## A meta-theorem for distributed certification

Distributed certification for "tw $\leq k+$ MSO property" using $O\left(\log ^{2} n\right)$ bits - SIROCCO 2022

Pierre Fraigniaud (IRIF - CNRS), Pedro Montealegre (U. Adolfo Ibañez, Santiago), Ivan Rapaport (CMM - U. Chile), loan Todinca (LIFO - U. Orléans)
ANR ESTATE \& DUCAT meeting, Cap Hornu, March 17, 2022

## Outline



1. Tree decompositions, treewidth \& Courcelle's theorem
2. Distributed certification for small treewidth... approximation
3. Distributed certification for "tw $\leq k+$ MSO property"
4. Conclusion

Related work: Bousquet, Feuilloley, Pierron '21 (arXiv): Local certification of MSO properties for bounded treedepth graphs

## Tree decompositions and treewidth

Tree decomposition of $G=(V, E)$ :

- A tree together with a bag (vertex subset of G) associated to each of its nodes
- Each vertex and each edge of $G$ must be in some bag

- For each vertex of $G$, the bags containing it form a connected subtree


Treewidth $\operatorname{tw}(G)$ : the minimum $k$ such that $G$ has a tree decomposition with bags of size $\leq k+1$

## Why is treewidth important?

[A personal point of view]

- At the heart of the graph minors project (Robertson \& Seymour) and a major starting point for parameterized algorithms (Downey \& Fellows...).
- Courcelle's (meta) theorem: every property expressible in monadic second order logic can be decided in $O(n)$ time on bounded treewidth graphs. Actually, $O(f(k, \varphi) \cdot n)$ time.
$\exists$ Red, Greed, Blue $\subseteq V:$
$(\forall x \in V, x \in$ Red $\vee x \in$ Green $\vee x \in$ Blue $)$
$\wedge[\forall x, y \in E,(x \in$ Red $\wedge y \in$ Red $) \Rightarrow \neg \operatorname{adj}(x, y)]$
$\wedge[\forall x, y \in E,(x \in$ Green $\wedge y \in$ Green $) \Rightarrow \neg \operatorname{adj}(x, y)]$
$\wedge[\forall x, y \in E,(x \in$ Blue $\wedge y \in$ Blue $) \Rightarrow \neg \operatorname{adj}(x, y)]$
- Win-win techniques: parameterized algorithms for the disjoint paths problem on arbitrary graphs (R\&S), parameters of planar graphs (bidimensionality Demaine, Fomin, Hajiaghayi, Thilikos).



## Courcelle's theorem

Every property $\mathscr{P}$ expressible in monadic second order logic can be decided in $O(n)$ time on bounded treewidth graphs.

- dynamic programming [Borie, Parker, Tovey '92]
- at each node $i$, store only the homomorphism class of property $\mathscr{P}$ for $G\left[V_{i}\right]$ and bag $B_{i}$
- the number of classes is bounded by a constant, depending on the property and on tw
- for leaf nodes, the homomorphism class is computed directly
- for other nodes $i$, the class is deduced from the ones of



## its children, and on the glueings of the children bags

3Colorability : the class is formed by all 3-partitions of the bag that can be extended into 3 -colourings

## Distributed certification for property $\mathscr{P}$

 many variants... here, one round, determinist protocolCentralized prover: knows the whole graph, assigns a (small) certificate to each node.
Distributed verifier: each nodes exchanges small messages with its neighbours (as in CONGEST), then accepts or rejects.

The prover is not trustable.

- Completeness: if $\mathscr{P}$ is true, there must exist a set of certificates s.t. all nodes accept;
- Soundness: if $\mathscr{P}$ is false, for any set of certificates, at least one node rejects.


3Colorability: easy, certificates of 2 bits. Non-3Colorability: hard...

