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A meta-theorem for distributed certification
Distributed certification for ‘‘  + MSO property’’ using   
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tw ≤ k O(log2 n)
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Related work: Bousquet, Feuilloley, Pierron ’21 (arXiv): Local certification of MSO 
properties for bounded treedepth graphs



Tree decompositions and treewidth

Tree decomposition of : 

• A tree together with a bag (vertex subset of G) 
associated to each of its nodes 

• Each vertex and each edge of G must be in some bag 

• For each vertex of , the bags containing it form a 
connected subtree  
 

Treewidth : the minimum  such that  has a tree 
decomposition with bags of size 

G = (V, E)

G

tw(G) k G
≤ k + 1
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Why is treewidth important ?
[A personal point of view] 
• At the heart of the graph minors project (Robertson & Seymour) and a major 

starting point for parameterized algorithms (Downey & Fellows…). 
• Courcelle’s (meta) theorem: every property expressible in monadic second order logic can 

be decided in  time on bounded treewidth graphs. Actually,  time. 
 
   
      
     
     
     

• Win-win techniques: parameterized algorithms for the disjoint paths problem on 
arbitrary graphs (R&S), parameters of planar graphs (bidimensionality — 
Demaine, Fomin, Hajiaghayi, Thilikos).

O(n) O( f(k, φ) ⋅ n)

∃Red, Greed, Blue ⊆ V :
(∀x ∈ V, x ∈ Red ∨ x ∈ Green ∨ x ∈ Blue)
∧ [∀x, y ∈ E, (x ∈ Red ∧ y ∈ Red) ⇒ ¬adj(x, y)]
∧ [∀x, y ∈ E, (x ∈ Green ∧ y ∈ Green) ⇒ ¬adj(x, y)]
∧ [∀x, y ∈ E, (x ∈ Blue ∧ y ∈ Blue) ⇒ ¬adj(x, y)]
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Courcelle’s theorem

Every property  expressible in monadic second order 
logic can be decided in  time on bounded treewidth 
graphs. 

• dynamic programming [Borie, Parker, Tovey ’92] 

• at each node , store only the homomorphism class of 
property  for  and bag  

• the number of classes is bounded by a constant, 
depending on the property and on  

• for leaf nodes, the homomorphism class is computed 
directly 

• for other nodes , the class is deduced from the ones of 
its children, and on the glueings of the children bags

𝒫
O(n)

i
𝒫 G[Vi] Bi

tw

i
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a, b, di

Vi

3Colorability : the class is formed by all 
3-partitions of the bag that can be 
extended into 3-colourings
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7
• Completeness: if  is true, there must exist a 

set of certificates s.t. all nodes accept; 

• Soundness: if  is false, for any set of 
certificates, at least one node rejects.

𝒫

𝒫

Distributed certification for property 𝒫
many variants… here, one round, determinist protocol

Centralized prover: knows the whole graph, assigns a (small) certificate to each node. 

Distributed verifier: each nodes exchanges small messages with its neighbours (as in 
CONGEST), then accepts or rejects. 

The prover is not trustable.
1

2

3

2

1

3

3Colorability: easy, certificates of 2 bits. Non-3Colorability: hard…
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Distributed certification for spanning tree 
 certificatesO(log n)

Centralized prover to each vertex :  

Distributed verifier for vertex  :  

• if  check that  
 detects cycles or incoherences 

• check that all neighbours got the same   

• if  check that  
 ensure that  has a unique connected component

v (r = rootT, parentT(v), distRootT(v))

v

distRootT(v) ≠ 0 distRootT(parentT(v)) = distRootT(v) − 1
→

r

distRootT(v) = 0 v = r
→ T

2
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Graphs of  have coherent tree 
decompositions [Bodlaender ‘88] 

1. decomposition tree of depth ,  

2. bags of size , 

3. connectivity of  for all .

tw ≤ k

O(log n)

≤ 3k + 3

G[Vi∖Bp(i)] i

Property : certifying a 3-approximationtw ≤ k
certificates & messages of size O(k2 log2 n)

  there exists a certificate assignment s.t. all vertices accept  

  for any certificate assignment, at least one vertex rejects

tw ≤ k ⇒

tw > 3k + 2 ⇒

i

Bi
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Certificate for vertex : 

1.  the depth of its topmost 
appearance in the decomposition tree,  

2. , the 
bags from  to the root  

3. … plus auxiliary messages to check that 
all vertices of  got 
the same certificate 

The last item uses a spanning tree of 
; congestion .

v

d(v)

ℬ(v) = (Bd(v), Bd−1(v), …, B1(v))
Bd(v)

F(v) = Bd(v)∖Bd−1(v)

VBd
∖Bd−1 O(log n)

Property : certifying a 3-approximationtw ≤ k
certificates & messages of size O(k2 log2 n)

 

 

