, 42 pages (2018)

• Analyzed in:
Concurrent specifications: beyond linearizability
Goubault E., Ledent J., and Mimram S.,
22nd OPODIS, LIPIcs 125, 16 pages (2018)

© The linearizability hierarchy 50

Notations (1)

• n processes p1, ..., pn

• V: values (integers) exchanged by the processes

? invxi : invocations of the object by pi with input x

? respyj : responses of the object to pj with output y

• A: set of all the actions (events) on the object

• execution trace: finite seq of actions (events)

• T = Å∗: set of possible traces

• ε: empty trace

• T · T ′: trace concatenation

© The linearizability hierarchy 51

Notations cont’d

• πi(T) trace obtained by removing all the actions of
the processes pj 6= pi

• Alternating trace: πi(T) is empty or alternates be-
tween invocations and responses

• If πi(T) terminates with an invocation: pending inv.

• Complete trace: no pending invocation

© The linearizability hierarchy 52

Specification of concurrent objects (1/2)

Definition

A concurrent specification Σ is

a subset of T satisfying the following eight properties

• Alternating: every T ∈ Σ is alternating

• Prefix-closed: if T · T ′ ∈ Σ then T ∈ Σ

• non-empty: ε ∈ Σ

• receptive: if T ∈ Σ and pi has no pending invocation,
then T · invxi ∈ Σ for any x

© The linearizability hierarchy 53

Specification of concurrent objects (2/2)

• Total:

if T ∈ Σ and pi has a pending invocation, then it
exists x ∈ V such that T · respxi ∈ Σ

• Commuting invocations:
if T · invxi · inv

y
j · T ′ ∈ σ then T · invyj · invxi · T ′ ∈ σ

• Commuting responses:
if T · respxi · resp

y
j · T ′ ∈ σ then T · respyj · respxi · T ′ ∈ σ

• Closure under expansions:
if T · respyj · invxi · T ′ ∈ σ then T · invxi · resp

y
j · T ′ ∈ σ

© The linearizability hierarchy 54

Meaning of “an algo implements an conc. object”

• Consider an automaton-based representation of a prog.
language

• Decision function δ() : defines which object the pro-
gram will call

• Transition function τ() : defines the next state of the
object

• An algorithm A (concurrent program) is defined by
a set of automata Ai, each one associated with a
process pi

• A implements a concurrent specification Σ if all the
traces it generates belong to Σ

© The linearizability hierarchy 55

Two important theorems

• Concurrent specifications: beyond linearizability
Goubault E., Ledent J., and Mimram S.,
22nd OPODIS, LIPIcs 125, 16 pages (2018)

Theorem:
Every concurrent specification is interval-linearizable

• Unifying concurrent objects and distributed tasks: interval-linearizability
Castañeda A., A., Rajsbaum S., and Raynal M.,
Journal of the ACM, 65(6), 42 pages (2018)

Theorem:
interval-linearizable objects and (refined) tasks have
the same expressive power and both are complete in
the sense that they are able to specify any prefix-
closed set of well-formed executions

© The linearizability hierarchy 56

Conclusion

© The linearizability hierarchy 57

A visit to

Set-linearizable objects

Interval-linearizable objects

Linearizable objects

• Concurrent objects

• Specification of concurrent objects

• Linearizability hierarchy

Important:
Int-LIN⇒ Composability (for free) of concurrent objects

© The linearizability hierarchy 58

Is there and to the story?

Colorin colorado,

est cuento NO se ha acabado...

© The linearizability hierarchy 59