## Distributed certification for spanning tree

## $O(\log n)$ certificates

Centralized prover to each vertex $v:\left(r=\operatorname{root}_{T}, \operatorname{parent}_{T}(v), \operatorname{distRoot}_{T}(v)\right)$
Distributed verifier for vertex $v$ :

- if $\operatorname{distRoot}_{T}(v) \neq 0$ check that $\operatorname{distRoot}_{T}\left(\operatorname{parent}_{T}(v)\right)=\operatorname{distRoot}_{T}(v)-1$ $\rightarrow$ detects cycles or incoherences
- check that all neighbours got the same $r$
- if $\operatorname{distRoot}_{T}(v)=0$ check that $v=r$
$\rightarrow$ ensure that $T$ has a unique connected component


## Property tw $\leq k$ :certifyinga3-approximation

 certificates $\&$ messages of size $O\left(k^{2} \log ^{2} n\right)$tw $\leq k \Rightarrow$ there exists a certificate assignment s.t. all vertices accept
tw $>3 k+2 \Rightarrow$ for any certificate assignment, at least one vertex rejects

Graphs of tw $\leq k$ have coherent tree decompositions [Bodlaender '88]

1. decomposition tree of depth $O(\log n)$,
2. bags of size $\leq 3 k+3$,

3. connectivity of $G\left[V_{i} \backslash B_{p(i)}\right]$ for all $i$.

## Property tw $\leq k$ :certifyinga3-approximation

 certificates \& messages of size $O\left(k^{2} \log ^{2} n\right)$Certificate for vertex $v$ :

1. $d(v)$ the depth of its topmost appearance in the decomposition tree,
2. $\mathscr{B}(v)=\left(B_{d}(v), B_{d-1}(v), \ldots, B_{1}(v)\right)$, the bags from $B_{d}(v)$ to the root
3. ... plus auxiliary messages to check that
 all vertices of $F(v)=B_{d}(v) \backslash B_{d-1}(v)$ got the same certificate

The last item uses a spanning tree of $V_{B_{d}} \backslash B_{d-1}$; congestion $O(\log n)$.

$$
\begin{aligned}
\mathscr{B}(a) & =\mathscr{B}(b)=\mathscr{B}(d)=(\{a, b, d\}) \\
\mathscr{B}(c) & =(\{a, c, d\},\{a, b, d\}) \\
\mathscr{B}(g) & =(\{c, g\},\{a, c, d\},\{a, b, d\})
\end{aligned}
$$

## Distributed certification of $\mathrm{tw} \leq k+$ MSO

## Prover certificates

- A 3-approximation for tw $\leq k$
- Bag $B_{i}$ : choose a leader $v \in B_{i} \backslash B_{p(i)}$
- send to $v$ the homomorphism class of $G\left[V_{i}\right]$

- ... and graph $G\left[B_{i}\right]$

wishful thinking...
- the leader of bag $i$ retrieves the certificates from its children bags $j_{1}, \ldots, j_{p}$
- leader $(i)$ knows how $G\left[V_{i}\right]$ was obtained by glueing graphs $G\left[V_{j}\right]$ and the bag $G\left[B_{i}\right]$
- ... so it checks that the homomorphism classes are coherent with the glueing


## Distributed certification of $\mathrm{tw} \leq k+$ MSO

- not that straightforward, the leader of bag $i$ may not see its children bags $j_{1}, \ldots, j_{p}$
- for each each child $j$ of $i$ we choose an "exit vertex" in $G\left[V_{j} \backslash B_{i}\right]$ adjacent to some node $w \in B_{i} \backslash B_{p(i)}$
- that $w$ is responsible for several children nodes
- $w$ gets the homomorphism class of $G^{+}[w]$ obtained by glueing $G\left[B_{i}\right]$ and all $G\left[V_{j}\right]$ for children $j$ attached to $w$
- $w$ is in charge of checking the consistency between $h\left(G^{+}[w]\right)$ and all corresponding classes $h\left(G\left[V_{j}\right]\right)$

- and leader $(i)$ ends the job.