ℬ(a) = ℬ(b) = ℬ(d) = ({a, b, d})

ℬ(c) = ({a, c, d}, {a, b, d})

ℬ(g) = ({c, g}, {a, c, d}, {a, b, d})
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Prover certificates 

• A 3-approximation for  

• Bag : choose a leader  

• send to  the homomorphism class of  

• … and graph 

tw ≤ k

Bi v ∈ Bi∖Bp(i)

v G[Vi]

G[Bi]

Distributed certification of  + MSO tw ≤ k

c 

g 

d 

e 

Distributed verifier 

• the leader of bag  retrieves the certificates 
from its children bags  

•  knows how  was obtained by 
glueing graphs  and the bag  

• … so it checks that the homomorphism classes 
are coherent with the glueing

i
j1, …, jp

leader(i) G[Vi]
G[Vj] G[Bi]

wishful thinking…
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Distributed certification of  + MSO tw ≤ k
• not that straightforward, the leader of bag  may not see 

its children bags  

• for each each child  of  we choose an ‘’exit vertex’’ in 
 adjacent to some node   

• that  is responsible for several children nodes 

•  gets the homomorphism class of  obtained by 
glueing   and all  for children  attached to   

•  is in charge of checking the consistency between 
 and all corresponding classes  

• and  ends the job.

i
j1, …, jp

j i
G[Vj∖Bi] w ∈ Bi∖Bp(i)

w

w G+[w]
G[Bi] G[Vj] j w

w
h(G+[w]) h(G[Vj])

leader(i)

 is in charge of children  
 is in charge of 

w1 j1, j2
w3 j3



Conclusion
• Distributed certification for ‘‘  + MSO property’’ 

• Deterministic, one round, uses  bits 

• Extends to optimisation problems, e.g., ‘‘  + 
MaxIndependentSet’’ 

• Hides large constants in , even for ‘‘ ’’ 

• What about  certificates — as for tree-depth, [Bousquet, 
Feuilloley, Pierron ’21]? 

• Distributed certification? Done for planarity/bounded genus, chordal 
graphs… 

• Distributed algorithmic meta-theorems?

tw ≤ k

O(log2 n)

tw ≤ k

k tw ≤ k

O(log n)
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Pisco Sour
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Graphs of  defined by a graph 
grammar on -terminal graphs, i.e., 
having  distinguished, numbered 
vertices (the root bag) 

• a binary ‘‘glueing’’ operation 

• a unary ‘‘forget’’ operation

tw ≤ k
k + 1

k + 1

More on MSO on bounded : regular propertiestw
Courcelle’s theorem in the version of [Borie, Parker, Tovey ’92]

Informally: (1) regular properties are defined to have a dynamic programming scheme 
with tables of constant size, and (2) MSO properties are regular.

1

3
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d e

g

a, b, d
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 described by matrix with two columns,  rows;  

 is the terminal of  mapped on terminal number  of  

- a similar unary operation with only one column 

- base graphs: only terminals (at most  vertices)

f mf = [
1 0
2 1
3 2] k + 1

mf(i, c) Gc i G

k + 1

Glueing operation for -terminal graphsk + 1
1

2

1

3

2 1

3

2

G1 G2 G = f(G1, G2)→
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Full example

Graphs of  are exactly the 
terminal recursive graphs. See e.g. 
[Bodlaender ’98] — arboretum.

tw ≤ k k + 1
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•  

• if  then  only depends on 
,  and  

• same for unary operations 

h(G1) = h(G2) ⇒ 𝒫(G1) = 𝒫(G2)

G = f(G1, G2) h(G)
h(G1) h(G2) mf

f

Regular properties on terminal recursive graphs
Courcelle’s theorem in the version of [Borie, Parker, Tovey ’92]

Property  is regular if we can associate homomorphism classes to -terminal recursive graphs 

 such that:

𝒫 k + 1

h : G = (V, E, T) → 𝒞k+1

1

3

a
2

b

c

d e

g

a, b, d

Example:  = 3Colorability. Take as  all 3-partitions  of  
such that , ,  can be extended into a colouring of .

𝒫 h(G) (R, G, B) {1,…, k + 1}
T ∩ R T ∩ G T ∩ B G
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•  

• if  then  only depends on , 
 and  

• same for unary operations 

h(G1) = h(G2) ⇒ 𝒫(G1) = 𝒫(G2)

G = f(G1, G2) h(G) h(G1)
h(G2) mf

f

MSO properties are regular 
Theorem [Borie, Parker, Tovey ’92]. MSO properties are regular. Given formula  and , 
one can compute homomorphism classes for property  for base graphs, and update 
tables for composition operations .

φ k
𝒫φ

f

1

3

a
2

b

c

d e

g

a, b, d

Bottom-up dynamic programming to compute the homomorphism class of . 
Decision at the root. Also works for properties on graphs and vertex/edge subsets.

G[Vi]