## Conclusion



Pisco Sour

- Distributed certification for "tw $\leq k+$ MSO property"
- Deterministic, one round, uses $O\left(\log ^{2} n\right)$ bits
- Extends to optimisation problems, e.g., "tw $\leq k+$ MaxIndependentSet"
- Hides large constants in $k$, even for " $\mathrm{tw} \leq k$ "
- What about $O(\log n)$ certificates - as for tree-depth, [Bousquet, Feuilloley, Pierron '21]?
- Distributed certification? Done for planarity/bounded genus, chordal graphs...
- Distributed algorithmic meta-theorems?


## More on MSO on bounded tw: regular properties

Courcelle's theorem in the version of [Borie, Parker, Tovey '92]
Informally: (1) regular properties are defined to have a dynamic programming scheme with tables of constant size, and (2) MSO properties are regular.


Graphs of tw $\leq k$ defined by a graph grammar on $k+1$-terminal graphs, i.e., having $k+1$ distinguished, numbered vertices (the root bag)

- a binary "glueing" operation
- a unary "forget" operation


## Glueing operation for $k+1$-terminal graphs


$\rightarrow$

$f$ described by matrix $m_{f}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right]$ with two columns, $k+1$ rows;
$m_{f}(i, c)$ is the terminal of $G_{c}$ mapped on terminal number $i$ of $G$

- a similar unary operation with only one column
- base graphs: only terminals (at most $k+1_{14}$ vertices)


## Full example



$$
\begin{gathered}
G_{1}=f\left(G_{2}^{+}, G_{3}^{+}\right) \\
m(f)=\left(\begin{array}{ll}
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right)
\end{gathered}
$$

$$
G_{4}^{+}=f\left(G_{4}, G_{2}^{b}\right)
$$

$$
m(f)=\left(\begin{array}{ll}
0 & 1 \\
1 & 2 \\
0 & 3
\end{array}\right)
$$

$$
G_{4}=G_{4}^{b} \quad \begin{array}{lll}
c & G_{4}^{b} \\
g & (1) & \\
& & \\
& \\
& \\
\end{array}
$$

Graphs of $t w \leq k$ are exactly the $k+1$ terminal recursive graphs. See e.g. [Bodlaender '98] - arboretum.

## Regular properties on terminal recursive graphs

Courcelle's theorem in the version of [Borie, Parker, Tovey '92]
Property $\mathscr{P}$ is regular if we can associate homomorphism classes to $k+1$-terminal recursive graphs $h: G=(V, E, T) \rightarrow \mathscr{C}_{k+1}$ such that:


- $h\left(G_{1}\right)=h\left(G_{2}\right) \Rightarrow \mathscr{P}\left(G_{1}\right)=\mathscr{P}\left(G_{2}\right)$
- if $G=f\left(G_{1}, G_{2}\right)$ then $h(G)$ only depends on $h\left(G_{1}\right), h\left(G_{2}\right)$ and $m_{f}$
- same for unary operations $f$

Example: $\mathscr{P}=3$ Colorability. Take as $h(G)$ all 3-partitions $(R, G, B)$ of $\{1, \ldots, k+1\}$ such that $T \cap R, T \cap G, T \cap B$ can be extended into a colouring of $G$.

## MSO properties are regular

Theorem [Borie, Parker, Tovey '92]. MSO properties are regular. Given formula $\varphi$ and $k$, one can compute homomorphism classes for property $\mathscr{P}_{\varphi}$ for base graphs, and update tables for composition operations $f$.


- $h\left(G_{1}\right)=h\left(G_{2}\right) \Rightarrow \mathscr{P}\left(G_{1}\right)=\mathscr{P}\left(G_{2}\right)$
- if $G=f\left(G_{1}, G_{2}\right)$ then $h(G)$ only depends on $h\left(G_{1}\right)$, $h\left(G_{2}\right)$ and $m_{f}$
- same for unary operations $f$

Bottom-up dynamic programming to compute the homomorphism class of $G\left[V_{i}\right]$. Decision at the root. Also works for properties on graphs and vertex/edge subsets.

